
Under consideration for publication in J. Functional Programming 1

E D U C A T I O N A L P E A R L

Automata via Macros

SHRIRAM KRISHNAMURTHI∗
Brown University, Providence, RI, USA

(e-mail:sk@cs.brown.edu)

Abstract

Lisp programmers have long used macros to extend their language. Indeed, their success has inspired
macro notations for a variety of other languages, such as C and Java. There is, however, a paucity of
effective pedagogic examples of macro use. This paper presents a short, non-trivial example that im-
plements a construct not already found in mainstream languages. Furthermore, it motivates the need
for tail-calls, as opposed to mere tail-recursion, and illustrates how support for tail-call optimization
is crucial to support a natural style of macro-based language extension.

Contents

1 Introduction 1
2 About the Code in This Paper 3
3 Automata as Macros 3

3.1 Concision 7
3.2 Efficiency 9

4 Fixing a Flaw 9
5 Tail Calls versus Tail Recursion 11
6 Perspective 13
References 13

1 Introduction

The idea of extending a language with domain-specific constructs has a long and distin-
guished history (Christensen & Shaw, 1969). More recently, the advent of lightweight
program-generation techniques in mainstream languages, most notably the templates of
C++, have made these ideas accessible to a large number of programmers. Generativity
has even been used to build new forms of generic language constructs such as module
systems, as witnessed by, for instance, mixin layers (Smaragdakis & Batory, 1998).

In the arena of reflective programming techniques, the Lisp community has long played
a leading role in the form ofmacros. Indeed, the Scheme standard (Kelseyet al., 1998)
famously begins with the following design manifesto:

∗ Partially supported by NSF grant ITR-0218973. An earlier version of this example appeared in the author’s
thesis (Krishnamurthi, 2001) and was presented at the Lightweight Languages 1 conference.

2 Shriram Krishnamurthi

Programming languages should be designed not by piling feature on top of feature, but by remov-
ing the weaknesses and restrictions that make additional features appear necessary.

Scheme augments a minimal set of features with a powerful macro system, which enable
the creation of higher-level domain-specific and domain-independent language primitives.

How should programmers use macros? Over the years, a few common use-cases have
become apparent:

• providing cosmetics
• introducing binding constructs
• implementing “control operators”, i.e., ones that alter the order of evaluation
• defining data languages

The last of these is perhaps the most subtle. The sub-terms of a macro invocation can
contain arbitrary phrases, some of which may not even be legitimate Scheme code. In such
cases, the macro construct is essentially creating an abstraction over an implementation
choice. For instance, suppose a particular datum can be represented either as a procedure
or as a structure. Without macros, the same power can only be obtained by usingquote
followed byeval, which perforce defers the representation until evaluation. A macro gives
the programmer a consistent, representation-independent means of describing the datum
while still resolving the representation before compilation.

Unfortunately, there are relatively few accessible and yet instructive examples of the
use of macros. Most examples tend to fall in one of two categories. Some examples are
too simple and also too inward-looking: Presenting the definition of a construct likelet in
terms of immediate procedure application is unlikely to impress a programmer accustomed
to languages where lexical scope introduction is already built-in. Other examples, such as
the embedding of Prolog in Scheme (Haynes, 1987), are too complex to be understood
readily (especially since they make heavy use of continuations). This creates a vacuum in
the pedagogic space.

The problem of pedagogy is especially clear when trying to teach this material to stu-
dents. When students are only familiar with traditional procedural programming, their re-
sponse to being told that macros enable the programmer to create their own control con-
struct is usually, “What other control constructs would I need?”

Furthermore, the approach to building a language by syntactic expansion into a small set
of core features is more subtle than most novices realize. Its success in Scheme depends
on a potent combination of several forces:

1. a set of very powerful core features;
2. very few restrictions on what can appear where (i.e., values in the language are truly

first-class, which in turn means the expressions that generate them can appear nearly
anywhere); and,

3. a relatively high degree of orthogonality between the core features.

The first means many macros can accomplish their tasks with relatively little effort, the
second means the macros can be written in a fairly natural fashion, and the third means that
macro writers don’t need to worry about too many subtle interactions. A good pedagogic
example would, therefore, also illustrate some of these design forces.

Automata via Macros 3

This paper presents such a pedagogic example of the use of macros, namely the defini-
tion of finite state automata. The example actually features all four of the uses of macros
described above. In particular, it’s easy to see that the automata are control constructs, and
yet they are not already built into traditional programming languages, thereby providing a
constructive answer to the students’ question.1

2 About the Code in This Paper

This paper cannot attempt to provide a tutorial on Scheme or its macro system. Please in-
stead consult Dybvig’s book (Dybvig, 1996) (available in full on-line; Chapter 8 explains
macros in great detail). The key ideas in these systems are hygiene (Kohlbeckeret al.,
1986; Kohlbecker, 1986), which prevents inadvertent identifier capture, and pattern match-
ing (Kohlbecker & Wand, 1987; Kohlbecker, 1986), which greatly eases the construction
and comprehension of macro definitions. Fortunately, both features are intuitive: pattern
matching tends to make code look as it should, and hygiene ensures that such code also
worksas it should. Therefore, the reader should be able to comprehend the examples in
this paper without understanding these features in detail.

In addition, all the code in this paper is executable, and I encourage readers to run these
examples:

1. download and install DrScheme (Findleret al., 2002) from
http://www.drscheme.org/ ;

2. change the language level from the default, intended primarily for students, to one for
professionals, which supports macros. In version 209, theLanguage menu’sChoose

Language ... entry lets you do this. ChoosePretty Big Scheme under thePLT tab.

3 Automata as Macros

Suppose we want to define automata manually. Ideally, we should be able to specify the
automata once and have different interpretations for the same specification; we also want
the automata to be easy to write textually. In addition, we want the automata to execute
fairly quickly, and to integrate well with the rest of the code.

Concretely, suppose we want to construct an automaton that recognizes the language
c(ad)∗r, reminiscent of the Lisp identifier familycar, cdr, cadr, cddr, cddar and so on.
We might want to write this textually as

automaton init
init : c -> more
more : a -> more

d -> more
r -> end

end :

1 Harper’s article on proof-directed debugging (Harper, 1999), for instance, uses automata for regular-expression
matching as an example, but the automaton is hand-coded in ML, thereby obscuring some of its structure.

4 Shriram Krishnamurthi

where the state named after the keywordautomaton identifies the initial state.
How do we implement these automata as programs with dynamic behavior?I request

you, dear reader, to pause now and sketch the details of an implementation in your favorite
language before proceeding further.

One natural implementation of this language of automata is to create a vector or other
random-access data structure to represent the states. Each state has an association indi-
cating the actions—implemented as an association list, associative hash table, or other
appropriate data structure. The association binds inputs to next states, which are references
or indices into the data structure representing states. Given an actual input stream, a pro-
gram would walk this structure based on the input. If the stream ends, it would accept the
input; if no next state is found, it would reject the input; otherwise, it would proceed as
per the contents of the data structure. (Of course, other implementations of acceptance and
rejection are possible.)

A Scheme implementation of this program would look like this. First we represent the
automaton as a data structure:

(definemachine
’((init (c more))

(more (a more)
(d more)
(r end))

(end)))

The following program is parameterized over machines and inputs (the primitiveassvlooks
up a value in an association list):

;; run : automaton× symbol× list(symbol)→ boolean
(define(run machine init-state stream)

(define(walker state stream)
(cond
[(empty? stream) true]
[else
(let ([in (first stream)]

[transitions(rest (assv state machine))])
(let ([new-state(assv in transitions)])

(if new-state
(walker (first (rest new-state)) (rest stream))
false)))]))

(walker init-state stream))

Here are two instances of running this program:

> (run machine’ init ’(c a d a d d r))
true
> (run machine’ init ’(c a d a d d r r))
false

This is not the most efficient implementation we could construct in Scheme, but it is
representative of the general idea.

Automata via Macros 5

While this is a correct implementation of the semantics, it takes quite a lot of effort to get
right. It’s easy to make mistakes while querying the data structure, and we have to make
several data structure decisions in the implementation. Can we do better?

To answer this question affirmatively, let’s ignore the details of data structures and un-
derstand theessenceof these implementations:

1. Per state, we need fast conditional dispatch to determine the next state.
2. Each state should be quickly accessible.
3. State transition should have low overhead.

Let’s examine these criteria more closely to see whether we can recast them slightly:

fast conditional dispatchThis could just be a conditional statement in a programming lan-
guage. Compiler writers have developed numerous techniques for optimizing properly
exposed conditionals (Bernstein, 1985).

rapid state accessPointers of any sort, including pointers tofunctions, would offer this.
quick state transitionIf only function calls were implemented asgoto s . . .

In other words, theinit state could be represented by

(lambda (stream)
(cond

[(empty? stream) true]
[else
(case(first stream)

[(c) (more(rest stream))]
[else false])]))

That is, if the stream is empty, the procedure halts returning a true value; otherwise it
dispatches on the first stream element. Note that the boxed expression is invoking the code
corresponding to themore state. The code for themore state would thus be

(lambda (stream)
(cond

[(empty? stream) true]
[else
(case(first stream)

[(a) (more (rest stream))]
[(d) (more (rest stream))]

[(r) (end (rest stream))]
[else false])]))

Each boxed name is a reference to a state: there are two self-references and one to the code
for theend state. Finally, the code for theend state fails to accept the input if there are
any characters in it at all. While there are many ways of writing this, to remain consistent
with the code for the other states we write it as

(lambda (stream)
(cond

[(empty? stream) true]

6 Shriram Krishnamurthi

(definemachine
(letrec ([init

(lambda (stream)
(cond

[(empty? stream) true]
[else
(case(first stream)

[(c) (more(rest stream))]
[else false])]))]

[more
(lambda (stream)

(cond
[(empty? stream) true]
[else
(case(first stream)

[(a) (more(rest stream))]
[(d) (more(rest stream))]
[(r) (end(rest stream))]
[else false])]))]

[end
(lambda (stream)

(cond
[(empty? stream) true]
[else
(case(first stream)

[else false])]))])
init))

Fig. 1. Implementation of an Automaton

[else
(case(first stream)

[else false])]))

Because there no matching conditional clauses, this function always returns the value of
the fall-through clause.

The full program is shown in Fig. 1. This entire definition corresponds to the machine;
the definition ofmachineis bound toinit, which is the function corresponding to theinit
state, so the resulting value needs only be applied to the input stream. For instance:

> (machine’(c a d a d d r))
true
> (machine’(c a d a d d r r))
false

What we have done is actually somewhat subtle. We can view the first implementation
as aninterpreter for the language of automata. This moniker is justified because that im-
plementation has these properties:

1. Its output is an answer (whether or not the automaton recognizes the input), not
another program.

Automata via Macros 7

2. It has to traverse the program’s source as a data structure (in this case, the description
of the automaton) repeatedly across inputs.

3. It consumes both the program and a specific input.

It is, in fact, a very classical interpreter. Modifying it to convert the automaton data struc-
ture into some intermediate representation would eliminate the overhead in the second
clause, but not affect the other criteria.

In contrast, the second implementation given above is theresult of compilation, i.e., it is
what a compiler from the automaton language to Scheme might produce. Not only is the
result a program, rather than an answer for a certain input, it also completes the process of
transforming the original representation into one that does not need repeated processing.2

While this compiled representation certainly satisfies the automaton language’s seman-
tics, it leaves two major issues unresolved: efficiency and conciseness. The first owes to the
overhead of the function applications. The second is evident because our description has
become much longer; the interpreted solution required the user to provide only a concise
description of the automaton, and reused a generic interpreter to manipulate that descrip-
tion. What is missing here is the actual compiler that can generate the compiled version,
and that is what a macro represents.

3.1 Concision

First, let us slightly alter the form of the input. We assume that automata are written using
the following syntax (presented informally):

(automaton init

(init : (c→ more))
(more : (a→ more)

(d→ more)
(r→ end))

(end :))

The general transformation we want to implement is clear from the code in Fig. 1:

(state: (label→ target) · · ·) ⇒ (lambda (stream)
(cond

[(empty? stream) true]
[else
(case(first stream)

[(label) (target(rest stream))]
· · ·
[else false])]))

Having handled individual rules, we must make the automaton macro wrap all these pro-
cedures into a collection of mutually-recursive procedures. The result is the macro shown
in Fig. 2.

2 This distinction is closely related to that betweendeepandshallowembeddings (Bowen & Gordon, 1995).

8 Shriram Krishnamurthi

(define-syntax automaton
(syntax-rules(: →) ;; match ‘:’ and ‘→’ literally, not as pattern variables

[(init-state
(state: (label→ target) · · ·)
· · ·)

(letrec ([state
(lambda (stream)

(cond
[(empty? stream) true]
[else
(case(first stream)

[(label) (target (rest stream))]
· · ·
[else false])]))]

· · ·)
init-state)]))

Fig. 2. A Macro for Executable Automata

To use the automata that result from instances of this macro, we simply apply them to
the input:

> (definem (automaton init

[init : (c→ more)]
[more : (a→ more)

(d→ more)
(r→ end)]

[end :]))
> (m ’(c a d a d d r))
true
> (m ’(c a d a d d r r))
false

By defining this as a macro, we have made it possible to genuinely embed automata
into Scheme programs. This is certainly true purely at a syntactic level—since the Scheme
macro system respects the lexical structure of Scheme, it does not face problems that an
external syntactic preprocessor might face. In addition, an automaton is just another ap-
plicable Scheme value. By virtue of being first-class, it becomes just another linguistic
element in Scheme, and can participate in all sorts of programming patterns.

In other words, the macro system provides a convenient way of writing compilers from
“Scheme+” to Scheme. More powerful Scheme macro systems (Dybviget al., 1993; Flatt,
2002; Krishnamurthiet al., 1999) allow the programmer to embed languages that are truly
different from Scheme, not merely extensions of it, into Scheme. A useful slogan3 for
Scheme’s macro system is that it’s alightweight compiler API.

3 Due to Matthew Flatt, and quite possibly others too.

Automata via Macros 9

3.2 Efficiency

The remaining complaint against this implementation is that the cost of a function call adds
so much overhead to the implementation that it negates any benefits theautomatonmacro
might conceivably manifest. In fact, that’s not what happens here at all, and this section
examines why not.

Tony Hoare once famously said, “Pointers are like jumps” (Hoare, 1974). What we are
seeking here is the reverse of this phenomenon: what is thegoto -like construct that cor-
responds to a dereference in a data structure? The answer was given by Guy Steele (Steele,
1977): thetail call.

Informally, an invocation of functiong within functionf is in tail position relative tof if
f returns whatever valueg returns without operating on that value further. Steele’s insight
was that tail calls do not need to consume stack space. The stack already contains a return
address wheref should send its result. Whenf callsg in tail position, the run-time system
can replacef ’s local variables with those forg but leave alone the return address, since the
one at the top of the stack is the very one whereg’s result will go; sincef performs no
computation ong’s return, its stack frame is no longer necessary.4 In other words, the call
just replaces the values of local variables, and agoto takes the place of the push-and-pop
of a call and the subsequent return. Scheme implementations arerequired to implement
tail-calls in agoto -like fashion (Kelseyet al., 1998).

Armed with this insight, we can now reexamine the code. Studying the output of com-
pilation, or the macro, we notice that the conditional dispatcher invokes the function cor-
responding to the next state on the rest of the stream—but does not touch the return value.
This is no accident: the macro has been carefully written to only make tail calls.5

In other words, the state transition is hardly more complicated than finding the next
state (which is statically determinate, since the compiler knows the location of all the local
functions) and executing the code that resides there. The code generated from this Scheme
source therefore has the features we discussed at the beginning of section 3: potentially
random access for the procedures (Bernstein, 1985), references for state transformation,
and some appropriately efficient implementation of the conditional.

The moral of this story is that we get the same representation we would have had to
carefully craft by hand virtually for free from the compiler. In other words,languages rep-
resent the ultimate form of reuse, because we get to reuse everything from the mathematical
(semantics) to the practical (libraries), as well as decades of research and toil in compiler
construction (Hudak, 1998).

4 Fixing a Flaw

The cautious reader must have noticed that the automata defined above are incorrect: they
don’t quite accept the advertised language. Consider the following interaction:

4 A formal definition of tail-calling space behavior is outside the scope of this paper; we refer the reader to the
exposition in Clinger’s paper (Clinger, 1998), and to Appel’s related notion of space safety (Appel, 1991).

5 Even if the code did need to perform some operation with the result, it is often easy in practice to convert the
calls to tail-calls using accumulators, as Abelson and Sussman (Abelson & Sussman, 1985) discuss. In general
the conversion to continuation-passing style (Fischer, 1972) converts all calls to tail calls.

10 Shriram Krishnamurthi

(define-syntax process-state
(syntax-rules(→)

[((label→ target) · · ·)
(lambda (stream)

(cond
[(empty? stream) true]
[else
(case(first stream)

[(label) (target(rest stream))]
· · ·
[else false])]))]))

(define-syntax automaton
(syntax-rules(:)

[(init-state
(state: response· · ·)
· · ·)

(letrec ([state
(process-stateresponse· · ·)]
· · ·)

init-state)]))

Fig. 3. Refactored Implementation

> (m ’(c a d a))
true

That is, the macro defines automata that accept every substring of the desired language.
We can trace the error to the overly generous termination condition, which accepts every
terminating string. Indeed, the flaw is built into our definition of automata, because they
contain no explicit specification of acceptance.

One fix is to extend the automata to explicitly signal acceptance. We can designate a
state as accepting by using the keywordaccept:

(definem2
(automaton init

[init : (c→ more)]
[more : (a→ more)

(d→ more)
(r→ end)]

[end : accept]))

We must now modify the macro definition accordingly.
Notice that the change affects only the grammar of state transitions, not the outer au-

tomaton specification. It is therefore best to first factor the macro into two components, as
shown in Fig. 3. This simply explicates the informal factoring we presented in Sect. 3.1.

This refactoring helps isolate the change. Specifically, we must add the keyword and a
corresponding rule to theprocess-statemacro, as well as modify the code for the existing

Automata via Macros 11

(define-syntax process-state
(syntax-rules(accept→)

[(accept)
(lambda (stream)

(cond
[(empty? stream) true]
[else false]))]

[((label→ target) · · ·)
(lambda (stream)

(cond
[(empty? stream) false]
[else
(case(first stream)

[(label) (target(rest stream))]
· · ·
[else false])]))]))

Fig. 4. Modified Macro

rule. Fig. 4 shows these changes. The first rule corresponds to the additions, while the
boxed code in the second reflects the change. Testing this new version of the macro yields

> (m2 ’(c a d r))
true
> (m2 ’(c a d a))
false
> (m2 ’(c a d a r))
true
> (m2 ’(c a d a r r))
false

Finally, we might like to create a single macro that encapsulates the helper. We can do
this by moving the helper inside theautomaton macro usinglet-syntax. One peculiarity
makes this slightly tricky: because the helper is part of theoutputof the initial expansion,
the ellipses in its definition must be quoted. We adopt the convention, supported by various
Scheme implementations, that (· · · · · ·) expands into· · · in the output of expansion. The
final macro definition is shown in Fig. 5.

5 Tail Calls versus Tail Recursion

This example should help demonstrate the often-confused difference between tailcalls
and tail recursion. Books such as the first edition of Abelson and Sussman (Abelson &
Sussman, 1985) discuss tail recursion, which is a special case where a function makes
tail calls toitself. They point out that, because implementations must optimize these calls,
using recursion to encode a loop results in an implementation that is really no less efficient
than using a looping construct. They use this to justify, in terms of efficiency, the use of
recursion for looping.

12 Shriram Krishnamurthi

(define-syntax automaton
(syntax-rules(:)

[(init-state
(state: response· · ·)
· · ·)

(let-syntax
([process-state

(syntax-rules(accept→)
[(accept)
(lambda (stream)

(cond
[(empty? stream) true]
[else false]))]

[((label→ target) (· · · · · ·))
(lambda (stream)

(cond
[(empty? stream) false]
[else
(case(first stream)

[(label) (target(rest stream))]
(· · · · · ·)
[else false])]))])])

(letrec ([state
(process-stateresponse· · ·)]
· · ·)

init-state))]))

Fig. 5. Final Version of the Macro

These descriptions unfortunately tell only half the story. While their comments on us-
ing recursion for looping are true, they obscure the subtlety and importance of optimizing
all tail calls, which permit a family of functions to invoke each other without experienc-
ing penalty. This leaves programmers free to write readable programs without paying a
performance penalty—a rare “sweet spot” in the readability-performance trade-off. Tradi-
tional languages that offer only looping constructs and no tail calls force programmers to
artificially combine procedures, or pay via performance.

The functions generated by theautomaton macro are a good illustration of this. If the
implementation did not perform tail-call optimization but the programmer needed that level
of performance, the macro would be forced to somehow combine all the three functions
into a single one that could then employ a looping construct. This leads to an unnatural
mangling of code, making the macro much harder to develop and maintain.

As a parting puzzle for our readers from more traditional languages, we ask you to con-
sider how you would write complex, mutually-recursive procedures with loops instead. A
good illustrative example of such a problem is the filesystem exercise that constitutes sec-
tion 16, “Development through Iterative Refinement”, in the first edition ofHow to Design
Programs(Felleisenet al., 2001), available on-line athttp://www.htdp.org/ .

Automata via Macros 13

6 Perspective

In the introduction, we placed several demands on the automaton example. How did it fare?

cosmeticsThis should be obvious. The only improvement to this notation would be to
display it graphically.

binding construct Automata bind state names to their corresponding behavior. This is
different than binding identifiers to values, but it is binding nonetheless.

control operator An executable automaton is clearly a kind of control construct.
data language We have shown two different implementations of automata, one as a di-

rect interpreter and another by compilation to mutually-recursive functions. The macro
for automata enables a programmer to ignore this distinction, while still leaving both
implementations a possibility.

The example has also shown how automata exploit the ability to write procedures at will,
and depend on tail-calls to make this non-standard loop actually have the informal seman-
tics that a programmer associates with a “looping” construct. In the process, it shows how
features that would otherwise seem orthogonal, such as macros and tail-calls, are in fact
intimately wedded together; in particular, the absence of the latter would greatly compli-
cate use of the former. Supporting the primitives that macros need is analogous to offering
garbage collection: it frees the generator programmer from a number of important but ulti-
mately low-level concerns, leaving more cognitive capacity free to deal with the concerns
of the domain.

Acknowledgements

For sharing their wisdom on macros, I thank Dan Friedman, Mayer Goldberg, John Lacey,
Kent Dybvig, Bruce Duba, Matthias Felleisen, Matthew Flatt, and Oleg Kiselyov. Thanks
to Matthias Felleisen for numerous editorial remarks, to Christopher Dutchyn for his very
careful reading, to Greg Sullivan for prompting me to speak at Lightweight Languages 1, to
Dr. Dobb’s Journalfor publishing the resulting talk on the Web, and to the several people
who commented on the material in that talk.

References

Abelson, Harold, & Sussman, Gerald Jay. (1985).Structure and interpretation of computer programs.
Cambridge, MA: MIT Press.

Appel, Andrew. (1991).Compiling with continuations. Cambridge.

Bernstein, Robert L. (1985). Producing good code for the case statement.Software–practice and
experience, 15(10), 1021–1024.

Bowen, J. P., & Gordon, M. J. C. (1995). A shallow embedding of Z in HOL.Information and
software technology, 37(5-6), 269–276.

Christensen, Carlos, & Shaw, Christopher J. (eds). (1969).Proceedings of the extensible languages
symposium. Association for Computing Machinery. Appeared asSIGPLAN Notices, 4(8):1–62,
August 1969.

Clinger, William D. 1998 (June). Proper tail recursion and space efficiency.Pages 174–185 of: ACM
SIGPLAN conference on programming language design and implementation.

14 Shriram Krishnamurthi

Dybvig, R. Kent. (1996).The Scheme programming language. 2 edn. Prentice-Hall.
http://www.scheme.com/tspl2d/ .

Dybvig, R. Kent, Hieb, Robert, & Bruggeman, Carl. (1993). Syntactic abstraction in Scheme.Lisp
and symbolic computation, 5(4), 295–326.

Felleisen, Matthias, Findler, Robert Bruce, Flatt, Matthew, & Krishnamurthi, Shriram. (2001).How
to design programs. MIT Press.

Findler, Robert Bruce, Clements, John, Flanagan, Cormac, Flatt, Matthew, Krishnamurthi, Shri-
ram, Steckler, Paul, & Felleisen, Matthias. (2002). DrScheme: A programming environment for
Scheme.Journal of functional programming, 12(2), 159–182.

Fischer, M. J. (1972). Lambda calculus schemata.ACM SIGPLAN notices, 7(1), 104–109. In the
ACM Conference on Proving Assertions about Programs.

Flatt, Matthew. (2002). Composable and compilable macros.ACM SIGPLAN international confer-
ence on functional programming.

Harper, Robert. (1999). Proof-directed debugging.Journal of functional programming, 9(4), 463–
470.

Haynes, Christopher T. (1987). Logic continuations.Journal of logic programming, 4, 157–176.

Hoare, C. A. R. (1974). Hints on programming language design.Pages 505–534 of:Bunyan, C. (ed),
Computer systems reliability. Pergamon Press.

Hudak, Paul. (1998). Modular domain specific languages and tools.International conference on
software reuse.

Kelsey, Richard, Clinger, William, & Rees, Jonathan. (1998). Revised5 report on the algorithmic
language Scheme.ACM SIGPLAN notices, 33(9).

Kohlbecker, Eugene E., & Wand, Mitchell. (1987). Macros-by-example: Deriving syntactic trans-
formations from their specifications.Pages 77–84 of: ACM SIGPLAN-SIGACT symposium on
principles of programming languages.

Kohlbecker, Eugene E., Friedman, Daniel P., Felleisen, Matthias, & Duba, Bruce F. (1986). Hygienic
macro expansion.Pages 151–161 of: ACM symposium on lisp and functional programming.

Kohlbecker, Jr., Eugene E. 1986 (Aug.).Syntactic extensions in the programming language Lisp.
Ph.D. thesis, Indiana University.

Krishnamurthi, Shriram. 2001 (May).Linguistic reuse. Ph.D. thesis, Department of Computer Sci-
ence, Rice University.

Krishnamurthi, Shriram, Felleisen, Matthias, & Duba, Bruce F. 1999 (Sept.). From macros to
reusable generative programming.Pages 105–120 of: International symposium on generative and
component-based software engineering. Springer Lecture Notes in Computer Science, no. 1799.

Smaragdakis, Yannis, & Batory, Don. 1998 (July). Implementing layered designs and mixin layers.
Pages 550–570 of: European conference on object-oriented programming.

Steele, Jr., Guy Lewis. (1977). Debunking the “expensive procedure call” myth, or procedure call
implementations can be considered harmful, or Lambda, the ultimate GOTO.Pages 153–162 of:
Acm conference proceedings.

