Programming Electronic Music in Pd

Johannes Kreidler
06-2008

1il
Abstract

Pd was initiated by American software engineer Miller Puckette, who previous co-developed the
well known and similarly structured software Max/Msp. Pd is not commercial software; i.e., it was
not developed by a corporation and is not for sale. Instead, it is “open source’: its source code is not
the (patented) property of a corporation, but is rather freely available to all. One drawback to this is
that a detailed operating manual for users who lack programming experience has not existed until
now. In contrast to a corporation— which has a monetary interest in ensuring that first-time users
can easily operate new software—the open source movement lacks such a driving force to make
itself accessible. This book is an attempt to fill that gap.

This tutorial is designed for self-study, principally for composers. It begins with explanations of
basic programming and acoustic principles then gradually builds up to the most advanced electronic
music processing techniques. The book’s teaching approach is focused primarily on hearing, which
we consider a faster and more enjoyable way to absorb new concepts than through abstract
formulas.

The patches described are available for download.

v

Table of Contents

Preface viii

Introduction to this book's methodology ix

1. Introduction to Pd 1
1.1 General remarks

1.2 Installing and settingup Pd 4

2. Programming with Pd for the first time 5

2.1 Introduction 5

211 Asimpleexample 5

2.1.2 Surfaceelements in Pd 11

2.1.3 Summary . e 13

2. 1.4 AppendiX ... e 14

2.1.5 For those especially interested: Atoms 16

2.2 The control level 16

2.2.1 Mathematical operations and order 16

2.2.2 Different types of data 27

2.2.3 TIME OPErationNS . ..ttt t et ettt et et ettt et e 38

224 Miscellaneous 49

3. Audio 62

3 L BaSICS ot 62

3L L Pitch .o 62

3 L2Volume .. 75

3.2 Additive Synthesis 90

321 Theory ..o 90

322 Applicationsot 94

323 AppendiX ... e 97

3.2.4 For those especially interested, 97

3.3 Subtractive synthesisttt e 97

331 Theory ... 97

332 Applications e 100

3.3 3 AppendiX ... e 102

3.3.4 For those especially interested 103

3.4 Sampling ... e e 105
341 Theory ..o 105

342 Applications ... 119

343 AppendiX ... 135

3.4.4 For especially interested i 142

35 Wave shaping i e 144
3.5.1 Theory ..o 144

3.5 2 Applications ... 159

3.5 3 AppendiX ... e 162

3.5.4 For those especially interested 165

3.6 Modulation synthesis —......... ... 166
3.6. 1 TheOry ..ot 166

3.6.2 Applications 170

3.6.3 ApPendiX ... 171

3.7 Granular synthesis i e 172
3. 7.0 Theory ..o 172

372 Applications 178

373 APPENAIX ..o 181

3.8 Fourier analysiSt e 181
3.8. 1 Theory ... 181

3.8 2 Applications 187

3. 8.3 APPENAIX ..o 192

3.9 Amplitude COTTECtIONS . . . oottt et e e 196
3.9.1 Theory ...t 196

392 Applications 199

3.9 3 ApPendiX ... 200

3.9.4 For those especially interested i .. 202

4. Controlling sound 206
4.1 Algorithmso 206
411 Theory .ot e 206

412 Applications 206

Vi

413 APPendix .. 213

4.1.4 For those especially interested 213

4.2 SEQUENCET . o ottt et e e e e e e e 213
4.2 1 TheOTY ottt 213

422 Applications 216

423 APPendiX ..o 219

4.2.4 For those especially interested 222

A3 HIDS .ot 223
4.3 1 TheOTY vttt 223

432 Applications 226

4. 3.3 APPeNdiX .. e 228

4.3.4 For those especially interested oo... 228

44 NetWOTK .o 228
4.4.1 Netsend / NEtreCeIVeottt e e e 228

44,2 OSC 229

5. Miscellaneous 230
S.UStreamlining 230
S L TheOTY ot 230

S.L2 ApPplicationsot 239
SA3AppPendiX ... 240

5.1.4 For those especially interested 243

5.2 ViSualsS .. 244
5.2 1 TREOTY .ottt 244

522 Applications 245

S23 AppendiX .. 249

5.2.4 For those especially interested 256
Afterword 257
Appendix A. Solutions 258
0 U S P 258
2.2, 2.2 0 259
22,32 261

3.2 2 S 264
3.3 3 266
34 2] 267
3 S 2 A 272
3. 2 3 273
3 8.3 S 274
3.0, 275
4] 2 3 e 276
A 278
5. L2 279

viii

Preface

This book is the result of my experience of teaching electronic music. Through the teaching
process, I became familiar with the most common stumbling blocks students encounter —
especially when the student's native language is not the language in which lessons are conducted.

Pd (Pure Data) is a professional, high-performance programming language for electronic sound
processing. It is open source, i.e. available for free on the Internet. One disadvantage of this is that
Pd is only discussed in certain institutions or Internet forums. The complicated technical
terminology usually found there is enormously difficult for beginners to understand. This book will
help first-time users to clear those first few hurdles when learning Pd.

Pd's main designer, Miller Puckette, is also writing a book about the theory and technology of
electronic music processing with Pd. Surely there is no better teacher of a programming language
than the person who designed it; his primarily scientific approach certainly does cover all the
material in a thorough, systematic fashion. However, his method of teaching can be difficult to
comprehend. My pedagogical experience has been that Puckette's text demands a large amount of
mathematical, computer science, and terminological knowledge from its readers.

This book is designed for self-study, principally for composers. It begins with explanations of basic
programming and acoustic principles before gradually building up to the most advanced electronic
music processing techniques. Some knowledge of physics is assumed and explanations of basic
physics concepts have been intentionally omitted. My book's teaching approach is focused primarily
on hearing, which I regard as a faster and more enjoyable way to absorb new concepts than through
abstract formulas. In terms of mathematics, I explain only what is absolutely necessary to
comprehend a given processing concept. I explain the various techniques from a compositional
perspective, rather than attempting a computer science-, math-, or physics-based discussion of
processing phenomena or structures. Therefore, the decisions and comments I have made are purely
subjective and are open to debate.

This book would not have been possible without the support of Prof. Mathias Spahlinger, the expert
supervision of Prof. Orm Finnendahl, suggestions and patches from the Pd community, the
manuscript editing and DocBook-XML coding efforts of Esther Kochte. I would also like to thank
Mark Barden for the English translation and the Musikhochschule Freiburg and the state of Baden-
Wiirttemberg for financing the project, which — in the spirit of the open source movement —
makes it possible for all interested parties to use this book for free on the Internet. This will
hopefully increase interest in electronic music, thereby indirectly enriching the aesthetic discourse
of New Music.

Johannes Kreidler, January 2008

1X

Introduction to this book's methodology

The following material begins with basic computer knowledge. The first steps are therefore
described in meticulous detail.

Pd can run on different platforms (like Linux, OS X, or Windows) and this book is not platform-
specific. Problems relating to the operating system will not be discussed, as they are simply beyond
the scope of this tutorial (and it is also quite likely that changes — updates, bug fixes, etc. — will
occur in the near future). It is therefore assumed that Pd has been correctly installed and has been
integrated with the hardware environment (consult an Internet forum to resolve any of these sorts of
problems, e.g. "Pd-list").

How to use this book: Each lesson is comprised of a theory part, a practice part and an appendix, as
well as individual aspects that are explained in greater detail at the end of each section. This in-
depth information is aimed at advanced users and is not essential to acquire a basic working
knowledge of Pd. I recommend working through the whole book without consulting these
additional details first, then going back to learn them later.

Now and again, some fundamental concepts of acoustics are discussed. The exercises contain not
only specific compositional questions, but also applications that are useful for musicians' everyday
needs — e.g. tools like the metronome or tuning device. In this respect, the tutorial could be used by
interpreters as well as composers.

Chapter 1. Introduction to Pd

1.1 General remarks

Pd (Pure Data) is a programming language for electronic music. Creating music on a
computer is technically referred to as DSP (digital signal processing). "Digital" means that
information is represented by digits — computers, as you may know, work only with numbers.
"Signal" is the technical term for a special mode of computer operation that deals with sound.
"Processing" refers to functions executed by the computer.

Pd was initiated by American software engineer Miller Puckette, who previous co-developed
the well known and similarly structured software Max/Msp. Pd is not commercial software; i.e., it
was not developed by a corporation and is not for sale. Instead, it is "open source": its source code
can be viewed by anyone. This source code is also not the (patented) property of a corporation, but
is rather freely available to all. This also means that, provided sufficient knowledge, anyone can
change the program. Today, many other programmers, musicians, acoustic engineers, and
composers have joined Miller Puckette to continue Pd's development. As a result of this, there is no
final, definitive version of Pd; the program is under constant development. In addition to the huge
advantage of free availability on the Internet, it is also "democratically" expanded and optimized on
a professional level. One drawback to this is that a detailed operating manual for users who lack
programming experience has not existed until now. In contrast to a corporation, which has a
monetary interest in ensuring that first-time users can easily operate new software, the open source
movement lacks such a driving force to make itself accessible. This book is an attempt to fill that
gap.

In precise terms, Pd is a "real-time graphical programming environment for audio
processing". Traditionally, programmers work with text-based programming languages. They create
what is called "code", which is processed by a computer to produce a result. To carry out its
programming functions, Pd uses visual objects that the user places and alters on the screen. These
visual objects — small boxes that can be connected to each other — are a throwback to analogue
studios that were used to produce electronic music before the advent of computers: various devices
— today symbolized by our little boxes — are connected to each other using lines that — like
cables — symbolize physical connections between the boxes. (Due to this type of connection, Pd is
referred to as a datastream-oriented programming language.) Figs. 1.1.1 and 1.1.2.

One major advantage of Pd is the aspect of "real-time". This means that, in contrast to most
programming environments where a text is first entered that must be separately processed by the
computer before obtaining a result, changes in Pd can be made during performance. Like on a
classical instrument, the user hears the result instantaneously and can change it immediately. This
makes Pd especially well suited for use in live performance.

Pd has become much more than a programming language for electronic music. Since users
across the globe can participate in the project, there are user-programmed modules for what are
called "externals": video, Internet connection, joystick integration, etc. Whole libraries of these
modules even exist ("external libraries"). Some of these externals have been integrated into the
regular version of Pd.

An analog studio — devices are connected with cables.

pend =set
r Finit

d MAXline 12|

ine = 02Zbpm| E 0 2m|

d un.xline| d MaXline 12|

ine E!:ua
@g;sehﬁghungsmetrﬂ

sel 1
0.5 1

Pd boxes are connected to each other.

1.2 Installing and setting up Pd

Readers of this book should have Pd installed on their computer so they are able to try out the
processes described. Without this simultaneous practical experience, this tutorial will be difficult to
understand.

First you need a computer with at least 128 MB main memory, a 500 MHz processor and ca. 500
MB hard disk space (these are the absolute minimum requirements!). Pd works with the following
operating systems: Linux, OS X, and Windows.

Then you need to download the newest version of Pd-extended from the Internet. Enter "Pd-
extended" into an Internet search engine. Since the address for the download portal may change in
the future, no link to the site will be provided here. Pd-extended is a version of the original software
(also called "Pd vanilla") that has been expanded with numerous libraries. Most of the exercises
described here work with the original version of Pd, but not all of them. The extra objects in Pd-
extended make the program much more practical in general. This tutorial assumes Pd-extended
version 0.39 or higher.

Once Pd has been installed, we open it from the directory Pd/bin/. A window appears. This is the
main control center, so to speak. Here you can test whether Pd is functioning properly: In the main
menu, click on Media Test Audio and MIDI. Under "TEST SIGNAL", click first on the box next
to "—40", then on the box next to "-20". You should hear a sine tone coming out of the computer's
loudspeaker (A4). If you do not, then you need to adjust your hardware settings (under Media
Audio settings). More information regarding problems that arise at this stage cannot be given here.
For help resolving any problems, please consult the "Pd-list", a forum of Pd users on the Internet. If
a microphone is connected, the digits in at least the leftmost two boxes under "AUDIO INPUT"
should change in response to sound picked up by the microphone. As long as the test tone is
working, you can work with the program without a microphone. (By Chapter 3 at the latest,
however, you will sometimes need a microphone.)

Chapter 2. Programming with Pd for the first time

In this chapter, we won't focus on producing music yet, but rather on understanding the way that
computers and Pd handle data. We will be working with practical listening examples as often as
possible to avoid unnecessarily abstract and dry technical explanations. However, the precise way in
which computers produce sound will not be explained until Chapter 3. You should build the sample
patches yourself in Pd. This first-hand experience will help solidify the concepts presented. Starting
in Chapter 3, larger patches can be found at www.kreidler-net.de/pd/patches/patches.zip.

2.1 Introduction

2.1.1 A simple example

Once you have started Pd, the main Pd window appears on the monitor. Open a new programming
window by clicking the File menu and then New.

A new window opens. Add an object box under Put Object, or with the keypad, using the listed key
command: Ctrl-1 (this is for Windows; other platforms may have different key commands).

Select 'Object’ from the menu

ho

... you should see a blue box attached to the mouse cursor ...

and put it anywhere on the empty white background

d 1

g 5

Then click somewhere on the blank white surface in the new window to decouple the mouse from
the object box. Type this into the box: "osc~ 440".

E'_sc!fv_ililll then type this in

5

To accept what you have typed into the box, click anywhere outside the box on the white surface:

then click on the white hackground -
the first ohject is done

g

(The sign "~" means "tilde"; you'll need to use this often in Pd.)

You now see a rectangular box with little black rectangles in the top and bottom corners. The upper
rectangles are called "inlets", the bottom rectangle is an "outlet".

|

\\

If you place the cursor onto the outlet rectangle, it changes to a circle (which resembles an open

socket for a cable).

Now click on the rectangle and move the mouse while keeping the mouse button pressed. This
draws a line that can be thought of as a cable.

0

But because you haven't created an object to which you can attach this cable yet, the cable vanishes
when you release the mouse button. Make another object just as you did the previous one and call it
"dac~". Position it below the "osc~" object by clicking it once so that it turns blue and moving the
mouse with the mouse button held. Then start a cable from the outlet on "osc~" and connect it to the
left inlet on "dac~". The cursor changes into a circle when it is over the inlet.

inlets

outlet

Release the mouse button. The "cable" now connects "osc~ 440" to "dac~". You should hear a tone.
If not, verify in the Pd main window that there is a check next to "compute audio" (in Linux: check
if the field is red). If not, check the box with a mouse click:

(The "compute audio" function allows you to program in Pd without generating sound. This can
save the computer much unnecessary processing power — though this is probably a non-issue with
most computers these days.)

We hear a tone. To be specific, it is A4 (a' in the German system), also called the A440, the standard
concert tuning pitch that has a frequency of 440 Hertz (the meanings of "Frequency" and "Hertz"
will be explained later). Now connect the outlet from "osc~ 440" with the right inlet of "dac~" as
well.

osc~ 440

dac~

You should hear sound from both of the computer's speakers. Now create a number box (Put
Number or with key command Ctrl-3) and attach its outlet to the inlet on the object named "osc~".
Then you need to change into what is called "Execute mode" (Edit Edit mode, or with key
command Ctrl-E; the cursor turns into an arrow). Click on the number box, hold the mouse button,
and move the mouse up and down:

This changes the numbers and the pitch. The value should be at least 100; this range can be more
finely adjusted by holding SHIFT while clicking and moving the mouse as described above.

Another way to enter values into the number box is to click on the number box, enter a value on the
keyboard, and press ENTER.

Now change back to the other mode, the "Edit mode" (Edit Edit mode, or key command Ctrl-E).
Move the cursor, which should have changed back to a hand, over the connection between "osc~"
and "dac~". The cursor becomes an X. Click on it, which will turn the cable blue.

Then go to Edit Cut or simply press BACKSPACE. This terminates the connection. Cut the other
connection to "dac~" as well. Now create a new object where the cables used to be: "*~ 0" and
connect it to the other objects as shown:

[
o8]
=]

osc~ 440

~ 0

—1

[~
o1]
a
&

Let's make some more room: Enlarge the window by clicking on its lower right corner, holding the
mouse button, and pulling it down and to the right.

7 Untitled-6* - C:/Programme/pd-ext/bin

Then click on the lower right part of the white background near the "dac~" object, hold the mouse
button, and draw a rectangle that includes the "dac~" and the "*~" objects.

osc~ 440

dac~

This is how you select a part of a patch. (You can also delete boxes this way. After selecting a
portion of the patch, go to Edit Cut or simply press BACKSPACE.)

When you release the mouse button, both objects appear in blue. Click on one of these selected
objects, hold the mouse button, and pull them down to free up more space.

10

11

osc~ 440

To deselect these objects, just click anywhere on the white background.

Then create two "Message" boxes (Put Message or Ctrl-2) as below and enter "0" in one and "1" in
the other.

Change back to execute mode (Edit Edit mode or Ctrl-E) and click on the two message boxes in
turn: clicking 1 turns the sound on, clicking O turns it off.

2.1.2 Surface elements in Pd

The previous example covers most of the elements in Pd. Let's take a closer look at them — we used
three different kinds of boxes: Object, Message, and Number.

objects
P (messages
number

Object boxes are rectangular, message boxes have an indentation on the right side, and number
boxes have a flat upper right corner.

All of these boxes have inlets and outlets. The inlets are always on top, the outlets on bottom. You
can always connect an outlet to an inlet (in this order). There is an edit mode and an execute mode.

12

Edit mode is for programming and execute mode is for running the program. You can tell which
mode you're in by looking at the cursor:

{F_n} mouse cursor in Edit Mode

% mouse cursor in Execute Mode

Let's take a closer look: There are two kinds of "cables", thick and thin. A thin cable connects the
number box to the "osc~" object and a thick cable runs out of the "osc~" object. Thick cables
transmit signals, while thin cables transmit only control data. With "compute audio" in the Pd main
window, we determine whether the signals should be sent by marking or removing the checkmark.
Moreover, all objects that produce signals or that work with signals as an input (input = that which
goes into an inlet; output = that which comes out of an outlet), have a tilde ("~") after their name;
other objects don't have this! These two levels are called the "control level" (where only control
data flows, also called the "message domain") and the "signal level" (where signals flow, also called
the "signal domain").

34 i
thin cable: control data connection

34 |
osc~ 440

thick cable: signal connection
dac~

The first object you created was "osc~ 440", which is an "oscillator", and you heard a sine tone at
440 Hertz (the meaning of "Hertz" will be explained later). Then you made a number box and
entered new values there, which caused the frequency of the tone you heard to change. That is the
basic structure in Pd: an object has a name (if it produces signals, a tilde follows the name), then
there is a space, and then one or several arguments follow (in this case, the initial 'argument' was
"440"). With most objects, the arguments can be replaced with new values that are connected to the
inputs (unlike with the "osc~" object here, the changed value usually goes into the far right inlet).

object name
argument

300 Here the input replaces the argqument

If new values are entered this way, the argument written in the object box is ignored (in this
example, 300 instead of 440).

We can enter information in number boxes or message boxes. Message boxes also allow letters,
which are called symbols. All of this information is referred to as atoms. An atom appears in a

13

message box or in a number box (for more on atoms, see 2.1.5).

Another important term: The program that you write is called a patch. A patch first appears as a
blank white background on which you write a program. This white background is also called a
canvas.

-4— Pd main window

patch window

& Untitled-3* - C:Programme/pd-ext/bin

entire canvas

660 |

our patch

2.1.3 Summary

* There are two modes: Edit mode and execute mode (you switch between them with Ctrl-E
or under Edit Edit mode). You program all the parts of a patch in edit mode and start all
operations and sounds in execute mode.

* Within a patch, there is the control level and the signal level (control objects do not have a
tilde after their names and are connected with thin cables; signal objects have a tilde at the
end and are connected with thick cables). The signal level is only active if "compute audio"
has been activated in the Pd main window.

* The elements of a patch are objects, messages, and numbers.

* An object often has one or several arguments (a.k.a. "creation arguments"), which can be
changed using an input.

* A message is a fixed value in execute mode and is stored with the patch. When a message
box is clicked, its contents are sent to all objects connected to its outlet. In contrast, number

boxes can be altered in execute mode and their values are not saved.

2.1.4 Appendix

A few additional things that can make your work in Pd easier:

2.1.4.1 List of all objects

14

If you click on the white surface ("Canvas") with the right mouse button and open the Help menu, a

list with all Pd objects appears.

- output a hang message
change (+g) - remove repeated munbers from a stream
float - store and recall a number
itit - store and recall an integer
makefilename - format a symbol with a variable field
[ﬁﬁl] Right.click on mases - part a mumenic stream
Fovkis pa_u:l: - ﬂ_laice u:tnmpcuund messages

print - print out messages
[0:5'3” 440 hackgrr?ur;ld Itu recerve - catch "sent" messages
Er:r:&tniwe Plroute - route messages according to first elemnent
i swap - swap two munbers

w!nhdu\n:{ up?ns gelect - test for matching mumbers or symbaols
with a 'SE g send - send a message to a named object
all Pd objects. spigot - interrptible message connection
symbol - store and recall a symbol
trigger - sequence and convert messagess
unpack - get elements of compound messages

_luntl - looping mechanism
walue - shared numeric value

:act:ive (ch-
add? comuna (ie) - add a coruma-separated message to a messagebosx
| allowr (i) - lets ondy "allowed" floats or sytobols through

2.1.4.2 Help file

If you right-click on an object, a pull-down menu opens where you can select the help file for that

object for a detailed explanation.

15

“7& Untitled-3* - C:/Programme/pd-ext/bin

"ré DEC

- cosine wave oscillator

The osc~ ohject outputs a cosine wave. If no argqument i
supplied, the input i=s taken to be an audio signal. Wit
floating-point argqument, osc~ takes floating-point mess
to change fregquency.

Right-click on an object to incoming numbexrs
open the help file for that object. || change frequency vr—- inlet resets phase

<-- creation argument sets

amplitude controls:

0.1 100[oM
0 100[off

2.1.4.3 Duplication

You will soon find it quite helpful to duplicate parts of patches. To do this, select an area so that the
selected boxes appear in blue (as described under 2.1.1 in the context of making more space) and go
to Edit Duplicate or Ctrl-D. This duplicates the selected area and the copy appears as a selected
area that you can move (click on a selected box, hold, move to desired location with the mouse,
release).

2.1.4.4 Short cuts

It is much faster and more comfortable to work if you use "keyboard shortcuts". Many functions
that you can select in the pull-down menus are also available as keyboard shortcuts. These key
commands appear next to the function in the pull-down menu.

2.1.4.5 Comments

Programming can get complicated fast. To help remind you of the meaning of a certain patch, it is
recommended that you add comments to your patch. Comments can be added under Put Comment
(or with Ctrl-5). Here you can write whatever you like to explain your patch.

16

| enter a frequency here

osc~ 4400 A spund is generated here

dac-| The sound is sent to the speaker here

Comments on parts of a patch

If you've understood everything thus far, then you understand the essential fundamentals of Pd's
user interface. Now we can get into the structure of programming itself.

2.1.5 For those especially interested: Atoms

A message for an object has two parts: a method designation (selector) and zero, one, or several
values (arguments). For example, if the message is "5", then the actual message is "float 5" and is
comprised of the atoms "float" and "5". The message "bang" is comprised only of the selector
"bang" and contains no arguments. The message "1 2 3 4 5" is actually the message "list 1 2 3 4 5".

There are three kinds of atoms: a number (programming language = "float") with a 32-bit value, a
symbol, which is a string of letters, or a pointer, which is a kind of address (this will be covered in
Chapter 5.2.3).

The message "float 5" is composed of the two type designations symbol and float. The type symbol
has a value of "float" (a string) and the type float has a value of "5".

The selector is always a symbol. Since objects can react differently to different messages, the
selector first makes a more precise preliminary determination.

2.2 The control level

First we have to work through the basics of the control level in Pd. As already mentioned, Pure Data
works only with data, i.e., with numbers (and the help of letters). (In the examples, however, we
will be working with processed sound as soon as possible.)

2.2.1 Mathematical operations and order

2.2.1.1 Theory

2.2.1.1.1 Basic mathematical functions

As previous mentioned, computers only work with numbers. Pd works with both numbers and
"symbols", in other words letters. But numbers are of even greater significance; in the first example
we saw how important parameters like the pitch or volume of a sound are not determined in Pd
using the traditional musical indications like C4 for a pitch or pianissimo for a dynamic, but rather
exclusively using numbers. For this reason, we're going to spend some time learning the basics
about how Pd processes numbers in the control level:

You can enter numbers in both number boxes or message boxes. Some objects allow mathematical
operations to be performed using these numbers. Create the object "+" and connect number boxes to
its right and left inlets as well as one to its outlet:

17

b Jp]
b |

Enter a 4 in the right upper number box (in Execute Mode: click the number box once, type the
number, press ENTER) and 5 in the left upper box. The number 9 - the sum of 4 and 5 - appears in
the lower box. The "+" object has two inlets in which we can enter numbers and one outlet in which
the result processed by the object (in this case a process of addition) appears.

This example illustrates an important rule in Pd: with control objects that have several inputs, you
have to enter data into the inlets from right to left. In other words, an object receives input. It will
only create output based on this input when it receives input from the far left inlet. (One
distinguishes between "cold" inlets, which do not cause an immediate change, and "hot" inlets,
which trigger an immediate visible change when data is entered into them.) We will encounter this
rule constantly.

o]2] Aslong as the right input is the only
one being sent to the ohject, there

will be no output...

5 18) As soon as the obhject’s left inlet

receives input, the "+" object
generates output.

The other basic mathematical operations - subtraction, multiplication, division, and powers - follow

the same principle:
PE J o 1p 1B)
: I L
o E

If you want to perform several operations using one number, e.g., 3*3 and 3*4 then just connect the
number or message box to several inlets (for the sake of simplicity we will use arguments ("*3" and
"*4") instead of input for the multipliers. In the previous examples, we used inputs instead of

arguments. If we enter an object without an argument, Pd assumes a value of "0" for the argument):

3 If you click on the message hox

] 12 the results appear helow

18

If you want to perform two different calculations at the same time, you have to transform one
mouse click into several using a "bang" (Put Bang or Shift-Ctrl-B). You can click the bang in
Execute Mode.

If you click on the Banyg
hoth message boxes are activated
simultaneously

3 5
LA | LA |
) 20 and their results appear below

2.2.1.1.2 Order

If you then want to add these two results, you have to make sure that they enter the "+" object in the
correct order, i.e., from right to left.

9 Jfzo]
b |

To ensure this, there is what's called a "trigger" object:

o

Erigger banyg ha.ngﬂ

;

* 3 * 4
9 20
+
29

"trigger" can receive as input a bang, a number, a symbol, a pointer or a list (more about pointers
and lists later). Once started in this way, "trigger" gives this input or transforms it into a bang as
output from right to left. The output from a "trigger" object is determined by its arguments (bang,
float, symbol, pointer, list). In this case, the arguments are two bangs and two outlets are created (an
outlet is created for every argument you enter).

To save space, you can omit the number boxes from the first operations for the results you want to
add, simply using the outputs from above directly as inputs below. If you ever want to know what
value is being sent, just attach a "print" object to the output.

19

Erigger bhang hanﬂ

In the Pd main window we see:

print: 20

A "print" object's input will appear in the Pd main window. All errors that occur also appear in this
window. For example, if we try to create the non-existent object "zzzgghhh", it will not be created
and an error message ("zzzgghhh ... couldn’t create") appears in the Pd main window.

You can use this window to clarify the way "trigger" works by creating numerous "print" objects
and giving them different arguments. The results appear in the Pd main window under each other,
1.e. one after the other chronologically (for more on order of operations, cf. 2.2.1.4):

Erigger hang hang

in the Pd main window:

right: 20
left: 9

2.2.1.1.3 Expression

Larger mathematical expressions can be programmed using the "expr" object. The argument in this
case is the expression itself (using parentheses where necessary, just like back in math class!):

£

[expr_(a*(5-2)) /1]

To generate the result, you have to give it a bang.

You could also use "variables"; they are called $f1, $f2, $f3 etc. (counting begins with 1). This
creates inlets from left to right in which values for the variables are entered (as always, the output is
generated only once the leftmost inlet receives a value. So you have to ensure that all other values
have been entered before the leftmost one).

)

[expr (5£1*(5-2)) /5£2]

N.B.: If you want an "expr" operation (without input) to generate a 'float number' (i.e., a decimal

20

value, not a whole number), then you have to include a decimal point in one of the values in the
operation (for more on floats, see 2.2.1.4).

lexpr 17/7| |expr 17./7|

Exponential functions (a.k.a. 'raise to power' operations) follow this syntax: "expr pow ([Basis],
[Exponent])". For example, to raise to 2 to the 3rd power: "expr pow (2, 3)".

2.2.1.1.4 Other mathematical operations

"moses": The input is a number; "moses" decides, by evaluating whether this input is smaller than /
larger than/equal to the argument, which outlet will receive it. If you give "moses" an argument of
10 and give it an input that is smaller than 10, this input comes out of the left outlet. If the input is
10 or greater, it is sent to the right outlet.

4 |
S o T e I I F

"select" (usually abbreviated to "sel"): Input is a number, output is a bang only when the input is the
same as the argument. Any other numbers received as input come out the bottom right outlet.

Relational tests

"==": If the left input is the same as the argument or the right input, the output is 1, otherwise 0:

TR i

">=": If the left input is larger than or equal to the argument or the right input, the output is 1,
otherwise 0.

">": If the left input is larger than the argument or the right input, the output is 1, otherwise 0.
"I=": If the left input is not equal to the argument or the right input, the output is 1, otherwise 0.
"<": If the left input is smaller than the argument or the right input, the output is 1, otherwise 0.

"<=": If the left input is smaller than or equal to the argument or the right input, the output is 1,
otherwise 0.

Two more mathematical modules:

The result of a division operation (the quotient) can be expressed in decimal form (17 /7 = 2.428)

21

or in the form of a 'remainder": 17 /7 =2 remainder 3. A quotient with a "remainder" can be
achieved in Pd with "div" and "mod":

div 7

2 1 B

Then there are also other important mathematical operations (for more specific information on these
functions, please consult a high school mathematics textbook):

"sin" = Sine
"cos" = Cosine

"tan" = Tangent

" o_

"log" = (natural) Logarithm

"abs" = Absolute value
"sqrt" = Square root
Finally, there is an algorithm (algorithms are mathematical operations that the computer calculates

using entered values):

"Random" creates a random number within a given range. The lower limit has a default value of 0,
the upper limit is entered as an argument (whole numbers only). The upper limit is exclusive; i.e., if
you enter "random 4", every time the object receives a bang as input it will randomly select an
output of 0, 1, 2, or 3.

2.2.1.1.5 Float and counter

Another important object in the context of number operations is the "float" object (abbreviated: "f").
This object is used to store numbers. When you enter a number into the right input, it is saved in the
object for later use. If you send a bang to the left inlet, the number stored in the object is sent as
output (for more on "float", cf. 2.2.1.4).

22

First you enter a number as the right input

You can also send a number directly into the left input. This causes it to be sent as output
immediately. The number is also stored in the object for later use and can be resent using a bang.

Often in Pd, you'll want to use a "counter" that counts in whole numbers starting from a given input
value. Here's an example:

Initial value

Every time banyg is clicked,
the number increases hy one

Explanation:

First you give the "f" object a starting value of "0". The first time you click on the bang in the upper
left, the "f" sends a 0 to the "+ 1" object. This object then generates 0 + 1 = 1. This 1 then goes into
the right inlet of the "f" object. The next time you send a bang, this 1 is sent as output to the "+ 1"
object, which in turn generates a 2.

2.2.1.1.6 Summary

* The objects for mathematical operations demonstrate clearly an important rule in Pd: the
inputs for a control object should always be entered from right to left. To ensure this is the
case, we often need to employ a "trigger" object, which sends outputs from right to left one
after the other.

* A "bang" is like a mouse click, that can be sent or received.

* The "print" object displays in the Pd main window outputs generated when running your
patch. Outputs sent one after another in time appear underneath each other in the list; i.e. the
output at the bottom of the list is the most recent.

2.2.1.2 Applications

Now let's take a look at how to apply these concepts (everything dealing with sound will be
explained later):

23

2.2.1.2.1 Two frequencies — two volume levels

If you want to switch between two frequencies - a low quiet tone and a high loud one - you could
use the following patch. Switch between tones by clicking on their respective bangs:

dac~

2.2.1.2.2 An interval

To produce a dyad, you'll need two "osc~" objects. In the following patch, moving the values in the
number box up and down will produce a vertical interval (here, a perfect fifth) at various pitches:

Because "print" objects are present, the frequencies of these two tones will be displayed in the Pd
main window.

2.2.1.2.3 Random melody

Indeterminacy!

Every bang you send will generate a pitch between 200 and 1000 Hertz — a random melody.

24
Now a few more examples of mathematical operations:
2.2.1.2.4 Rounding

0.5 | Humhber to he rounded
{only positive values)

+ 0.5

div

1 Result

2.2.1.2.5 How long is this score?

A value that composers need to calculate again and again: you've written a piece with 324 quarter
notes at a tempo of quarter = 72. How long is the piece in seconds?

12

xpr ($£1/5£2)*60)

[¥%]
Ma
H

|

Ma

10

Result: 270 seconds or 4 minutes 30 seconds.

2.2.1.2.6 Counting in a series

This counter counts only from 0 to 6; after the 6, it starts again at 0.

2.2.1.2.7 Random without repetitions

If you've understood everything thus far, you should be able to handle the following challenge - but
be warned, it's not easy:

Create a patch that generates random numbers where the same number never occurs twice in a row
(unlike the normal "random" object). When you've finished, compare your patch to the solution.
Good luck!

25

2.2.1.2.8 More exercises
a) Create two random melodies that run simultaneously.

b) Create a patch where two bangs select two different intervals of your choosing (like the two
bangs/two frequencies example).

c¢) Use "expr" to calculate exponential functions, e.g. y = X2, y=X (), or y=1-(2%).
2.2.1.3 Appendix

2.2.1.3.1 Input for bang

A bang is like a mouse click. You can click it and have it pass on this click; i.e., it can receive a
click as input and then in turn sent a click as output. However, this input doesn't have to be a click.
The "bang" object converts any control input that it receives into a bang. For example, you could
use a number:

r 7
L |

2.2.1.3.2 How numbers are represented

Numbers with many decimal places cannot be read in their entirety in a normal number box. You
can enlarge the number box, however, by right-clicking on it, going to "Properties", entering a
larger value for "width", and then clicking on "Ok".

Another important aspect relates to numbers larger than 999999. They are represented in a
simplified form, namely as a product (with max. two decimal places) of 1000000. The number
1000000 is represented as "e+006".

E.q., if you enter "1784444" you get: 1.78e+006

The same applies to numbers smaller than -999999 and for those between 1 and -1 with more than

26
four decimal places.

2.2.1.3.3 More on trigger

The "trigger" object is capable of distributing not only bangs but also numbers (later we'll learn
even more possibilities). It is usually abbreviated as "t" and instead of typing out the arguments
"bang" and "float", you can use just "b" and "f":

right: 4
left: 4

the number input results simply in a bang on the right

right: bhang

Er int left Jeft: 3

2.2.1.4 For those especially interested

2.2.1.4.1 About series

By default, objects and connections are (currently) carried out in the sequence (in time) in which
they are created:

If you first connected the bang

to "symhol erwin”, then it {along
with any thing attached heneath it)
is executed first

Eymhnl pete:|?| E}rmhul E]’_'\'fil'—l|

Of course, this cannot be seen and should be avoid for just that reason!

2.2.1.4.2 Regarding float

"f" stands for "floating point". In precise terms, this indicates a number that has decimal places and
not a whole number. If you want to work only with whole numbers, you can always use "int"
(abbrev. "1") instead of "float" in Pd. In contrast to Max/MSP, Pd works with floating points by
default.

27

2.2.2 Different types of data

2.2.2.1 Theory

2.2.2.1.1 Bang — a GUI object

A "bang", like a mouse click, stands for the letter combination b-a-n-g. Letter combinations as
symbols are the second form of data (besides numbers) that Pd uses. Some objects recognize certain
words and work with their input. Many objects react to the symbol "bang". Since it occurs so
frequently, there is a special graphic representation for "bang", a circle that flashes when active (Put
Bang). This is called a "GUI" object (GUI = graphical user interface, i.e., a graphic representation
of something and/or a graphic that can be changed to produce and send new values).

These are identical

2.2.2.1.2 Messages

In this context, let's have a look at the "writesf~" object (an audio object will be introduced here due
to the fact that symbols are usually used in this context; the object itself will be further explained in
the audio chapter). This object saves sound as WAV files. It works like this: first we allocate a file in
the message box to which the sound is to be stored in WAV format: "open [file name]". If, for
example, the file is to be called "test.wav", then you would enter "open test.wav". Then we use the
messages "start" and "stop" to start and stop the recording.

OpEn test.wav[

Usually you select a name and then start recording. Order is important, of course - before the
"writesf~" object can begin recording, it has to know what the file is called that it is supposed to
save to. This could be solved by using "trigger":

thbh

start| open test .wa'.r[

Eitesf~|

But messages can also be sent one after another by writing them into the same message box,
separated by a comma:

28

open test.wav, start
e (

print: open test.wav

print: start

2.2.2.1.3 Lists

The message "open test.wav" is a connection between two symbols (because it consists of two
words separated by a space). This sort of succession of two or more symbols (or numbers) is called
a "list". The "pack" object can create a list from several "elements". For the arguments, enter
indications that specify what kind of elements the list should contain. A number, as with "trigger", is
expressed with "float"* (or "f''), a symbol with "symbol" (or "s"). If you want to create a list that
contains the messages "hello" and "43", use the "pack" object as shown:

[print: 1ist hello 43

Once again: only when the leftmost inlet receives input is an (accurate) output generated. (If you
click on "hello" first without having entered the right input for "pack", only "list hello 0" will
result.) The output for the "pack" object can at this point only be seen with the "print" object. This
then displays: "list hello 43". The elements of this list can, however, also be revealed using the
inverse object (Pd has a lot of inverse objects) "unpack", which works according to the same
principle as "pack", except that what appears here as output is the input for the "pack" object.

hello[[3 |

pack s £

E:r_':i.nt left ”E:r_':i.nt right

right: 43
left: symbol hello

"print" now displays "43" and "symbol hello". Everything that is not a number is preceded by an
indication (called a "selector") of its data type.

Also worthy of note: if you use a symbol anywhere but in the leftmost input for a "pack" object, it
must appear like this:

43 [[symbol hello|

One problem with "pack s s": the first input is the only one that doesn't have to be specifically
labeled as a symbol. The second symbol must either be preceded by the word "symbol" in the

29

message box or the message has to be converted using a "symbol" object:

Eellu Eymhnl dieter(

[print: list hello dieter

| print: list hello dieter|

A final point on lists: a list that begins with a number needs not explicitly be labeled a list; if it
begins with a symbol, however, the word "list" must be used.

2.2.2.1.4 Messages with variables
Let's take a closer look at message boxes:

Variables can be integrated in a message box's contents. This is done in a similar fashion as with
"expr", but not quite the same: first, the variables are called simply "$1, $2", etc. If you enter a
number as input for the message "number $1", the output from the message box will be the
complete expression with this number.

The use of several variables - e.g., "number $§1 $2" - does not create a corresponding number of
inlets (as it does with "expr"), but instead there remains just one inlet. You need to enter a list of
numbers into this:

Emmher 51 52[

$rint

|nrint: numher 1 2

30

Symbols must be identified as such:

Eymhul dieter(

|print: name dieter

2.2.2.1.5 Messages: Set

You can also completely redefine a message box's contents by preceding them with the symbol
"set":

If you click on "set dieter”...
B

This changes the contents of a message box in execute mode (cf. the last point in 2.1.3).

Using a variable could, for example, turn the output of a number box into a message:

2.2.2.1.6 Makefilename

Ordinarily it is not possible to include a variable without a space to separate it. The "makefilename"
object, however, makes this possible. Variables that can be included in arguments are "%d" for
digits and "%s" for symbols:

akefilename hellosd] akefilename di%ser|
|print: symbol he]_'l_045| |print: symbol dieter|

2.2.2.1.7 Openpanel

The object "readsf~"" plays an existing sound file, e.g., one that is saved on the hard disk. It needs
the message "open [name of sound file]". "Name of sound file" refers to the place where the file is
stored on a data storage device. If you want to use "readsf~" in a patch that is saved in the directory
c:/Pd/Pd-patches/ to play a sound file named "hallo.wav" that is also saved in the same directory,
you only have to enter "open hallo.wav". If "hallo.wav" is saved in the directory c:/Pd/, however,
you have to enter: "../hallo.wav" or if it's saved in c:/Pd/Pd-patches/soundfiles/, then
"/soundfiles/hallo.wav". If it is in c:/soundfiles/ : "open ../../soundfiles/hallo.wav". Or if it is on
another drive, e.g., d:/soundfiles, then you have to enter "open d:/soundfiles/hallo.wav".

These sometimes complicated directory path names can be more easily expressed using

31

"openpanel". When it receives a bang, it opens a window with the available contents for all of a
computer's drives. When you double-click on a file, "openpanel" enters the entire path for the file
(as a symbol) in Pd:

print: symbol C:/Programn/pd/bin/pd.exe

If a patch hasn't yet been saved, Pd (in Windows) assumes the path pd/bin/ .

2.2.2.1.8 Simple data storage

As already explained with the "float" object (2.2.1.1.5), data can be saved within a patch with the
objects "float", "symbol", and "lister" (but it's lost when you close the patch). "float" and "lister" are
usually abbreviated to "f" and "1".

The right inlet receives a number, a symbol, or a list that is to be stored in the object. This stored
data is sent as output when the object receives a bang in the left inlet.

A number, symbol, or list can also be sent directly into the left inlet; they are then immediately sent
out as output (and are also saved in the object itself).

2.2.2.1.9 Route

An object that can be used to sort various types of data is "route". It can also allocate the data type
(number, symbol, list, bang)...

m Eymhul dieter[Eist hello 43 now [

Emspecified

route bang float symbol lisﬂ

Erint a| rint h”ﬁrint EHE:L':i.nt d”Er:i.nt e|

a: bang

h: 89

c: symhol dietex
d: hello 43 now
e

: unspecified

(Everything that cannot be allocated is sent out the right outlet.)

... as well as order lists according to names you have defined:

32

dieter he]_'l_u[Ela.ria 45 now [';Dmething el=ze

| i e

oute dietexr ma:r_':i.aﬂ

| |
et ¥ i 4

a: hello

h: 45 now
c: something else

22 TTT[E# now gu(Eumﬂthing ElSE[

Euute 22 34

prine] fine 3

a: TIt
bh: now go
c: something else

Numbers and symbols cannot be combined here. For example, "route 22 dieter" will not work.

2.2.2.1.10 Demultiplex

"route" distributes an input to various outputs according to prefix. "demultiplex" (or "demux", both
in Pd-extended version) distributes an input to various outputs according to the input of another

inlet. First "demux" receives the numbers of the outlets as an argument, starting with 0: "demux 0 1
23"

In this example, there are two inlets ("demux" always has only two inlets) and four outlets (one for
each of the four arguments). Enter a number in the right inlet that corresponds to the number of an
outlet. Now whatever you enter (number, symbol, or list) in the left inlet comes out the third outlet:

elle dieter[

demux 0 1 2 ﬂ

Erint h| Erint c!| Erint d|

d: helleo dietex

Note that Pd often begins counting not with 1, but with 0.

33

2.2.2.1.11 Spigot

Another important object is "spigot". Depending on whether its right input is a 0 or a 1, "spigot"
either sends an input through or not — like a gate that is either open or closed.

I
P |

spigot

2.2.2.1.12 Toggle

As you've seen with "spigot", "==", and other relational tests, 0 and 1 occur frequently in Pd. Due to
this frequency — similar to "bang" for a mouse click — there is a graphic object for changing between
0 and 1 called "toggle" (Put Toggle or Shift-Ctrl-T).

pp 55

Toggle looks like an on/off switch and can often be thought of as such. But you should always
remember that the computer always interprets it as simply a change between 0 and 1.

By attaching a toggle to a "spigot" you can more clearly see if the "gate" is open or closed. Or to see
if a relational test delivers a positive or negative result:

The gate is open
[spit_:[ut

The left input is not larger than the right.

2.2.2.2 Applications

Let's see how these concepts work in practice:

2.2.2.2.1 Using lists with pitches and dynamics

Using a list to assign pitches to an oscillator coupled with dynamics:

34

40 0.6] (300 0.3[[1000 0.8[E4? 0.6 (300 0.3[[1000 0.8]

To save space, you could
also omit number boxes

2.2.2.2.2 On/off switch

In the first example, we saw that a tone could be turned on and off using "1" and "0". You could use
a toggle for this as shown:

osc~ A0l

2.2.2.2.3 Pitches with names

To assign pitches with (freely chosen) names to an oscillator:

El 440([c2 524([e2 660

oute al c? e:ﬂ

osc~ 500

[*

i
dac~

2.2.2.2.4 simple sequence

Here's a counter that sends a particular pitch to the oscillator every time it receives a bang:

35

Erint

print: bang

When, instead of a list, "route" receives an input value that is equivalent to one of its arguments, it
sends a bang out of the corresponding outlet. In this example, "route" functions as a combination of
several selectors (another possibility would be to attach a series of "sel-" objects to the counter: "sel
1", "sel 2", etc.).

The "route" object's rightmost outlet doesn't need to be connected to anything as long as the input
always corresponds to the "route" object's arguments.

2.2.2.2.5 A limited counter

Here's a counter that counts upward starting at 10 and stops at 17:

(] < First give the initial value and open the gate here

< The numbers appear
here in rapid succession

You see the numbers
in the Pd main window

This could be useful to, say, quickly calculate values for a mathematical function within a given
range. This example shows the simple quadratic function y = 2* for the range of 1 to 10:

36

-]

16
32
64
128
236
912
1024

[expx pow (2, §£1)|

For recursions (where an output is fed back as an input) such as these, you have to be very careful
to avoid an infinite loop. If we restart this patch after it has already run once without reentering the
initial value but instead just opening the gate and starting the calculation, it will start above ten and
keep counting forever (as the sel 10 object that stops the calculation will never occur).

2.2.2.2.6 More exercises
a) Create a sequence of lists with pitches and dynamics.

b) Create a patch that allows you to use a list of two numbers, which represent the first and last

values in a range for x, to calculate values for y in an equation — e.g., values for the function y = 3*
fromx =-2tox =4.

2.2.2.3 Appendix

2.2.2.3.1 Symbol boxes

Symbol boxes function analogously to number boxes (but are seldom used in Pd). For example,
"sel" could also be used with symbols:

symhol] ia]

=zel ma.tie] sel ma:n:ia]

0 %

2.2.2.3.2 Slider

There are two other GUI objects on the control level: the slider and the radio. The slider (Put
HSlider or VSlider or their shortcuts) is a graphic representation of a number box. It is, however,
restricted to a range (with a default setting of 0 to 127):

37

L

|

2.2.2.3.3 Radio

The radio (Put Hradio or Vradio) is also a graphic representation of a number box, but extremely
limited: only a few numbers (by default from 0 to 7) can be sent out, which is accomplished by
simply clicking on a box.

CL I [mf [[} LCLTTT 1 [m]

Sliders and radios can be horizontal or vertical; this is only a difference in appearance and doesn't
affect their function.

2.2.2.3.4 Using slider and radio

Various pitches can be selected with a slider and various dynamic levels with a radio:

| « You can change the pitch here

[T [m] =< And the volume here

This creates a visually clear interface for changing a patch's parameters. It is especially helpful for
use in live on-stage performance.

2.2.2.4 For those especially interested: Other type specifications and more about boxes

A "float" specification can (e.g., with "trigger") often be expressed with a number instead of with an
"f" in Pd (the value of which can sometimes play a role, but not always - e.g., it could be valid with
"f"" or "pack" but not with "t"):

is like [E |

However, as this is certainly detrimental to clarity, the use of numbers is not recommended.

A few general observations regarding boxes: 1. Strictly speaking, all boxes are objects that can send

38

and receive messages as well as react to these messages according to their (the boxes')
characteristics. 2. The connections show which object sends messages to which other objects. If an
object's outlet is connected to inlets of several other objects, then all of these objects receive the
message. Order is (intentionally) not defined. 3. There are GUI objects that create and send
messages based on user interaction. Examples of GUI objects: bang, toggle, slider, and canvas.

2.2.3 Time operations

Music, as is commonly known, takes place in time. Therefore, it is essential that an audio
programming language has the capability to control the chronological sequence (i.e., that
durations/rhythms and sequences of events can be created).

2.2.3.1 Theory

2.2.3.1.1 Metro

The first basic object for controlling the chronological sequence is called "metro". As the name
implies, this is a metronome. When you turn it on or off (using 1/0 in the left input or with toggle),
bangs occur at the regular interval that is determined by the argument or the right input.

The tempo is set in milliseconds (ms), which are thousands of a second. If you want to send a bang
once per second, enter "metro 1000", "metro 2000" for a bang every two seconds, "metro 500" for a
bang every 1/2 second (equal to quarter note = 120).

2.2.3.1.2 Delay

"delay" ("del") delays an incoming bang by the number of milliseconds in the argument or the right
input:

When you click the input
hany, it comes out the
hottom 2 seconds later

2.2.3.1.3 Pipe

"pipe" achieves the same thing with numbers and symbols as "delay" does with bangs. The duration
of the delay is entered as an argument. By default, "pipe" expects a number as input.

39

22 |
22 |

If you want to send a symbol through, this must first be entered as an argument (with "s", as with
"route"). Second (or as the right input), you determine the duration:

lsymbol hallo[

Also, "pipe" - like "pack"/"unpack" - can have several inlets and outlets:

ipe £ £ £ 1l]l]l]

D-E]

"pipe" handles lists like "route":

pipe £ s 1000]

fZ) fparia)

If an input is 'waiting' in a "del" or "pipe" object, it can be deleted before being sent with the
message "clear" or "stop":

If you send a bang

but then you send the message "clear”™
during the delay {here, 5 seconds), no output is sent

2.2.3.1.4 Line

With "line", you can create a series of numbers in time. In other words, you can command the
program to start counting within a restricted range, the start and end values of which you determine.
"line" normally contains no argument. The right input is the duration of the series of numbers (by
default 0). The left input is the target value (by default 0; this can be entered differently in the

40

argument).

If you enter a new target value on the left, Pd jumps right to this value. This is because the value on
the right was automatically reset to 0 and has to be reentered (this is an exception in Pd; usually Pd
objects save their "cold" inlets until they are reset). Alternatively, you could enter both values
(target value and duration) as a list:

If you click on the message box, nothing happens because "line" has arrived at 4000 and has
remained there. If you enter a new target value into the list - e.g., 50 - "line" counts from 4000 to 50
(in 1000 milliseconds).

If you want to begin with a particular number and count to another number within a certain time
frame, you have to first enter a value in the left input (without having entered anything in the right
input). This will cause "line" to jump to this starting value (with one single message box); then you
can enter the list. As previously mentioned in 2.2.2.1.2, you can include several messages in a single
message box, provided you separate them with commas, like this:

EEDD, 4000 1uuu[
Line|
4000 |

In this example, every time the message box is clicked, "line" counts from 1500 to 4000 in 1000
milliseconds.

2.2.3.1.5 Timer

"timer" is like a stopwatch. Connect bangs to both inputs. The time measured is always the time
between the left bang (which, of course, must be given first) and the right one (in milliseconds):

< and then one second
later you click here

< then this duration
appears here (if you're precisel)

41

Here you can see that trigger operations do not result in any time expenditure for the computer,
even though they occur one after another:

The duration hetween two bangs in a trigger is 0

(cf. 2.2.2.2.5)

"timer" is (somewhat unnecessarily) an exception to the Pd rule that inputs must always occur from
right to left.

2.2.3.2 Applications

2.2.3.2.1 Automatic random melody

Now we can realize quite complicated musical configurations. For example, a quick random
melody that runs automatically:

Try out various metronome speeds with the above example (a number box as right input into
"metro")!

2.2.3.2.2 Glissando

You can also create a glissando:

42

Em , 880 2unu[

ine

2.2.3.2.3 Glissando melody

Or combine these last two patches to create a random glissando melody:

2.2.3.2.4 Irregular random rhythms

You can also create irregular thythms on the basis of random selection:

Every time "metro” sends a
bang, another duration for
the metro is generated

In this example, the "metro" object's bangs are sent at an interval of between 0 and 999 milliseconds
(selected randomly). If you want, say, durations of between 500 and 1500 milliseconds, you just
have to use simple addition:

43

An addition to a mathematical operation such as this one (here "+ 500") is called an "offset".

2.2.3.2.5 Canons

These rhythms can then be connected to the random generator and transferred to another oscillator
to make a rhythmical canon:

(The "*~ 0.4" will be explained later.)

Or you can just make a true canon:

44

45

2.2.3.2.6 Rests

You can also include automated rests:

oS0~

Enter the initial value here first

- then start the metros

46

2.2.3.2.7 Crescendo/Decrescendo

Or as crescendi and decrescendi ("sig~" will also be explained later):

random 3000

Here again you can see that, for the time being, Pd uses only numbers for calculations. A crescendo
is as much a series of numbers as is a glissando. You could also say: a crescendo is a dynamic
glissando.

2.2.3.2.8 Metronome
You could build a metronome like this:

First, let's make a working visual model, i.e. such that the metronome signal creates a bang that can
be seen. Metronome markings are given as beats per minute, just like in a musical score: quarter

47

note = 60, quarter note = 100 etc.
So you have to convert bpm (beats per minute) into milliseconds:
lexpr 1000/ (5£1/60)

Now use this result as the input for a metronome.

lexpr 1000/ (5£1/60)|

Now we don't want to just see these impulses as a bang, but also hear them. Let's use the sound
patch from earlier and set it so that a short tone is heard with each bang. You can create a short tone
like this:

All together:

lexpr 1000/ ($£1/60)|

48

Once these connections are made, the metronome is finished. Later you'll learn how to incorporate
an alternative sound signal.

2.2.3.2.9 More exercises

a) Create a random melody that jumps to the next tone twice per second (alternatively: with a
glissando).

b) Create a metronome with irregular random rhythms (with an adjustable average tempo).

c¢) Create a metronome that beats five times in tempo Quarter = 60 and five times in tempo Quarter
= 100.

d) Create a random melody that changes every two seconds from a fairly high register to a fairly
low one.

2.2.3.3 Appendix

2.2.3.3.1 Distributing lists

As you saw with "line", in Pd you can enter a list in the leftmost inlet of an object that has several
inlets instead of connecting something to all the object's inlets (however, there are objects for which
this will not work). The elements in the list are then distributed to the inlets from right to left:

2.2.3.3.2 Time resolution for control data
The time resolution for tasks on the control level is in milliseconds.

However, this is often not preset. You can imagine that a calculation in milliseconds requires a lot of
processing power (also called CPU*). For "line", for example, the preset is that steps occur at
intervals of 20 milliseconds:

print: 0
print: 2
print: 4
print: 6
print: &
print: 10

If you want to count from 0 to 10 in 100 milliseconds, the computer executes a step every 20
milliseconds; this is why the output numbers have gaps.

This interval (in milliseconds) can be adjusted in the "line" object, as a second argument (the first
gives the primary target value for the counting process, which is eventually replaced by the input):

49

print:
print:
print:
print:
print:
print:
print:
print:
print:
print:
print:

MO omd @ LT R W0 PO ek @

ki
(]

You should be aware that the result will only be "clean" as long as the computer's processing power
is high enough. Otherwise, there will be errors.

*CPU = central processing unit. There are often also other processors, e.g., in the graphics card,
where special graphic operations are calculated.

2.2.4 Miscellaneous

To improve Pd's "handling", there are several additional options.

2.2.4.1 Sending and receiving

2.2.4.1.1 Send/Receive

To avoid needing to connect all boxes with 'cables,' it is possible to use the objects "send" and
"receive" to send and receive things.

29 | s

is the same as

Eeceive erwin|
15)

The argument for a "send" object can be any name. A "receive" object having the same name as its
argument receives input from the "send" object and sends it further.

"send"/"receive" (or "s" and "r") are practical when you need data in the form of a number to be
sent to many different locations (though this may make the patch more difficult to understand).

50

Such freely chosen names (we'll return to this later) must always be entered without spaces between
letters; individual numbers are not allowed.

51

s zahlen| This name works

|s 5| but just a number as a name doesn't work

o |
ﬁ Humbers combined with letters works again
b |

2.2.4.1.2 Sending with lists

If you have different receivers (with different names), you can use "remote" to allocate messages
from a central "distribution point" (similar to "route"). You give this object a list whose first element
is the name of the receiver and whose second element is the message itself. "remote" is part of Pd-

extended.

Another possibility is to precede the list with a semicolon in the message box. In this case, you need
only click on the message box to send the message.

erwin 34

T erwin

52

2.2.4.1.3 A series of send lists
You can also send many different messages in a message box (with one click):
erwin 34;

hanna 200;
oxrm 503

34 b= hannal
[503

In message boxes, two punctuation marks have a special importance: commas (a series of many
messages) and semicolon (which represent the sender).

N.B.: in message boxes, Pd automatically skips a line after a semicolon. If you write the following:

thello 466

and then copy the entry (Ctrl-D) or close and reopen the patch, you will see this:

s

hello 466

This is also the case for a comment (2.1.4.5.).

2.2.4.1.4 Value

Another way to send a value is to determine it globally, i.e., for the entire patch. This is achieved
with "value". Give any name as the argument and enter the value as input. In other parts of the
patch, the value can be retrieved with the same object and argument using a bang:

Ealue my -numh E]’.‘|

@

alue my-numher

=1

n
[uiy

2.2.4.2 Loadbang

You might like to keep several values for the next time you open a patch or there might be a
particular value that you want to receive a bang right at the start. To achieve either of these, you
could use the "loadbang" object (sends a bang as soon as a patch is opened) and "init" (abbreviation:
"i1"), which sends a number or symbol (or a list of numbers, of symbols, or of numbers and

53

symbols) as output (Pd-extended).

oadbang
. If you save this patch and reopen
EE-U-D Jﬂhﬂmes[it, this appears immediately:

print
print: hello johannes

0) this appears immediately too:

2.2.4.3 GUI options

GUI stands for "graphical user interface" and refers to all special graphic objects in Pd. GUI objects
are number and symbol boxes, bang, toggle, slider, radio, canvas, as well as array and VU, both of
which will be explained later. All GUI objects have extended functions. To access these, right-click
on the object and choose "Properties" from the pull-down menu with the left mouse button.

Properties

The following can be set here:

2.2.4.3.1 Number and symbol box

width refers to the width of the box. This can be useful in conjunction with very large numbers or
numbers with many decimal places.

Use the lower and upper limit to adjust the range of values that the box will accept (for example, for
numbers you might use a range of 0 to 1000).

With label you can assign the box a name for it to display (including the position where the name
will appear).

With receive/send, you can build a send/receive function into the box. For example, if you enter
"postl" in 'send,' and have a receiver somewhere called "postl", this receiver will receive all entries
made in the number box. The same is true for the "receive" function.

54

i Unttitled-1* - C:/Progra

this output disappears

3 but the value is sent to the receiver

As you can see in the graphic, the inlet and outlets disappear when the internal send or receive
functions are activated.

The changes take effect when you click on "apply" or on "ok".

2.2.4.3.2 Bang
size refers to the changeable size (in pixels).
intrrpt/hold indicates how long the bang lights up (in milliseconds).

init means that the value (in this case, a bang) will be sent as output as soon as the patch is opened
(as with 'loadbang').

The send symbol / receive symbol is like the internal "send-" / "receive" function in a number box.

With name you can create a "label", as with number boxes. The position is determined with x and y
values. In addition, you can define the font style and size as well as the colors for the background,
foreground, and the name. First choose the element you want to change, ...

... then select a color from the given color options:

IIIIIIII!F

T [T

Under "compose color" you can also generate your own color.

"backgd" refers to the background, i.e., the entire area of the bang. "front" refers to the foreground,

55

1.e., the color that briefly lights up when the bang is active (due to an input or by a mouse click).

All changes take effect when you click "apply" or "ok".

2.2.4.3.3 Toggle

This works analogously to a bang, except for value: by default, 'toggle' alternates between 0 and 1.
Here, you can enter another value for the 0 (the 1 is always a 1).

2.2.4.3.4 Slider

width: width in pixels

height: height in pixels

bottom: value of the slider when it's all the way down
top: value of the slider when it's all the way up

lin: Either linear or logarithmic addition/subtraction within the range. If you click on it, "log"
appears in the field. The current setting is always the one that you can currently read.

N.B.: With "log", '0' cannot be chosen as a benchmark figure.

A linear slider from 0 to 10:
[| L | I | |
25) E)

A logarithmic slider from 0 to 10:

1 I | I |
0.307 5.039 7.637

init: The lower value in the range is sent as output when the patch is opened.

steady on click: The slider is moved by moving the mouse with the button held. If you click on
"steady on click", then "jump on click" appears, which causes the slider to move immediately to
wherever you click within the slider GUI object.

The rest works as with 'bang.'

2.2.4.3.5 Radio

With 'radio,' everything works the same way as for all the others except for number: the number of
boxes.

2.2.4.3.6 Canvas

At the end of 2.1.2. you learned that the white surface on which objects are placed is called the
"canvas". We could also add other colored surfaces (Put Canvas). They have no function apart
from being colored surfaces.

The surface contains a blue square in the upper left - that is the actual object. The entire surface is a
product of this object, its output so to speak. It covers all the elements that were there before you
created it and lies underneath everything you create thereafter.

56

The properties are the same as for the other GUI objects.

2.2.4.3.7 Examples of altered GUI objects

“f& Untitled-1* - C:/Programme/pd-ext/bin

mv-ban g 74 BAHG-PROPERTIES

el

marial

mariaz

12

Corcel| e | ok |

57

W T
(e | (5] [

Corcel| oo | o |

2.2.4.3.8 Change font size

You can change the font setting for all boxes under Edit Font.

2.2.4.3.9 Tidy up

To straighten out slanted cable connections, you can select them and then go to Edit Tidy up. This
often doesn't work, however.

58

A crooked connection
is straightened

2.2.4.4 Subpatches

2.2.4.4.1 Space

In the course of programming, you will probably find that you run out of room at some point. For
this reason, you can store parts of your patch in what are called "Subpatches". If you create a "pd"
object and enter a name (without spaces) as its argument - e.g., "pd my-subpatch" - a new window
opens. (Once you've closed this window, you can reopen it in execute mode by clicking on the
object "pd my-subpatch" once.) Now you have room for new parts of your patch.

lpd my-=subpat c!hl

7% my-subpatch - C:Programme/pd-extbin

Now you've got more room here for other parts of the patch

There are two ways to connect this subpatch to the first window in your patch: "send" and "receive"
work both within the same window and between different ones:

59

Here you can also see how you can switch between execute mode and edit mode independently in
different windows.

The other way to create a connection is by using the inlet and outlet objects. If you create an "inlet"
object in the subpatch, the object for the subpatch (which is located in the first window and is called
"pd my-subpatch") now has a visible inlet.

The "inlet" ohject
lﬁl "W_S“hf'atﬂh| creates an inlet

my—subpatch - C:Programmepd-ex

If you enter a number as input in the main window, this will appear in the subpatch.

lﬁd my—subpat Eh|

774 my-subpatch - C/Programme

inlet

The "outlet" object works in a similar way:

60

=3
LS|

L=l
=

my-subpatch

*7& my—subpatch - C:Programm

46 |

Several "inlet" or "outlet" objects are placed next to one another in the subpatch analogously to their
arrangement in the subpatch object in the main window:

—P

my-subpat E!]'I.

Sh=\

4 my-subpatch - C:Programme/pd-ext/bin

UG B
11
o5 B

When you close the subpatch window, the subpatch remains active (i.e., still executes processing
tasks) as long as the main patch window is open.

2.2.4.4.2 Modularization

Subpatches solve not only spatial limitations, but also help you structure your patch more clearly.
Parts of a patch that complete a certain task can be given their own subpatch, so that this little
'machine' is always available. A part like this is called a "module". Here's a sample module: a
metronome that allows you to enter beats per minute instead of milliseconds:

61

Ed Bpl-:[_Hetanﬂlﬂ *7& BpM_Metronom - C:Programme... ...

inlet

Expr 1000/ {sﬂ_fﬁn}|

etro

d BpM Metxr unmﬂ

AR

d BpM Metr unmﬂ

D mEAR

Names you choose yourself cannot contain spaces. Instead you can use hyphens or underscores, as
in this example.

62

Chapter 3. Audio

3.1 Basics

From here on out, large patches are pre-assembled in additional files (http://www.kreidler-
net.de/pd/patches/patches.zip).

Many of the functions described in Chapter 2 will not be used in the rest of the text - e.g., the "send"
and "receive" objects - although they are certainly often used in practice. The patches you'll
encounter here have been reduced to the bare essentials. However, when you actually use the
techniques presented in a composition or performance, it will be necessary to store them as
subpatches and connect them with "inlets"/"outlets", etc. You can see one example of this here:
3.424.

3.1.1 Pitch

Let's return to our first example. You heard a tone with a frequency of 440 Hertz (later with other
frequencies, other pitches). You could turn it on and off - i.e., adjust the dynamic from loud to
inaudibly quiet.

About pitch: Pd works with two kinds of pitches - Hertz or MIDI numbers. The traditional signs: A,
B-flat, G-sharp, etc. are not used at all in Pd. Instead all chromatic pitches have MIDI numbers: A4
is the number 69, B-flat4 is 70, etc. The other way to describe pitch in Pd is in Hertz. To understand
this, we need to understand a bit about musical acoustics.

3.1.1.1 Theory

3.1.1.1.1 Controlling speakers digitally

Sound is air in vibration. Traditional instruments are used to vibrate air at specific frequencies. You
can do this, e.g., with strings (violin), lips (trumpet), or membranes (timpani). We even have a
membrane in our ears - the eardrum - that vibrates sympathetically with vibrations in the air. Our
brain transforms these vibrations into a different form, which is what we would call sound.

In electronic music, we use speakers to generate sound. These also have a membrane (or several)
that vibrates back and forth, which causes the air to vibrate.

63

Speaker membrane

The vibrations of this membrane are controlled by the computer. In Pd, the "dac~" object (digital
audio converter) handles this. Here's how it works: sound is a physical phenomenon - vibrations in
the air to be precise - and, as such, it is analog. Computers, however, work only with numbers,
which means they are digital. The "dac~" object turns numbers into sound by converting numbers
into fluctuations of electrical current that - once amplified - cause the speaker membrane(s) to

vibrate accordingly.

-
"dac~" sends to the loudspeaker

0.6,02, 0.5 ...

|dac~ || |
e |
H—_—_‘__‘_‘——-./

The reverse of the this process would be to connect a microphone to a computer. A microphone also
has a membrane that responds to vibrations in the air and converts these vibrations into fluctuations
in electric current, which it sends to the computer where they are then converted into numbers. In

Pd, this input can be received with the "adc~" object.

64

> / "adc~" receives from the microphone

T
adc~ ™\

004 0710105
4&

Let's go back to speakers for a moment. A speaker's membrane can move back and forth. The
outermost position (the most convex) is understood by the computer as position 1. The innermost
position (the most concave) is position -1. When the membrane is precisely in the middle, as when
at rest, this is position 0. All other positions are values of between -1 and 1.

1 0.5 0 -0.5 -1

BTy s
—_—

In reality, these movements are so small and so fast that they almost cannot be observed with the
naked eye.

3.1.1.1.2 Waves

Let's imagine that a membrane moves from one extreme limit to the next (most convex, most
concave) at a constant tempo:

L
— i EF B i

a2 e
Let's mark the individual stages:

.-"'."‘-L_._-___

- P i, B ™

. e o —
In an abstracted form with membrane position on the y-axis and time on the x-axis, we could
represent such motion like this:

i s
;"'——_._‘___a_ciéh-_:,_-___tﬁ_—_-————"'; —-=.—\—-—_._'_____'__-=E,__ _:___-___L:_-___-_-I=.'_

In physics terminology, this is called a wave. Here you can clearly see the waveform - a triangle.

65

There are different waveforms for different kinds of membrane movement. Their names reflect their
visual resemblance:

Sawtooth Triangle Square Pulse

The Pd object "osc~" creates a sine wave.

One important thing to remember with regard to waveforms: they repeat constantly without
changing their motion characteristics. Vibrations that exhibit this quality are said to be periodic. A
period is one complete cycle of a vibration that constantly repeats.

\

1 Period

What makes periodic vibrations special is that we hear them as clear tones with definite pitch. In
contrast, noises are aperiodic vibrations.

L

periodic (pitch) aperiodic {noise)

3.1.1.1.3 Measurement

Let's first discuss periodic vibrations. It is possible to simply count the number of periods in a
second. This number is a vibration's frequency and is measured in "Hertz" (Hz); frequency in this
context always means how often something repeats in one second (expressed mathematically:
1/second).

1 second containing 9 full periods =9 Hertz

A tone's frequency determines its pitch. A440 (also called A4, the standard pitch that orchestras use

66

for tuning) means that the air vibrates periodically at a rate of 440 times per second; C5 vibrates 523
times per second; the low G on a cello vibrates about 100 times per second.

Here you can already see: the slower the frequency, the lower the pitch appears to our ear. In fact,
humans - depending on age - hear pitches between 20 Hz and 15000 Hz. Children can hear up to
20000 Hz; elderly people can often only hear up to 10000 Hz. Dogs and bats can hear well over
20000 Hz. This range is referred to as ultrasonic. In contrast to this is the infrasonic range, which is
lower than the bottom of the audible threshold - i.e., between 0 and 20 Hz. This range is perceived
by us as rhythm. You can use Pd to experience this for yourself with the following experiment:

1, 50 30000

Start here!

Frequency

makes a sawtooth wave

You hear a rhythm of clicks (that's the sound of a sawtooth wave) that gradually gets faster. After a
certain speed (over 20 clicks per second), our perception 'shifts gears' and begins to hear a low
pitch. For the air (and for the computer), this is still a "rhythm". But for the human ear (ca. 20 Hz)
it's a pitch! The faster this thythm becomes, the higher the pitch we hear.

Another defining characteristic of the human ear is that it hears pitches logarithmically. This means
when a given frequency is doubled, we perceive this as an octave leap. If you change from A4 (440
Hz) to its double (880 Hz), you hear A5, which is exactly one octave higher:

Just to be clear: from 30 Hz to 60 Hz, we hear an octave but from 1030 Hz to 1060 Hz, we hear just
a small step. In fact, the jump from 10000 Hz to 20000 Hz is only an octave!

Another important concept: let's add the same amount to a fundamental frequency, say 100 Hz -
which is roughly the frequency of the open G-string on a cello - to which we'll add 100 Hz

67

successively:

You hear an octave from 100 to 200, a fifth from 200 to 300, a fourth from 300 to 400, etc. In
mathematics, this is an additive process in which the same amount is added each time. Our ears,
however, perceive that this amount gets smaller and smaller with every step:

sook 36
700 30
600 P
500
18
400F
Intervals 4,
Frequency 300 (half steps)
{Hertz) 200k &
100 S

diz: =8 e 8 B e o B
Steps
Steps

The graph on the left shows the mathematical function - a linear function. The right side shows
what we hear - a logarithmic function.

If you want to hear a linear progression - i.e., a process by which the same interval is added, for
example the octave - the mathematical function has to be exponential:

3200 4 / g1k o
2800 73
2400 a5
2000
1600 iy
Frequency 1200 Intervals
{Hertz) 800 {halfsteps) 23
400 12 ¢
1 1 "_ 1 1 1 1 1 1 1 ’_
T 3 4 O m o a8 i 2 3 4 5 6 1 8
Steps Steps

The conversion from linear to logarithmic progressions in Pd is accomplished by using MIDI
numbers and frequencies. MIDI numbers reflect the way we hear in that the intervals we hear
correspond to an equivalent interval in MIDI numbers: one whole number per half-step. You can
convert entries in frequencies and MIDI numbers in Pd:

68

440 | Frequency 69 | MIDI-No.
i o1 "ftom" = "fregquency to midi" 'mtof" = "midi to frequency"
69 | MIDI-No. 340 | Fregquency

A small table of MIDI numbers, frequencies, and their traditional names:

Frequenzy [MIDI | Mote
(Hz) namme
554 36 (G2
100 43 (52
1308 48 E3
2616 60 4
2 61 CHl
2936 62 O
SANIE 63 Dl
3296 64 E4
349 2 §19) F4
370 513 F&4
392 67 (54
4153 68 (]
440 69 Ad
466 1 i0 Bb4
493 8 71 B4
5732 Tt ES
1000 83 BS
4186 108 | C8

N.B.: Oscillators like "osc~" or "phasor~" have to receive their input in Hertz.

3.1.1.1.4 Sample rate

One has to remember that for Pd, sound is only numbers. Positions of a speaker's membrane are
numbers between -1 and 1.

1 0.5 0 -0.5 -1

FTT T ey g
—_—

Objects like "osc~" generate a very fast sequence of numbers between -1 and 1 that is sent to the
speaker by the "dac~" object. To be specific, 44100 numbers per second are generated and sent. The
loudspeaker makes 44100 tiny movements between -1 and 1 within one second. This number,
44100, is called the sample rate.

Every sound in Pd is produced using numbers between -1 and 1 at a rate of 44100 numbers per
second (sample rate). A single individual number is called a sample.

All Pd objects that generate or process data at this speed have a tilde "~" in the object box. These
objects are connected to each other with thick cables. We call these series of numbers signals.

69

Data input: thin cahle

Production of a signal: thick cahle

and only thick cables from there until dac~

Whenever you want, you can give the "osc~" object a new frequency as input. The cable for this
connection is thin, because the input is not in constant transmission. The "osc~" object's outlet,
however, is constantly sending signals, i.e., numbers between -1 and 1, 44100 per second (per
second means: Hertz).

You cannot connect a number box to the "osc~" object's outlet if you want to see the numbers.
Number boxes can only be used for control connections, not signal connections. Signal connections
are too fast: you wouldn't be able to see 44100 different numbers per second. You can, however,
show selected numbers from a signal with the "snapshot~" object. As inputs, it receives the sound
signal and a bang that, when clicked, displays the current number when clicked. To see this number,
connect either a number box or a "print" object to its output:

Only numbers from -1 to 1 appear here

If you want a constant stream of these numbers, you could attach a (fast) metronome:

Only numbers from -1 to 1 appear here

In Pd-extended, you could also use "unsig~", which automatically connects a metronome. Enter the
metronome value as the argument:

Only numbers from -1 to 1 appear here

You can also use "sig~" to convert numbers on the control level into numbers on the signal level.

You enter a value once into its inlet that is sent out its outlet 44100 times per second.

3.1.1.1.5 Samples — milliseconds

As with frequency (and with amplitude as discussed in the next chapter), there are two different
units in Pd for measuring time: samples and milliseconds. Samples are usually used for counting
signals while milliseconds are used for control data.

Converting duration in milliseconds to duration in samples:

1000 | Milliseconds

Samples

3.1.1.2 Applications

3.1.1.2.1 Tempered — Random

Random MIDI values are gradually offset. (Transition from equal tempered tuning to random
tuning):

patches/3-1-1-2-1-random-offset.pd

Start here first

then initiate detuning here

@, 100 3uuuu[

3.1.1.2.2 More exercises

a) Create a glissando that we hear as linear and one that we hear as logarithmic from C3 to C6.

70

71

b) Create a quarter-tone scale.

3.1.1.3 Appendix

3.1.1.3.1 Nyquist Theorem

The number 44100 was chosen for a good reason. As previously mentioned, humans can hear up to
20000 Hertz at most. In 1928, US physicist Harry Nyquist (1889-1976) proposed a theory stating
that a frequency of at least twice the signal frequency was necessary to accurately represent a sound
signal digitally ("Nyquist-Shannon sampling theorem"). Concretely, this means that one needs the
maximum and minimum values for each period to accurately represent a waveform's basic shape,
1.e., two points per period:

For a wave with 20000 Hz, which equals 20000 periods per second, we need at least 40000 points
per second to accurately represent it. To ensure that the entire spectrum of sounds audible to humans
was included, a sample rate of 44100 was chosen for audio CDs. This means that waves of up to
22050 Hz could be captured. For computers, a wide selection of frequency bandwidths exist, all the
way down to 8000 Hertz for system sounds. High-quality audio recordings work with sample rates
of 48000 Hz (48 kHz = kiloHertz, where kilo = thousand), 96 kHz, or even 192 kHz.

3.1.1.3.2 DSP

It has become clear that simultaneous processing of numerous signals is very taxing on the
computer. Imagine working with 100 "osc~" objects. Each one generates 44100 numbers per second
and these have to be synchronized with each other. That's why Pd offers you the option of turning
off DSP (digital signal processing) in the main window. This will spare your processor unnecessary
work.

72

You can also send this as a command; the recipient "pd" is in this case the program itself:

DSP on DSP off

pd dsp 1‘ pd dsp I]‘

With regard to computer music, the faster the processor, the higher the performance.

Pd lightens its workload by working with samples in blocks rather than individually. This greatly
improves performance. The standard block size is 64 samples, but this setting can be changed. More
on this at 3.8.1.1

3.1.1.4 For especially interested

3.1.1.4.1 da- / ad- conversion

It was previously stated that "dac~" sends the numbers generated by Pd to the speaker membrane
(3.1.1.1.1), but this is of course a bit oversimplified. Strictly speaking, the computer's sound card
converts the numbers into an electrical current with variable voltage ("digital-analog-conversion" or
"da-conversion"); the membrane position is in turn determined by the amount of voltage. Going the
other way, membrane fluctuations in a microphone are converted into a variable current, which is

73

then digitized by the computer's sound card.

3.1.1.4.2 Sound waves

Sound waves, in contrast to water waves, are longitudinal. Longitudinal waves, also called
compression waves, are characterized by the fact that they vibrate along their direction of
movement. (Transverse waves, on the other hand, vibrate along an axis perpendicular to the
direction of movement.) For further explanation, please consult a high school physics textbook.

3.1.1.4.3 Converting MIDI numbers into frequencies
The "mtof" object converts MIDI numbers to frequencies. The formula for this calculation is:

(m-69)12

f=440-2

In one expression:

[expr 220% (pow (2, ((5£1-69)/12)))]

—

To calculate the frequency of a pitch in equal temperament that is a certain distance away from a
given frequency, use this formula:
a2
f=g-2
'f' is the frequency you want to know, 'g' the frequency of the given pitch, 'a' the interval in half-
steps.

For instance, if you want to calculate the frequency of C5 and know that A4 has a frequency of 440
Hz:
3/M12
f=440-2 = 523.2
In Pd:

half steps

_ You can enter a different
fundamental here

In one expression:
[erpr $£2% (pow (2, (5£1/12))))]
523.2

For the inverse operation - converting a frequency into MIDI - the formula is:
m =69 +12 - log, (fl440)

However, in Pd we have only the natural logarithm based on Euler's number (the mathematic
constant 'e'); so we need this formula as well:

log a (b) =—:zg E:}}

Programmed in Pd:

74

75

550) frequency

In one expression:

frequency

EHPI {({(log(5£1/440)) f(log(2)))*12)+69

3.1.1.4.4 Noise periodicity

We've covered the fact that noises are not periodic. You could, however, imagine a noise that lasts
10 seconds and then repeats precisely as before. Such a noise would theoretically have a periodic
frequency of 0.1 Hz. So a noise can be more precisely defined as a sound that is aperiodic or has a
period of less than 20 Hz. Furthermore, one could also say that the frequencies of noise may have a
common fundamental tone that is lower than 20 Hz.

Many exciting experiments have been conducted in the field of acoustics, for example involving the
Doppler effect or calculating the length of sound waves. Please consult leading acoustics textbooks
for more information.

3.1.2 Volume

3.1.2.1 Theory

3.1.2.1.1 Measurement

The next parameter of a sound we'll look at is its volume. Traditionally, volume in music is notated
using dynamic markings like pianissimo, piano, mezzoforte, etc. Their use is subjective and
variable depending on the instrument. In physics, which is what Pd uses as a model for this
parameter, volume is represented with objective values in deciBel or root mean square values. Both
units are comparable to MIDI numbers and frequencies for pitches. DeciBel (dB) reflect what we
hear, where an 'octave' in volume corresponds to 6 dB. The scale ranges from 0 to 130 dB - where a
value of between 15 and 20 dB is absolute silence and anything over 120 dB is capable of causing
serious hearing damage. After 130 dB we perceive sound only as pain. Root mean square values

76

(rms), like frequencies, do not correspond to what we hear, but are logarithmic values between 0
and 1, where 0 corresponds to 0 dB and 1 to 100 dB. rms refers to the geometric mean calculated
from a series of amplitude values. These numbers are first squared, then the average is taken (by
adding all values and dividing by the number of elements), and then the square root of this average
is taken. The rms value for an audio signal is first calculated using a portion of the audio signal that
lasts specific duration; for a heavily fluctuating signal like a pitch frequency, it gives you an idea of
the average signal amplitude. The following objects can be used to convert from one to the other in
Pd:

rms value 0] dB value

"ymz to dh" Hﬁ!ﬁiﬁa "dbh to rms"
dB value 0] rmsvalue

The volume of a vibration is determined by its amplitude, which is the degree to which the
membrane is displaced outwards or inwards with respect to the neutral position at rest (the zero
position). The greater the membrane's movement, the louder we perceive a sound to be. A
representation on an axis looks like this:

WA A

louder softer

It cannot be emphasized enough: until this is sent to the speaker with the help of the "dac~" object,
Pd works only with numbers. If a sound is quiet, this means that the numbers do not span the full
range from -1 to 1, but are instead confined to a more restricted range around the zero position, say,
between -0.5 and 0.5. This can be accomplished in a patch by multiplying the numbers generated by
the "osc~" object by a certain factor:

osc~ 440

All numbers are hetween -1 and 1

*~ 0.5 Multiplying here changes the amplitude

unsig- 20

unsig-~ 20

—0.42] (only between 0.5 and 0.5)

You can use this method to set the volume to any level from absolute silence to as loud as possible
(which depends on the speakers and the amplifier you're using, of course).

77

You could also attach a slider using HSlider (Put HSlider) and setting its range from 0 to 1 (cf.
Chapter 2.2.2.3.2 and 2.2.4.3.4):

osc~ 440
psc~ 240] - .

However, moving this slider quickly will result in disruptive sounds. This is because a signal
(calculated in samples) clashes with control processing (calculated in milliseconds). If this is only a
matter of a few numbers as previously with the factors 0, 0.1, 0.4, 0.7, and 1, this is irrelevant, but
beyond a certain speed this can play a significant role. To avoid this problem, you have to replace
the control connection with a signal pendant. Use the "sig~" object to convert:

L | |

050~ 44ﬂ

This ensures that the numbers generated by the oscillator (44100 numbers/sec) and those generated
by the factor ("sig~" converts them into exactly 44100 numbers/sec) are synchronized. N.B.: if a
signal is attached to the "*~" object's right inlet, the object must not have an argument: if you were
to enter an argument (like 0.5, as used previously) the object would assume that its right input was
control data.

To create a crescendo or a decrescendo, you have to use "line~":

78

0, 1 h000
osc~ 440

osc~ 440

.
dac~
This executes a small crescendo/decrescendo between every step. Filling in steps with intermediate
values in this way is called "interpolation" (as already seen with pitches in Chapter 2.2.3.2.3).

You can calculate the volume of a given sound using "env~", which gives the volume in dB as
output. You must always define a span of time in which this average value is to be calculated; its
argument is given in samples (this number is usually a power of 2):

osc~ 440

The conversion into rms ...

79

... makes it clear that factors between 0 and 1 are not to be confused with rms values between 0 and
1.

As already mentioned, humans' aural perceptions of volume and pitch do not correspond with the
measurements in physics (as observed in the paired diagrams for pitches by frequency and interval).
A simple trick for creating a more linear crescendo or decrescendo is to square the values:

Input is squared
{multiplied by itself]

One should try out all the various possibilities, however. In the end, the way that the volume
increases or decreases is a compositional decision. What exactly constitutes a "volume octave"
cannot be objectified in the same way as pitch.

There is a GUI-object in Pd for visualizing amplitude: the VU meter (Put VU). It takes a dB value
as input. However, it works like a traditional mixing board: 100 dB is shown as 0 dB and deviations
above or below this are shown in the positive or negative range, respectively. You have to take this
into account when entering the input. Simply subtract from the "env~" object's output:

80

osc~ 440

L

dac~

Then the VU shows changes in volume graphically. (VU is short for "volume").

In Pd-extended, you can also use the "pvu~" object for the VU meter conversion:

osc~ 440

3.1.2.1.2 Problems

Another important thing: amplitudes above 1 and below -1 will be 'clipped'. If "dac~" sends the
speaker a value outside the range of 1 to -1, the membrane simply stays at the furthest extreme.

81

o t A A

Membrane
cannot go
any higher

TV VY

Increasing the volume of a sound to the point of 'clipping' results in an effect called overdrive.

This wawve
’ A s U s W ,
will appear
like this:
0 0
Sl %) W V) WV -1

Another problem occurs when the speaker membrane has to span a large interval suddenly (e.g.,
when you turn on a sound); the result is a "click":

Speaker membrane: Speaker membrane:
osc~ 440 P osc~ 440 P

This is especially noticeable when the sound itself exhibits very smooth membrane movement, as
with a sine tone. The "jolt" is easy to see in this illustration:

1

-1

A "jolt" is usually a movement that is faster than 30 ms. To avoid this click, therefore, you need to

82

build what's called a "ramp", i.e., a very fast crescendo at the beginning and end:

0S0 44l]|

Ramp

3.1.2.1.3 Phase

In Pd, you can also set membrane position for a sound wave where it should begin (or where it
should jump to). This is called the phase of a wave. You can set the phase in Pd in the right inlet of
the "osc~" object with numbers between 0 and 1:

1}

-1

A wave's entire period is encompassed by the range from 0 to 1. However, it is often spoken of in
terms of degrees, where the entire period has 360 degrees. One speaks, for example, of a "90 degree
phase shift". In Pd, the input for the phase would be 0.25.

A phase shift doesn't have much effect on what we hear. We'll return to this concept later, however.

83

3.1.2.1.4 Sound waves are additive

Let's say you have these two oscillators:

1 1
] 1]
-1 -1

.. and you connect them to "dac~". You'd get this:

1

osC~ 44ﬁ| 0SS0 ﬁﬁﬁl

Due to the multiplicative factor, the individual waves only go from -0.5 to 0.5. Taken together,
however, they cover a range from -1 to 1 and have a more complex form. This is because sound
waves are additive. Simply stated: all vibrations occur in the same air. This additive quality also
entails cancellations. Opposed waves, where one is "moving backwards" while the other is "moving
forwards" cancel one another out. This is what happens when vibrations that have the same
frequency are 180 degrees out of phase:

Start hoth waves at the same time

1] 0.5
1
osc~ 440 josc~ 440
1]
-1

nothing sounds!

When many sound sources are involved, we usually have to multiply the total sound by a suitable
factor to avoid exceeding the limits of 1 and -1:

84

oS0~ 4dﬁ| oS0~ 2I][Iﬁ|

Using a factor hefore the dac~
~ 0.5 can ensure that no clipping or
overdrive occurs

[*

In this case, both oscillators are simply attached to a multiplication object. This automatically adds
them (whenever several signals are given to an object as input, they are first added, then processed
according to the object) before carrying out the multiplication.

3.1.2.2 Applications

3.1.2.2.1 Chord
To create a chord with variable volume for every tone in the chord:
3-1-2-2-1-chord.pd

{always set from 0 to 1)

@ osc~ h00 osc~ 1100 osc~ 1300 osc-~ 3000

ine~

o

51 20
ine-~ ine-~
* e . . . *

e Tine- fine”

The entire patch can he adjusted here also
| |
_ 51 20
!-ine~
[
dac

£

—

3.1.2.2.2 Glissandi
Glissandi that fade in and out smoothly at the beginning and end:

85

patches/3-1-2-2-2-glissandi-dim.pd

starting tone

then you can start as many glissandi as you want

[70 13000 [50 10000[[80 3000 [100 8000[

for hetter sample

T e _bang for the decrescendo arrives later
synchronization

E 1uuu[u 1uuu[

iy

3.1.2.2.3 Processing adc-input

Say something into a microphone and play it back at a changed volume:

patches/3-1-2-2-3-edit-input.pd

(set between

for visualizing a VU

3.1.2.2.4 Oscillator concert

Let's get 'symphonic': why not use 20 oscillators at once?
patches/3-1-2-2-4-oscillatorconcertl.pd

First make the subpatch "ol":

86

87

...make multiple copies...

B e f B g B EB pp b BB R e

|1 D].d Dld D]. i Dld D].ﬂ D].d Dld Dld Dlﬂ D].l:l Dld Dld Dld D].ﬂ D].d Dld Dld Dlﬂ D].l:l ol

[

...then turn them all on!

Of course, the parameters for each oscillator can be adjusted — and you've really got something to
play with:

patches/3-1-2-2-4-oscillatorconcert2.pd

in every subpatch: in the main patch:

250 20 60

|; te:mpu"_s amhitus”; uffset|

The speed of sound at 20 degrees Celsius (68 degrees Fahrenheit) is about 343 meters per second.
You can calculate the length of a period in space and then check the result immediately...

88

Frequency [Hz)

expx 343;sf1|

Length {in meters)

...by moving your head half a meter back and forth while listening to a frequency of 686 Hertz: you
can clearly hear the wave's peak and its trough.

3.1.2.2.5 More exercises

a) Create (random) glissando chords that also have random volume changes for each individual
tone.

b) Create a patch in which the volume from a microphone input controls an oscillator's pitch (then
use several, each with a different offset)!

3.1.2.3 Appendix

3.1.2.3.1 Other tilde objects

Several of the objects covered in Chapter 2 also have a version with a tilde. They work the same
way, except that they work with signals instead of control data:

mathematic operations:

demultiplex:

oS0~ 44|]| input signal

selected outlet

i emn -

signals in subpatches:

89

You can use "send~" with as many "receive~" objects as you like; however, you can only use one
"send~" object:

T~ erwin

T~ erwin

You could also channel many different signals to one central location (for example, to the "dac~")
by using "throw~" and "catch~":

|
Ehxuw~ freddyl

1 |
Ehxuw~ freddy Ehruw~ freddy

catch- freddy

dac~

3.1.2.3.2 Bit depth
Bit depth is also an important concept in Pd. The computer's processor only works with binary code,
i.e., with 0 and 1. The bit number shows how many places are used for zeroes or ones. If you have
only two places, you could make 2, that is, 4 different combinations:

0

= = O O

1
1
0

The more places there are, the more detailed something can be processed. For Pd, which uses
numbers to calculate frequencies, amplitude, etc., this means that the numbers can be processed
more precisely, i.e., more decimal places can be used. Pd normally works with 16 bit, which is the

quality of an audio CD. 16 bit means 2'® = 65,536 possible values for each sample.

3.1.2.4 For those especially interested

3.1.2.4.1 Sound pressure vs. sound intensity

Volume and more importantly increments of volume are - in both objective and subjective terms -
heavily influenced by factors like architectural characteristics of the room, age of the listener, etc.
There is no single, precise form of measurement for volume, though there are theories of sound

90

pressure and sound intensity. For more information, it is strongly recommended that you consult a
book about acoustics.

3.1.2.4.2 Control data vs. signals

You may have noticed that for significant parts of sound production in Pd two different units are
used: frequency and MIDI numbers for pitch, root mean square and deciBel for amplitude, and
milliseconds and samples for time.

For the last of these, the example of using "line~" to create a crescendo/decrescendo given under
section 3.1.2.1.1. should be explained further:

If you were to use a "line" object (without a tilde) for this, it would likely result in undesired
popping or clipping sounds. This would require two different units of time measurement to be
combined; the problem is they are not synchronized. The different numeric intervals will likely not
match up, which would cause irregularities in the form of short delays or even popping sounds to
occur.

As described in Chapter 2.2.3.3.2, "line" generates a value every 20 milliseconds. That means it
may not coincide with the samples. Though a new sample comes every 0.02 milliseconds, a "line"
value may not coincide with a more or less simultaneous sample, which could lead to
complications. A "line~" object (with tilde), however, generates a signal with 44100 values per
second. These 44100 values are generated at precisely the same time as any another tilde object;
they are always synchronized. The computer always processes 44100 samples per second
synchronously regardless of their position in the patch.

3.2 Additive Synthesis

3.2.1 Theory

3.2.1.1 The harmonic series

The additive series of frequencies (i.e., the series that results from simply adding the same Hertz
value repeatedly), which results in a string of intervals of decreasing size, is called the harmonic
series:

You can also derive the series by repeating an experiment devised by Pythagoras (ca. 570-510 BCE)
in which a string is divided into various proportions:

91

ad

The ratios describe the length of the two parts of the string in relation to each other.

When a string is bowed, it doesn't just vibrate as a whole, but also in every whole number
proportion:

92

> |

1:2

String

Here the ratios describe the length of the vibrating section in relation to the length of the entire
string.

All of these partial vibrations (called 'partials' or 'harmonics') result in sound as well, so every sound
made on a string is in fact already a chord!

The special thing about this chord is that all of its pitches melt together, at least when their relative
volumes decrease as the pitches get higher. Every natural sound has overtones. Due to
characteristics inherent to the human ear, we hear all of these pitches as just one tone.

In contrast, the upper partials themselves (i.e., the partials above the fundamental) do not have any
overtones. An isolated sound without overtones does not exist in nature, but such a thing can be
created using electronic means. These are called sine tones, a name that stems from the shape of
their waveform:

93

Physicist Jean Baptiste Joseph Fourier (1768-1830) discovered that every periodic sound can be
represented using only sine tones (of different frequency, amplitude, and phase), the sum of which
is then identical with the original. Such an analysis and the corresponding mathematical process is
called a Fourier analysis and Fourier transformation.

Using this principle, it is possible to create every periodic sound by layering many sine tones, a
process called "additive synthesis".

In Pd, as already mentioned, "osc~" can be used to generate a sine tone. Sine tones are a very
characteristic sound of electronic music, as they are produced and can only be produced using
electronic means.

Using a number of "osc~" objects, whose frequencies form an additive series, you can create a
chord based on the overtone series:

Esc~ lﬂmEsc~ EDmEsn~ BDmEsc~ 4ﬂmEsn~ EﬂmEsc~ EﬂmEsn~ TﬂﬂEscw Bﬂm

dac-

Typically, amplitudes become smaller as the frequencies get larger in order for the chord to blend
better (though for some instruments, it is characteristic for certain partials to be louder than those on
either side of them, e.g., the clarinet). The arrangement and relative volumes of overtones determine
a sound's color. You can also speak of its spectrum.

The fact that our ears blend the overtones together becomes clear when you change the fundamental
frequency:

94

Fundamental

o

We'll just use the first eight partials here. (N.B. The term 'partial' includes the fundamental whereas
the term 'overtone' does not. In other words, the 1st partial = the fundamental frequency, 2nd partial
= Ist overtone, 3rd partial = 2nd overtone, etc.)

Even if you leave out the lower partials, you hear the fundamental frequency as the fundamental
when you change it:

Fundamental

*
&
=
==

Our brain calculates the fundamental based on the remaining spectrum. This non-existent tone is
called a residual tone.

3.2.2 Applications

3.2.2.1 A random klangfarbe (German: sound color)

95

patches/3-2-2-1-random-color.pd

For the sake of space, this example has been limited to just the first seven partials:

Fundamental

3.2.2.2 Changing one klangfarbe into another

patches/3-2-2-2-colorchange.pd

Fundamental 9 another color
(i — L]

96
3.2.2.3 Natural vs. equal-tempered

Let's look at the difference between natural and equal-tempered intervals (first enter the
fundamental frequency!):

patches/3-2-2-3-natural-tempered.pd

Fundamental
Distance in chromatic half-steps 100

lexpr 5£2 * pow(2, (5£1/12))]

Distance in partials

Frequency

Frequency
503.9

Showing the difference between natural and equal-tempered tuning in cents (hundredths of a half-
step):

Fundamental
Distance in chromatic halfsteps oo

[expr $£2 * pow(2, (5£1/12))]

Distance in partials

Frequency 1
requency

m Conversion to MIDI numbers

Difference

You can see here: the 7th partial is 31 cents flatter than the equal-tempered seventh.

3.2.2.4 More exercises

Create an overtone chord with manipulated overtones, i.e., with imprecise overtones.

97

3.2.3 Appendix

3.2.3.1 Pd's limitations

The previous example of random klangfarbe reveals one of Pd's limitations: you can't randomly
determine the number of oscillators. You have to at least determine the maximum first.

3.2.4 For those especially interested

3.2.4.1 Studie 11

One of the pioneering pieces in the history of electronic music is 'Studie II' by Karlheinz
Stockhausen, written in 1954. This work uses only sine tones and mixtures thereof in non-tempered
intervals. The author strongly recommends you analyze this piece!

3.2.4.2 Composing with spectra

In the fourth chapter of his book "Audible Design", composer and theorist Trevor Wishart describes
many possibilities for composing with spectra.

3.3 Subtractive synthesis

3.3.1 Theory

3.3.1.1 White noise

Claude Debussy once responded to the question of how he composed by saying he starts by taking
all pitches and then leaves out the ones he doesn't like. He foresaw the idea of filtering. In contrast
to additive synthesis - which uses what might be considered the 'atom' of sound, the sine tone, as a
starting point - subtractive synthesis begins with all sound and reduces it. It is actually possible to
produce all sound. Causing a speaker membrane to vibrate completely chaotically and randomly
will produce all audible frequencies simultaneously. The Pd object used to accomplish this is called
"noise~":

Technically speaking, it would be more accurate if "noise~" were named "random~" instead,
because it produces 44100 random numbers per second. These numbers occur in a range of -1 to 1,
i.e., membrane positions.

98

3.3.1.2 Filters

Like light, noise that contains all audible frequencies is called "white noise". Normal white light
contains all light frequencies while, say, red or blue light can be derived from it using filters.

Pd also has filters such as "lowpass", which allows only the low frequencies to pass through while
suppressing the high frequencies. This is represented in the following diagram; the x-axis represents
frequency and the y-axis amplitude:

white noise white noise with low-pass filter

There is also a "highpass" filter, which only allows high frequencies to pass through:

white noise with high-pass filter

The Pd objects for these filters are called "hip~" and "lop~". Their argument or right input is the
frequency from which the sound should be filtered.

99

frequency threshold
10029

frequency threshold

hip-~
volume adjustment volume adjustment

As you can see in the preceding diagrams, the filters are not particularly 'steep’. However, you can
intensify their effect by using several filters one after another (cascade):

frequency threshold
10005

frequency threshold

volume adjustment

The volume has to be readjusted for each filter, as they reduce the sound's intensity. (Though they
sometimes strengthen other things.)

100

Another kind of filter is called a "band-pass". This allows only a small portion of sound surrounding
a central frequency to pass through, like a 'band' of frequencies. As arguments/inlets it receives the
central frequency and the width of the band, called "q".

Euise~

center frequency

Theoretically, if the band gets small enough, you should end up with just a single sine tone:

Euise~| center frequency
615 | 0

(1438 |

PIP_:I volume adjustment

As you can easily hear, however, this is not the case. A certain noise element is always leftover with
a band-pass filter.

3.3.2 Applications

3.3.2.1 Filter colors

Just as an example of how filters might be used, here is a random distribution of band-pass filters:

101

patches/3-3-2-1-filtercolors.pd

L

Euise~

Enisew

O

Eandum 1uuuﬁ|

Eandom 1uuuﬁ\

}_]'\' 0 50 lh

p- 0 50

Enise~

bp- 0 50

Eoise~

new color

Eamlom 1uuuﬁ\

Eamlum 10006\

3.3.2.2 Telephone filters

For transmitting telephone conversations, it was determined that frequencies from just 300 to 3000
Hz suffice for comprehending speech. You can simulate that:

patches/3-3-2-2-telephonefilter.pd

ado-~

op-~ 3000
3000
300

300

3.3.2.3 More exercises

P'\r l] 5']

Euise~

Enise~

)

o

oise~

random 10000)

Eamlom 1uuuﬁ\

bp- 0 50

Experiment with filtering the "glissando orchestra" (3.1.2.2.4).

bp- 0 50

bp~ 0 50

Euise~

Eamlom 1uuuﬁ\

Eandnm 1uuuﬁ\

m

bp- 0 50

102
3.3.3 Appendix

3.3.3.1 White noise and clicks

The "noise~" object causes the speaker membrane to vibrate randomly. When you turn this sound
on or off you don't hear a click; this is because noise is composed solely of clicks of varying
intensity. Therefore, you don't need a "ramp" (cf. 3.1.2.1.2).

3.3.3.2 Pink noise

In addition to white noise, there is also "pink" noise. The human ear does not hear all frequency
ranges at the same volume. It hears best around 2000 Hz, that's why white noise sounds somewhat
high. We hear considerably worse in the low and high frequency ranges. If you want to create a
noise that humans will perceive as an evenly distribution of all frequencies, you have to adapt it to
the way we hear, i.e., the low frequencies have to be significantly louder than the middle
frequencies. This distribution is called pink noise and can be generated in Pd using the "pink~"
object:

ink-~

3.3.3.3 DC offset

When using a microphone, the signal will often exhibit a ground current. This is called "DC offset".
The result is this waveform:

without DC offset with DC offset

A N oA

MY, N A

This offset amounts to an infinitely slow vibration with a frequency that approaches 0. Because it is
so low, it can be filtered out with a high-pass filter that is set extremely low:

103

make an artificial
DC offset here

arrayl array?

offset is
filtered here

show array

Eahwxite~ axrayllﬁahwrite~ array?

3.3.4 For those especially interested

3.3.4.1 How digital filters work

The 'inner life' of digital filters is complicated. One should, however, have some sort of an idea
about how precisely they work: As described in 3.1.1.3.1, a sample rate of 44100 Hz is capable of
representing a wave with a maximum of 22050 Hz. This wave would have only two points per
period:

patches/3-3-4-1-filterwork.pd

22050

LUE-d ey

=
show array

tabwrite~ arrayl] === 00| 4@ o ok e - - m — =

array is 20 points in size

If you move this wave just one position, i.e., by one sample forwards or backwards, and then add it
to the original wave, the result will be that the two waves cancel each other out completely. This
shift can be accomplished (in Pd-extended) with "z~"

104

22050
0sC-

show array

tahwr$¥%~ arrayl
shift ljy' 1 sample

Eahwrite~ array2| array3

his addition causes the
signals cancel each other out

tabwrite~ arrayd

Digital filters employ this method of delaying a wave by one sample and then adding it to the
original wave to effect cancellation. The "biquad~" object can be used to adjust this by hand. It
executes the following differential equation: y(n) = ff1 * w(n) + ff2 * w(n - 1) + {f3 * w(n -

2) with w[n] = x[n] + bl * x[n - 1] + b2 * X[n - 2].

'n' is the sample position and ff1, {f2, ff3, fbl, and fb2 are freely defined factors. In Pd, "biquad~"
then requires five arguments for ff1, {f2, ff3, fbl, and fb2. The syntax is as follows: "biquad~" [fb1]
[fb2] [ff1] [ff2] [ff3]. For the case of the wave of 22050 Hz discussed at the beginning of this
section, you could also write "biquad~ 0 0 1 1 0". This suppresses high frequencies, especially
waves with a frequency of 22050 Hz, which are completely cancelled out. Here is a low-pass filter
using "biquad~":

noise-

iguad- 00110

You can use the biquad formula to create many other kinds of filters. For example, the arguments
1.41407 -0.9998 1 -1.41421 1 will make a "band-reject filter". This is the inverse of a band-pass

105

filter; it rejects - i.e., blocks - a certain band of frequencies around a central frequency, in this case
5512.5 Hz. The explanation for this type of calculation would fill an entire book. In Pd-extended
there are objects ("band-pass", "equalizer", "highpass", "highshelf", "hlshelf", "lowpass",
"lowshelf", "notch") that carry out these calculations. The advantage of the biquad filter is that
considerably steeper filter profiles are possible than with, say, "lop~", "hip~", or "bp~". The
drawback is that it not only suppresses certain frequencies but also significantly intensifies others to

the point of "explosion" (you can see in the formula, that the filter works recursively).

With biquad processing you can also see that filters employ phase shifts. That's why, e.g., a "bp~"
object isn't simply the inversion of a band-reject filter:

bp~ 1000 169|

3.4 Sampling

3.4.1 Theory

Let's clear up a potentially problematic issue to avoid any confusion: you've already learned that a
sample is the smallest unit used for measuring and generating sound in a computer. The word
'sample' unfortunately also has another, quite different meaning in electronic music; it means a
smallish section (usually a couple seconds long) of recorded sound. This chapter deals with the
processing of short recorded bits of sound. First you'll have to learn how "array" works in Pd, which
requires a fair amount of explanation.

3.4.1.1 Storing sound

3.4.1.1.1 Sound files

There are various locations in the computer where files can be saved: main memory or hard disks.
Access to main memory is very fast in comparison to the hard disk; however, it has much less
available space.

In Pd you can save sound to both locations. Saving to the hard disk means that you are saving a
fixed sound file. WAV or AIFF formats are typically used. Use the "writesf~" object to write a
sound file to disk. The argument is the number of channels; this creates a corresponding number of

106

inlets to which you attach the sounds you want to record. First you have to use the message "open
[name]" to choose the name of the file you want to create. Start recording using "start" and stop it
using "stop".

e.g., a recording
with a microphone

3.4.1.1.2 Buffers

The other possible location is the main memory. Create one place for one sound using "array" (Put
Array then click "ok"). It is also a visualization of the sound.

Let's first think of an array simply as storage for numbers. An array has a limited number of storage
places. You can set this number using by right-clicking the array and going to "Properties". This
opens two windows: one labeled "array" and the other labeled "canvas". In the "array" window, you
can set the size. This number means the number of storage places. One number can be stored in
each storage place.

You can allocate these cells using "tabwrite". The right argument determines the position; the left
determines the value you want to save (as always: from right to left). In the array, the x-axis shows
position and the y-axis shows the value:

arrayl

Ealm:r:i.te axrayfl

You can use "array" to represent functions:

107

patches/3-4-1-1-2-functionl.pd

arrayl

{array has 100 points)

Eahwrite arrayl

Or without temporal stretching (if the example shown causes a stack overflow, inserting "del 0"
between "spigot" and "f" will help):

patches/3-4-1-1-2-function2.pd

arrayl

{array has 100 points)

Eahwrite arrayl

You could also draw in the array itself with the mouse, 'by hand' so to speak. If you move the mouse
to a value in the array, the cursor (shaped like an arrow) will change its direction and you can draw
by moving the mouse with the mouse button held.

108

In the "array" window:

* Name: Like all names in Pd, use alphanumeric characters without spaces, not only numbers.

¢ Size: As described above.

109

* "save contents": When checked, all values in an array will be saved. If you use large arrays
or a large number of arrays, this could cause your patch to load very slowly.

* '"draw as points" / "polygon" / "bezier curve": Different kinds of visualization.

* "delete me": When checked, this deletes the array! The empty box remains, however, and
must also be deleted.

* '"view list": This displays all values in a list.

In the "canvas' window:
e "graph on parent": This will be discussed later in 3.1.1.2.
* X range: You can set the range for the x-axis here.

* Y range: You can set the range for the y-axis here. Values that fall outside this range will
also be saved, but this will enlarge the entire window so that these values can be seen.

* "size": Visual size in the patch.
An array can also receive messages and "sends".

Renaming:

arrayl

arrayl rename georg

Making all values equal:

arrayl

arrayl const $1|

Changing the size:

arrayl resize 1000

The size can also be printed out:

arrayl print

Writing the contents to a text file:

;
arrayl write arl.txt

Reading a text file:

arrayl read arl.txt‘

arrayl

arrayl

arrayl

arrayl

110

You can also enter values like this. The first number determines which storage place to start with;

all other values are for the positions thereafter:

111

arrayl

arrayl 0 0.5 -0.5 0 -0.5

(array has 10 points)

You can also create hash marks on the axes and label them:

arrayl

r ‘

arrayl xticks 0 1 5

arrayl yticks -1 1 J

{(array has 10 pulints:l

The first argument is the starting position; the second is the distance between the lines; the third is
the distance between the longer lines.

You can also number them:

arrayl

-1

0 12 3 4 5 6 1 & 9

arrayl xlabel -1.1 01 2 3456 78290

arrayl ylabel -0.7 -1 0 1

First, the position is labeled; second, the numbers you want to display.

N.B.: Lines and labels are not stored in the patch, so you have to reenter them every time you open
the patch.

You can, of course, also store sound in an array. For a computer, sound is - as has been often
mentioned - nothing but a string of numbers, 44100 numbers to be precise. You could store one
second of sound in an array; you'd just need to use 44100 storage places. Here's where the
"tabwrite~" object comes into play. It receives the sound input and otherwise just a bang. Unlike

112

with "tabwrite" (without a tilde) where you entered the storage place in the right inlet 'by hand' and
the corresponding value on the left, when "tabwrite~" receives a "bang", it automatically starts with
the first storage place and then proceeds at sample speed (44100 samples/sec). At the same time,
every place is allocated a value received by the left inlet from the current sound, resulting in a total
of 44100 stored numbers. Any sound that follows is not stored. If you want to stop prematurely, you
can send a "stop" message.

patches/3-4-1-1-2-normalize.pd

| | | | | 1 |
osc~ 4 | | | | | | |
| I | 1 | I |

g il arraY1| {array has 44100 points)

If "tabwrite~" receives a float message, this number is interpreted as a sample offset. In other
words, the sample that corresponds to this float number will be the starting point for the array.

One useful function is that it's possible to raise the overall volume after the fact. If, for example, the
original recording is too quiet (i.e., the membrane of the microphone didn't vibrate especially
strongly, which resulted in fairly small values), you can amplify it. This is called "normalizing". For
this, you can use the following message:

arrayl

*.. 0.1| a quiet recording I I I I

write kg b Lo b g

Labprihe E"1:]“'L5f"1| {array has 44100 points)

,

and then normalize
arrayl normalize

You can also make a connection between sound files located in the main memory and those located
on the hard disk in array. This is achieved with the "soundfiler" object. This object allows you to
load a sound file stored on the hard disk into an array, or to save the contents of an array on the hard
disk as a sound file. The command "read" is used to load a sound file. The arguments for the
command are the name of the file (with the path if necessary) and then the name of the array to
which you want to write.

113

patches/3-4-1-1-2-load-soundfile.pd

arrayl

e S

Once the file has successfully loaded, the size of the sound file in samples will be sent out the
"soundfiler" object's outlet.

Eead roice.war arrayl[

You can also include other commands (called "flags") in the message:

arrayl

Eead -resize voice.war arrayl[

The resize command changes the array's size to match that of the sample (this is limited to 4000000
samples - about 90 seconds, though this can be changed with "maxsize").

Conversely, the command "write" saves the contents of an array as a sound file to the hard disk. In
this case, the format (WAV or AIFF) must be given as a flag, then the name (with path designation if
necessary) of the file you want to create, and then the name of the array.

arrayl

Erite -wave test arrayl[

Other important "flags" in this context are:
* normalize: Optimizes a file's amplitude levels, as explained previously.

* rate: Used to set the sample rate for a file.

As an alternative to array, you could also use "table". Create a "table" object; enter the name for the
first argument and the size in samples for the second. This will create an array in a subpatch (click
on the object in execute mode) that is treated like a normal array. This approach has the following
advantage: the graphics for a normal array can be very complex. You can notice this when you
move a big array around on the canvas: it moves very slowly. But if the graphic representation of an
array is in a subpatch, the object itself can be moved much more easily.

114

74 mytable - C:Programme/pd-ext/bin

tahle mytahle 88200

3.4.1.2 Playback of saved sound

Sound files that are on an external storage device like a hard disk can be read - that is, played back -
in Pd with "readsf~". As with "writesf~", you use the messages "start" and "stop" (you could also
use "1" and "0"). Enter the number of channels as the argument. The rightmost output sends a bang
when the end of a file is reached.

115

patches/3-4-1-2-play-file.pd

. 0.7

|dan~

Let's look at the control level for 'array': let's say you have an array with 10 storage places. You can
use "tabread" to read every one of these places:

patches/3-4-1-2-read-arrayl.pd

arrayl
= =
Eahread arrayl| o | .
e
-1

0 1 2 3 4 5 6 7 & 90

The principle is basically the same for signals, except that you have to receive the saved values at a

rate of 44100 numbers per second. That's why there is "tabread~". If you want to, say, play a sound

stored in an array that lasts 1.5 seconds (= 66150 samples), you have to read the array values from 0
to 66149 at a rate of 44100 values a second. You can do this with "line~":

patches/3-4-1-2-read-array2.pd

arrayl

Eead roice.wavr arrayl[luadsuund

soundfiler

0, 66100 1500[play back

ine-~

I

Eahread~ arrayl

"tabread~" receives the array name as an argument. You could also set the array you want to read
with the message "set [arrayname]".

116

Now you can start to play with these values. For example, you could play it back in twice the time:

arrayl

@, 66100 3uuu[play back

ine-~

I

Eahread~ arrayﬂ

This cuts the playback speed in half. This causes everything to sound an octave lower because the
time stretching makes all the soundwaves twice as long, which means their frequencies will be cut
in half and thus sound an octave lower.

This leads the problem that every single sample you use needs to be played twice or else there will
be gaps. To avoid this problem, there is a modified form of the "tabread~" object called
"tabread4~", which interpolates intermediate values that it generates using information from the
values that ultimately precede and follow it. (More specific information on this function is available
at 3.4.4.) In most cases, "tabread4~" is more suitable for reading arrays. This requires a readout
spectrum from 1 to n - 2, where 'n' is the size of the array you want to read.

Of course, you could also play something back faster, which would raise the frequency:

arrayl

[L, 66148 750 play back

hetter "tabreadd4~"

Eahread4~ array1|

Later, when granular synthesis is explained, you'll learn how to alter tempo and pitch independently.

Playing a sample backwards is naturally also a possibility:

arrayl

66148, 1 750 play back

hetter "tabreadd4~"

Eahread4~ arrayl

117

You could also use the "phasor~" object:

arrayl

@hasur~ D.Tﬂ

"phasor~" generates a series of numbers between 0 and 1 as a signal. If you multiply these values by
66148, you get a series of numbers from 0 to 66148. Enter 0.75 for the frequency so that the series

occurs in exactly 1.5 seconds.

Another possibility would be to create your own array for the arrangement of the readout and use it
to play back the first array:

patches/3-4-1-2-read-array3.pd

array?

[L, 66148 1500 play back

ﬁinew

tabreadd- array?

{array has 66150 points for ® and y)

arrayl

better “tabread4~"
tabreadd- arrayl

118

Or you could use an array to control the amplitude:

0E0- 440|

hanning
0, 254 1000 1 /{\K
]
0 256
tabreadd- hanningl
L
dac-
Or to control the frequency:
h £
1000 2
: -
i
I\-H’I
i,
200
0 1000

Once again you can see: we're using only numbers to control various parameters.

You can use as many "tabread~" objects as you like to read from the same array. However, you
should never use two arrays with the same name, as it will almost certainly lead to errors.

3.4.1.3 Audio delay

In Chapter 2.2.3.1.2 we mentioned how numbers or series of numbers can be delayed. You can also
do this with signals. This is done by creating a buffer into which signals are written and out of
which signals are read following a certain delay. To create this buffer, you use a "delwrite~" object.
The first argument is a freely chosen name; the second is the size in milliseconds. As input, give it
the signal you want it to write in the buffer. Once the buffer is full, it is written over again from the
beginning. If the buffer is 1000 milliseconds long, the last 1000 milliseconds of the incoming signal
are stored in the buffer.

Use "delread~" to read from the buffer. The first argument is again the buffer name; the second is
the delay (in milliseconds; can be changed using a control data entry in the input):

119

patches/3-4-1-3-delay.pd

change pitch here

[delwrite~ platz 3000|

[delread- platz 2500

Logically the amount of delay in "delread~" must be smaller than or equal to the buffer size. If you
have a delay of 2000 milliseconds but the buffer holds only 1000 milliseconds, it clearly won't
work. Using a negative number for the delay interval is also impossible, as even Pd can't see into
the future. You can use as many "delread~" objects as you like to read simultaneously from a delay
buffer. You cannot look into the wave patterns in the buffer.

While you can change the delay interval in "delread~", you have to use a control data entry and
there is a certain probability of error once you exceed a certain speed (this is again a conflict
between control data and signals). For this reason, there is a special object for variable readings of
delay buffers called "vd~" (short for "variable delay"). You give the delay interval (in milliseconds)
as a signal as input and can change it however you like (though, again, you can't use negative
numbers or exceed the buffer size):

change pitch here

[delwrite- platz 3000

change length of delay here

"vd~", like "readsf4~", creates an interpolation.

3.4.2 Applications

3.4.2.1 A simple sampler

120

patches/3-4-2-1-simple-sampler.pd

Eead -resize 51 a:l::l:a}rl[
soundfiler

r 44100 / $f1|

arrayl

0710

SO0~

L’é E.nsii_:rv 5u|

tabreadd- arra}r1|

L | |

a 1
slider shows playing position

121

3.4.2.2 With variable speed
patches/3-4-2-2-sampler2.pd

] load sound file

ead -resize 51 arrayl[
soundfiler

xpr 44100 / $£1|

=1

]' : playhack speed
| | arrayl

lnsig- 50|

L |
0
slider shows playing position

122

3.4.2.3 Any position
Here's one way to pick out any position from a sample that you want:

patches/3-4-2-3-sampler3.pd

[} first load sound file

Eead -resize §1 a.tra}rl[L. I] 3
left limit ™ | |
C | | right limit
arrayl

lexpr 44100 / §f1|)

difference of both {always
calculated, not only if there
is a input on the left)

expr 1 f 5f1

0 1
playhack speed

/ A I‘

slider shows playing position

upEige
tabhreadd~ axra}r1| unsig= 20

volume

123

3.4.2.4 Sampler-player
If you change the graphic representation as described previously (2.2.4), then your patch could look
like this:

patches/3-4-2-4-sampler-big.pd
Sample-Player

. first load sound file

left limit

L | |
L |

right limit

&

playback speed
r

volume

-

Four canvas objects make up the colorful background of the sliders and array. N.B.: The graphics
that were created last always appear on top of the other ones. Let's say you have "arrayl" and then
you make a colored canvas object; you have to create "arrayl" once again (just copy and then delete

the old one) so that it appears on top of the canvas object.

To explain exactly how this was done:

http://www.pd-tutorial.com/english/ch02s02.html#chapt2.2.4

74 sample-player.pd - C:Dokumente und Ein... --

Sample-Player
- first load sound file

left limit

right limit

playback speed
|
volume

I

L1 |
8 BANGEROBERTIES | SLIDER-PROPERTIES

o -
Ii m testlabel

VRN T R Y
Il [N
IS [|

125
And in the subpatch:
74 sample-player.pd - C:Dokumente und Ein... “E
Sample-Player
. first load sound file

left limit

C | |
L |

right limit

L

playback speed
r

volume

-

pd subpatch| =
i subpaton |

Al Iz

openpanel

Eead -resize 51 a:r_'rayl[

b limitleft |
b= limitright

Ex‘pr 44100 / q'f1|

" difference of both
{always calculated,
not only if there is a
input on the left)

126

3.4.2.5 Loop generator
patches/3-4-2-5-loop-generatorl.pd

arrayl
start/stop recording
start loop
sel 1
I
d o
et 0 size: 441000 points = max. 10 seconds

atop ekpr 1000/5£1]

tabwrite-~ arra}r1|

But with this loop generator, clicks occur. First, it is highly recommended that you put the array in a
subpatch, because the graphic requires a lot of processing power. Second, on the loop's ends you
should briefly go to 0 so that there is no sudden jump in value (which would cause a click). For this,
you need to program "windowing". In sync with the readout of the array, this is determined in the
amplitude by another array (here, "crown") that controls the dynamic envelope. This envelope has a
value of zero at the beginning and end to ensure that there is no sudden change to the value when
the loop repeats. Instead of the "crown" window, you could also use a "Hanning" window, which
uses a part of the sine function (this will be covered later). Of course, the "crown" array should also
be in another window as well, but it has been left this way for the sake of clarity.

127

start’stop recording

start loo
P now the array is here
time for ramp 3+ 1 table arrayl 441000
del 20 =
ado: g CY OWTL
1
=to
E ekpr 1000/5£1]
tabwrite- arrayl
0
0 22050

windowing®

Eahread4~ crnwn|

ramp at the beginning and end of the recording

128

A simpler version of the loop can be created using feedback:

patches/3-4-2-5-loop-generator2.pd

ado-

elwrite-~ buffl 10000

loop duration

security potentiometer: no higher than 1!

..

total volume

A drawback to this is that there is a maximum loop duration; here it is 10000 milliseconds.

3.4.2.6 Reverb
You can simulate a "reverb" effect if the signal feedback gets quieter and quieter:
[~

Helwrite«» buffl 1nuuu|

loop duration

total volume

129

3.4.2.7 Texture
Or you can create a texture:

patches/3-4-2-7-texture.pd

iﬁ

etro 200
random 2000
+ 400

1 200

i

ine-

osc-| instead of microphone input

te~ buffl 10000

loop duration loop duration loop duration
loop duration =
244 5
[
=i~
d~ buffl)
0.27
*J\v

total volume

You have to be careful that the feedback doesn't 'explode’, i.e., that its volume doesn't increase
exponentially.

3.4.2.8 Comb filter

You can build a comb filter using audio delay. The idea is that you add the delay to the original
signal. This results in amplifications and cancellations at regular intervals, which gives the spectrum
the appearance of a comb:

130
patches/3-4-2-8-combfilter.pd

pulse wave

lelip~ 0.75 1.25| original

COE~

|t_ilelw]:ite~ buff 1uuu|

iAd A A AR AR A A AR AR A

result of a typical comb filter

3.4.2.9 Octave doubler

If you know the frequency of a signal's fundamental, you can construct an octave doubler as
follows: Let's take a wave...

arrayl

...and this signal delayed by half the length of one period...

arrayl

...adding them together gives you 0 (= cancellation). If you delay a periodic signal by the half the
duration of one period and add it to the original, the fundamental tone (and all odd partials) is

131

cancelled out. That would look like this:

half of a period (in ms)

expr 500/5£1

(£ 100] 1.136

original

But it doesn't quite work like that. You have to remember that Pd processes all audio data in blocks
of 64 samples (unless you change the setting), because it is more efficient than individually
processing each sample (cf. 3.1.1.3.2). With the above patch, you'd get a delay of 1,136
milliseconds, or 50 samples. You could alleviate this problem by using a buffer with a one-block
delay (64 samples = 1,451 ms) to read the original; the same goes for the delay offset:

132

%m

lEhEISDI“* half of a period (in ms)

delwrite~ buff 100 |expr 500/5f1]

ST

1.451
delread- buff|

patches/3-4-2-9-oktavedoubler.pd

3.4.2.10 Karplus-Strong algorithm

A special use of looping is the Karplus-Strong algorithm. It is one of the first examples of physical
modeling synthesis, a process that attempts to replicate what occurs when a physical material
vibrates. In our example, the physical model is a plucked string. When it is plucked, a string first
vibrates chaotically then adjusts itself to the length of the string. It also loses energy, i.e., the
vibration dies away. This can be reconstructed mathematically by taking an excerpt of white noise
and playing it back periodically again and again by writing it to and reading it from a buffer:

133
patches/3-4-2-10-karplus-strong1.pd

start

wd-~ buffer 100

D.99 | damping factor

.. 0.00

dac-

delwrite- buffer 1uuu|

The string effect can be enhanced if the material you start with vibrates more and more 'softly'. This
works with by calculating the average: the average of every two samples is taken and this result is
written to the buffer in place of the original values. The vibration becomes less and less 'angular'.
Use the object "z~" (Pd-extended) to set the delay to one sample; enter the number of samples as
the argument:

134

patches/3-4-2-10-karplus-strong2.pd

start

d~ buffer 100

z- 1| delay by 1 sample

calculates average

0.97 | damping factor {between 0 and 1)

delwrite- huffer 1uuu|

The tone is different every time. This is because "noise~" produces random numbers, which are
naturally different every time. We could add the calculation for the resulting frequencies:

135

start Frequency {He)

Expr 44100/ (5£1*1.09545)*0.025

buffer 100

z~ 1| delay by 1 sample

L | I
calculates average

0.99 | damping factor {hetween 0 and 1)

delwrite- buffer 1uuu|

patches/3-4-2-10-karplus-strong3.pd

3.4.2.11 More exercises
a) Build a record function into the sample player.

b) Create a patch for reverb or a texture with different delay times for the input signal, e.g., with
multiples of the Fibonacci series (in which the next number is always the sum of the previous two: 0
11235813).

¢) Use different Karplus-Strong sounds to make textures of varying densities.

d) Apply a comb filter to patches presented in the previous sections.
3.4.3 Appendix

3.4.3.1 Array oscillator

One way to simplify the combination of "tabread~" and a multiplied "phasor~" signal is "tabosc4~".
This reads out an array for the frequency you enter. One limitation of this method is that the size of
the array must be a power of two (e.g., 128, 512, 1024) plus three points (here, 1027 = 1024 + 3).

136
patches/3-4-3-1-arrayoscillator.pd

enter any frequency
taboscd- arrayf

array is 1027 points in size

This touches on "wave shaping", a topic that will be further explained in chapter 3.5. You can draw
any wave into an array using the mouse.

3.4.3.2 Array playback

Yet another simplification is "tabplay~"; it simply plays an array back at the original speed (when
banged). Conveniently, you can set the start and end points for playback (starting point and duration
in samples):

patches/3-4-3-2-simply-play-array.pd
] read whole array

read array starting from sample 22050

22050 10000

read array from sample 22050 to 32050

arrayl

tabplay~ arrayl

3.4.3.3 Playing back an array in a block

The "tabwrite~" and "tabread~" objects also have another special form: "tabsend~" and
"tabreceive~". They write/read an array in sync with the "blocks" (3.1.1.3.2). "tabwrite~" writes
each block in an array (of course, these must be the size of a block, which is set to 64 samples by
default in Pd). "tabreceive~" reads the array in every block. We will return to this later in the
chapter on FFT (3.8).

137

3.4.3.4 Glissandi of samples

You know that you can play back an array at normal pitch or an octave higher, etc. But what if you
want a glissando from the octave to the original pitch? For this, you'll need to subdivide into "main
indicator" and "addition". The "main indicator" run at normal speed over the array. Let's use an
array with 132300 points as an example, which equals 3000 milliseconds:

arrayl

@; 132300 3uuu[
Eahread4~ a:l::l:ay1| ‘J“'F I

array with 132300 points;
A440 on the piano

Then comes the "addition", which is what makes the glissando. Let's use a glissando that begins five
chromatic steps above the original pitch and returns to the original pitch in 500 milliseconds. You
need to make "line~" of this in reverse, then square the values:

500, 0 500

Above this, you have to determine the factor for the frequencies of the five chromatic steps (cf.

3.1.1.4.3)...
.

expz pow(2, (5./12))]

1.334

...and finally conduct the following calculation:

500 | glissando duration (ms)

chromatic steps

[expr powi2, ($£1 7 12))]

138

This is the "addition" that is added to the "main indicator":

patches/3-4-3-4-sample-glissando1.pd

[0, 132300 3000(

ﬁine~
K00, 0 hODD

chromatic steps

length of glissando {ms)

[expr pow(2, (5£1/12))] Eoo)
1.334

expr (22.05%(1-$£1)) / $£2| lexpr 22.05*5£2*(5F1-1)]

arrayl

T

array with 132300 points;
A440 on the piano

You can use any glissandi to the target pitch that you want; even negative values are possible:

139

patches/3-4-3-4-sample-glissando2.pd

@ 441000 5 5|]|][starting point, ending point, interval, duration of glissando

.'
mnpack £ £ £ f]|

lexpr $£1/44.1

pack £ £

[expr pow(2, (5FL / 12

1.334

main indicator

expr (22.05%(1-5£1)) / $£2) [expr 22.05%5£2+ (5£1-1)|

original sound file is A440 on the piano

tabreadd- arrayl

dac~

Conversely, to move away from the original tone:

140

patches/3-4-3-4-sample-glissando3.pd

@ 441000 5 5|]|][starting point, ending point, interval, duration of glissando

,
lnpack £ £ £ f]

t £ f

ack £ £

lexpr $£1/44.1

[expr powi(2, (5E1 / 12))]

pack £ £

[expr pow (2, (5£1 7-12))]

[expr pow(2, (5£1 / 12))]

lexpr (44.1*5£1%0.5)|

[expr (SE£3*(1-§£1)) / §£2| |expr $EI*SE2*(5£1-1)]

original sound file is A440 on the piano

tabreadd- arrayl

dac~

3.4.3.5 Additive synthesis with array

As a special function in Pd, you can create a sum of sine tones in an array - i.e., additive synthesis
as described in Chapter 3.2. This is accomplished using the message "sinesum". The first argument
is the (new) array size (should be a power of 2; three points will be added to this number
automatically to ensure optimum connection of the beginning and ending of a phase) and also the
volume factors for any number of partials:

141

patches/3-4-3-5-sinesum.pd

.

arrayl sinesum 64 0.2 0.2 0.2 0.2
any fundamental

arrayl

corresponds to: graph

~ phase synchronization

Eahwrite~ array?

array?

Instead of sine waves, you could also use "cosinesum" to work with cosine waves.

3.4.3.6 Latency
Audio delay sometimes occurs when you don't want it to. You can even hear it when you have a
microphone connected to a speaker and make an extremely short noise into the microphone,

snapping your fingers, for example:

ado-

The sound card and especially the operating system determine the length of this "latency". Ideally
the latency is so short (under 5 ms) that the human ear cannot perceive the delay. This requires a
fast computer processor, a good sound card, and an appropriate operating system. You can set the

latency under Media Audio settings:

142

hidin vl.0test2, H {c) 2003-2004 Dlaf Matthes

Audio settings...

xzample objects,

xrecord~, xplay-, Xgroowve-
(C)2001-2005 Thomas Grill

I
44100 0

In Microsoft Windows, you cannot at the present time (June 2008) achieve a latency of less than 50
ms without causing errors.

3.4.4 For especially interested

3.4.4.1 4-point interpolation

In this example you can see how "tabread4~" interpolation works:

143

patches/3-4-4-1-four-point-interpolation.pd

wareforml 3

phasoxr~ 220

012 3 4 5% 6 17T 8§ 9210

tahreadd - wa'.refnrm13|

|Ea_ng graph wave-out13 =

tabwrite~ wa'.re—uut13|

W L

The jump from 1 to -1 is 'softened' by a kind of sinusoidal interpolation. As the name implies, four
points are used and altered: namely the two directly in front of and the two directly behind the
interval that you want to interpolate.

3.4.4.2 Sample-wise delay

One way to delay something by a certain number of samples with "delread~" and "vd~" is by using
a subpatch (otherwise the problem of block size, described previously in relation to octave
displacement):

144

patches/3-4-4-2-samplewise-delay.pd

& Ghs.execution.order.pd® - C:/Programme/pd-ext/doc/3 audio.examples ... & delay-writer - C:/Progra... ...

delay in samples =]

hasox -~ 2zuﬁﬁ|

d delay-writ er| —

@d delay—readerl

|Ea.hw1'ite~ a:n:ray1|

arrayl

tabwrite~ array?

3.5 Wave shaping

3.5.1 Theory

3.5.1.1 Waveforms

In 3.1.1.1.2 you learned about different waveforms (sine, sawtooth, triangle, square, and pulse). Pd
has objects for two of these, namely "osc~" for sine waves and "phasor~" for sawtooth. You can use
an array to display the waveforms:

145

patches/3-5-1-1-waveform-graph.pd

osc~ 440

graph

arrayl

tabwrite- arrayl

@hasur~ 440

graph

tabwrite~ arrayl

array has 100 points

N.B.: The sawtooth of the "phasor~" object always goes from 0 to 1; it never goes into the negative
range. You could make it stronger, however, by performing a small calculation:

patches/3-5-1-1-strong-phasor.pd

hasoxr~ 44ﬂ@hasur~ 44ﬂ

Eahwrite~ arrayl

for comparison
arrayl

I

You can also create other waveforms by attaching a few operations to "phasor~". To accomplish
this, you'll need to use a new object: "clip~", which cuts off everything outside the indicated range.
As the arguments, enter two numbers for the lower and upper limits; numbers outside of these limits
will be 'clipped':

patches/3-5-1-1-other-waveforms.pd

arrayl
phasox~ 670 /
clip~ 0.2 0.8 —

tabwrite-~ a.t]:a}r1|

-1
Now on to the Triangle wave:

patches/3-5-1-1-triangel.pd

any fundamental

phase synchronization

arrayl

tabwrite- arrayl

*.. 0.7| listen

146

147

Square wave:

patches/3-5-1-1-square.pd

any fundamental phase synchronization

arrayl

148

Pulse:

patches/3-5-1-1-pulse.pd

any fundamental

arrayl

These are all standard waveforms that exhibit certain characteristics:
Sine: a single ton without any overtones

wave.

spectrum:

149

Triangle: like a sine wave, except with the odd partials as well

wave.

VVVVVA

spectrum:

Square: only the odd partials

wave:

LUy

spectrum:

Sawtooth: all partials

wave.

spectrum:

150

Pulse: all partials present at nearly equal intensities

wawve:

1

spectrum:

A i i A b hA R AR s

You can observe that symmetrical waveforms exhibit only the odd partials (within each period,
exactly two periods of each subsequent odd partial fit; that's what is meant by symmetrical), while
asymmetrical waveforms always exhibit the even partials as well.

These waveforms can also be approximated using additive synthesis:

patches/3-5-1-1-waveform-fourier.pd

hecoming a sguare wave:

-

arrayl sinesum 64 1 0 0.2 0 0.1 0 0.08 0 0.05 0 0.03

arrayl

hecominyg a sawtooth:

L

array? sinesum 64 1 0.2 0.1 0.08 0.05 0.03 0.02 0.01

array?

etc.

151

There is unlimited room for experimentation here and that's one way to arrive at new sounds. You
can also draw your own waveforms directly in an array. To do this, you must be in execute mode
and move the mouse to a line in the array. The cursor arrow changes direction:

arrayl

- .H-_".h

e

While holding the mouse button, move the mouse to draw your own waveform.

This is, however, somewhat tedious and 'inelegant'. Let's examine then the theory of 'wave shaping':

3.5.1.2 Transfer functions

A linear function undergoes what's called a "transfer function". For linear functions, you can use the
"phasor~", which always goes from 0 to 1. You could make a cosine wave, for example, using the
"cos~" object, which calculates a cosine function:

You can make all kinds of transfers this way; here's another example:

152

patches/3-5-1-2-transferfunction.pd

640 |

lclip~ 0.2 0.5

lclip~ -0.8 -0.2|

Eahwxite~ arrayl

arrayl

3.5.1.3 (Controlled) Random waveforms

You could also record noise into an array and then read it out periodically - i.e., read the same thing
out again and again (cf. Karplus-Strong). If you do this more than 20 times a second, you'll hear a
pitch:

153

Euise~

} fill array

tabwrite- arrayl arrayl

array has 100 points

The spectrum of this sound is naturally somewhat unpredictable. Every time you fill the array with
random numbers with the "noise~" object, you get a new wave with new characteristics.

But there is still somewhat of a system at work. You could, for example, interpolate all the clicks
(large jumps in the waveform) to achieve a smoother resultant waveform. Let's generate random
points using linear interpolation ("Uzi" (Pd-extended) generates the number of bangs specified in its
argument and sends them as fast as possible):

patches/3-5-1-3-wavgorithm.pd

154

arrayl

array has 100 points

Eahw]::i.te axray]—.|

In this example, four points are always used for interpolations.

The result will be even softer if you use a sinusoid interpolation instead of a linear one. Here, ten
points are used for interpolations:

patches/3-5-1-3-wavgorithm+sin.pd

155

arrayl

array has 100 points

Eahread4~ arrayl

L

[}
listen

KpT ‘.f{ {$f1} *0.3141)-1. 57|

e

sin

lexpf (FE1+1) /2|

Expr ($£1%0.02) -1|

Eahw]::i.te axray]—.|

Now the connection from the end of the period to its beginning has to be interpolated as well. We'll
use a windowing for this and program the calculation in a subpatch.

patches/3-5-1-3-wavgorithm+sin+fenster.pd

fgenerate wave

arrayl

o
lﬁd wav gurithm|

array has 100 points

CEOWTL

tabreadd- a:n:ray1|

[*~ 22049| windowing
I

Eahread~ cr nm|

graph

|Ea.hw1'ite~ a:l::l:a}r2|

Array has 1000 points

This way, the membrane is at 0 at the beginning and end of each period. The result could be even

smoother if it were "windowed" with the Hanning window (3.9.4.1).

156

In addition, transfer functions using known waveforms - e.g., a square wave, which would intensify

the odd partials - are also possible.

157

generate wave arrayl

lﬁd wavr gurithm|

array has 100 points

CXOWTL

E~ zzu4ﬁ|
I

ta]},}:ea\:l\dw a.tray1|

\ \ Ea.hread~ E]’_'DWTI|

And so on. In these last few examples, the wave has to be created on the control level; in contrast to
the first examples that used transfer functions, we cannot change these "live".

3.5.1.4 Wave stealing

A final technique that might be considered wave-shaping synthesis is "wave-stealing". This involves
taking a small section of known pieces of music...

patches/3-5-1-4-wavestealing.pd

load sound file array has 441000 points
@

Eead 51 axrayl[. » ‘ || l‘ “ 'l l"'

CEXOWIL

windowing

Eahread~ or um'll array?

[*** graph

bbb bbb

|Ea.lmrite~ a.tray2|

array has 10000 points

158

159

3.5.2 Applications

3.5.2.1 Singing waveforms
With the following patch, it is possible to record waveforms with a microphone to sing waveforms.

114
ado-
tro 50
tabwrite-~ arrayl| arrayl
0.79
LN
ip~ 5

ddg- array has 1000 points

160

The vowels (German pronunciation) look something like this:

arrayl

» sy

array3

arrayd

arrayh

arrayh

3.5.2.2 Transfers

And this input signal could naturally also be sent through a transfer function:

161

110
ado-~ arrayl

tro 50

t#hw‘ritE*v a:l::l:a}r1|

N T

cos~ array has 1000 points

array?

|Ealm1'ite~ vElJ’.‘]’.‘ElY2| WW“ W W

array has 1000 points

3.5.2.3 Even / odd partials

You can also divide a sawtooth wave into even and odd partials. To accomplish this, you'll need to
use "wrap~". It calculates the difference between the input number and the nearest integer below it
(the absolute value is taken, so that the result is always positive). A few short examples:

And now for the sawtooth division: the "wrap~" object is used to phase shift the sawtooth wave;
this is then added to and subtracted from the original signal, resulting in a sawtooth wave with twice
the frequency and a square wave.

patches/3-5-2-3-even-odd-partials.pd

hasox~

100

-~ 0.5| necessary shift

e |

ap-
-~ 0.5

3.5.2.4 More exercises

graph

O

tabwrite- original

phase shift

taliwrite*v difference|
T
|Ealm::ite~ sum |

a) Create a wave that changes constantly.

b) Create a patch in which the interpolation and array points used for (controlled) random

waveforms are variable in number.

3.5.3 Appendix

3.5.3.1 Foldover

original

SUm

difference

arrays have 882 points

162

At this point, a particularly thorny problem in digital sound processing must be addressed: foldover.
Let's first examine this situation:

163
patches/3-5-3-1-foldoverl.pd

start

T

o

0, 44100 3uuuu[

What happens? After 22050 Hz, the direction changes until it reaches 44100 Hz, at which point you
get a pitch with a frequency of 0 Hz (after this, the pitch would go up again). The reason for this is
that a sample rate with of 44100 Hz can produce a wave of 22050 Hz maximum (cf. 3.1.1.3.1).
Moreover, there are some typical reading errors. Let's take a look at three waves with different
frequencies: the top has a frequency of 11025 Hz, the middle 22050, and the bottom somewhat
more than 22050. The markings stand for reference points (for the samples), which have a constant
speed of 44100 per second.

arrayl

=

Tay?

=

array3

=

Each period in a wave with 11025 Hz can be represented with four points (of course, the

164

characteristic sine wave shape is lost). 22050 Hz is the highest frequency that can be correctly
represented, since Nyquist's Theorem requires at least two points per period. Errors will occur with
frequencies higher than this; not every period will be captured and the points of measurement will
actually record a lower frequency instead of a higher one.

The problem is much more pronounced for waveforms that exhibit overtones, e.g., with a pulse:

patches/3-5-3-1-foldover2.pd

@, 10000 zuuuu[

Here the effect can be noticed much earlier: after 700 Hz some overtones are inaccurately captured.
This is because the pulse waveform practically consists of just a single line, which is quickly
'missed'. A solution to this problem is to begin with a pulse waveform, but to broaden the wave as
the frequency increases, so that you end up with a sine wave at the end:

165

patches/3-5-3-1-foldover3.pd

output

200 points

|Ealmrite~ uutput|

hip- 5] DC filter

3.5.4 For those especially interested

3.5.4.1 GENDY

Iannis Xenakis in his later years developed a process for wave generation called GENDY. He
'composed' nothing but waveforms and derivatives of them, e.g., in his tape piece "Gendy 3".

166

3.6 Modulation synthesis

3.6.1 Theory

3.6.1.1 Ring modulation

Let's first look at this phenomenon:

Esc~ 4ilﬁ| 0E0- 43§|

If you listen to two sine tones very close to each other, you hear fluctuating wave cancellations.
This is due to the interaction of two almost (but only almost!) identical waves. This phenomenon is
called beating. The speed, or rhythm, of the beating is exactly equal to the difference between the
two frequencies - in this example: 440 - 439 =1 Hz.

Let's take a look at a simplified example using oscillators with 4 and 5 Hz:

167

patches/3-6-1-1-ringmodulation1.pd

arrayl
graph / /\/\ \
[40000
array?2
|Ealm:|:ite~ a:rra_',r2| /\/\/\
40000
Eahwrite~ array1| array3

Eahwrite~ array3|

B

ooo

tabwrite-~ array4| array4d

200000

The waves alternate between summations (never forget: waves add themselves together!) and
cancellations. In arrayl and array2 you can see a part of the original wave, in array3 the summation,
and in array4 the summation again over a longer period of time. The result is a pulsing rise and fall
in volume. (For the human ear to perceive two different tones, their frequencies differ by about five
cents.)

You can also first determine, precisely, the rhythm of these amplitude fluctuations. As you saw in
array4 in the previous diagram, the amplitude has a sinusoid shape. You could therefore simply use
an oscillator to determine the amplitude:

168

patches/3-6-1-1-ringmodulation2.pd

S0~ 440| arrayd

[tabwrite- array4 100000

(The reason this array is so dark in comparison to the previous one is because it uses much higher
frequencies.) The resulting wave corresponds to the summation of two waves. If you raise the
frequency of the modulating amplitude higher and higher...

Psnw 440

...you hear two frequencies that move away from each other symmetrically - one up, one down - by
an interval equal to the distance of the amplitude from the middle axis, i.e., the initial amplitude
frequency. This process is an example of amplitude modulation, called 'ring modulation' because of
its symmetrical nature. If the initial frequency is 440 Hz and the amplitude frequency is 100 Hz,
you'll hear two tones: one at 340 Hz and one at 540 Hz.

3.6.1.2 Frequency modulation

You could also use an oscillator to modulate a sine wave's frequency. This is called frequency
modulation:

169

One oscillator is "carrier" and the other is "modulator". Using a low frequency with the "modulator”
will result in vibrato. Beginning at 20 Hz, increasing this frequency will result in a more and more
complex multiphonic:

patches/3-6-1-2-frequencymodulation.pd

Modulatox

The resulting wave is the summation of many different sine waves; the carrier frequency lies in the
middle while the other tones lie above and below it at distances determined by the modulation
frequency.

I

When the modulation amplitude rises, the amplitudes of the additional frequencies also rise.
However, this increase is difficult to formulate mathematically.

A special situation arises when the modulation frequency is a whole number multiple of the carrier
frequency (i.e., 1x, 2x, 3x, 4%, 5X, 6X, etc.). The other tones above the carrier frequency would also
be whole number multiples of the carrier frequency - i.e., its overtones.

Furthermore negative frequencies are mirrored above in the positive range. In the special situation
mentioned in the previous paragraph, these are covered by "normal" frequencies. Let's say you have
a carrier frequency of 200 Hz and a modulator frequency of 100 Hz; coverings occur starting with

170

the third undertone (which is also 100 Hz and the following 200, 300, etc.), which result in
amplifications and suppressions according to phase length.

The advantage of FM synthesis over additive synthesis (the simple addition of sine waves) is that
you only need two oscillators to make a rich and complex sound (you just have to change the
frequency and especially the amplitude of the modulator!). A typical FM synthesis sound is a
'disharmonic spectrum’, i.e., a quasi-spectrum above the fundamental with distorted overtones that
are not whole number multiples of the fundamental. Some metallic instruments, like bells and
gongs, exhibit similar spectra; sounds made using FM synthesis often have a 'metallic' timbre for
this reason.

3.6.2 Applications

3.6.2.1 More sonically complex ring modulation
Ring modulations used with overtone-rich sounds are naturally much more complex and rich:

patches/3-6-2-1-ringmodulation3.pd

phasor-~

osc~ 1

3.6.2.2 Live ring modulation

patches/3-6-2-2-ringmodulation-live.pd

3.6.2.3 Live frequency modulation

To use frequency modulation in live settings, you have to use variable delay in order to be able to
change the frequency:

171

patches/3-6-2-3-frequencymodulation-live.pd

ado- osc~ 440

delwrite~ dl 100

Modulator

3.6.2.4 More exercises

Combine everything you've learned up to now.

3.6.3 Appendix

3.6.3.1 Phase modulation

Frequency modulation is also called phase modulation and can also be programmed in this form. To
accomplish this, the carrier oscillator must be divided into phase processing and waveform
processing. Here's how that works:

tis

is the same as this:

And the phase modulation looks like this:

172

patches/3-6-3-1-phasemodulation.pd

Modulation index
in hundredths

) Modulation
CarrlEr frequenc}f
frequency
115
Carrier -
Phase phasox~
.
Phase [
modulation

waveform |cos-~

3.7 Granular synthesis

3.7.1 Theory

3.7.1.1 Theory of granular synthesis

With regard to sampling (3.3) you learned how to change the speed of an existing sound in an array,
but this also resulted in a change of pitch. One way to decouple these parameters, is by using
granular synthesis. The idea of granular synthesis is that a sound is sampled at the original speed,
but it is played at a different speed from each sample point.

You have an "indicator" that moves across the array at normal speed:

173

patches/3-7-1-1-granular-theoryl.pd

arrayl

Eead -resize voice.wav a.t]:a}rl[load sound file

Eahread4~ a:l::l:ay1|
[e

Only at certain intervals do we get information about the indicator's present position; when this
information is received, the array is played back from that point, albeit at a different speed.

To understand this better, let's say this is the normal playback speed:

...and this is a speed that is 'too fast":

...then granular synthesis does this:

174

i

Though playback is 'too fast' (or 'too slow"), it always begins at a point that corresponds to the initial
speed. These individual chunks are called "grains"; their size is referred to either as "grain size" or
"window size". These "grains" are so tiny and used in such large quantities, that they are not heard
individually, but rather as a continuous whole. That's the magic behind granular synthesis.

Every individual "grain" is played back like this:

playback speed you want

phasox~

window, here 256
samples in size

tabreadd- axra]r1|

After a grain is played, there is a jump to the next position; this position is taken from the current
position of the "main indicator". There is a special object to accomplish this: "samphold~". It works
like "spigot", only on the signal level. Both the left and right inlets receive a signal. When there is
descending step in the right inlet, "samphold~" immediately sends the sample currently in the left
inlet and repeats this until the value in the right inlet is lower than the preceding one. This
somewhat strange setting makes sense if the right input is a "phasor~". It receives only once - right
at the end of a period - a descending step. A grain could be read out this way and the offset could be
added to the end of it:

175

patches/3-7-1-1-granular-theory2.pd

arrayl

Eead -resize voice.war a:l::l:a}rl[load sound file

playhack speed you want

window, here 256
samples in size

ﬁ» 256

tabreadd- ElI]:ElY1|

[™

This way, the whole thing sounds higher, but with the same duration as the original. If you 'look’
closely, it's clear that this could lead to complications. If playback from one sample to the next is
faster than the indicator's speed (which runs at the original speed), then we'll overshoot a sample
and then return to it (thus repeating it) the next time "samphold~" is triggered. Conversely, if the
"grains" are played back more slowly than the indicator moves, then some parts will be omitted. But
as long as the original and the playback speeds do not diverge too dramatically, this is not (terribly)
noticeable. To rectify this, some improvements can be made. First, you could use a Hanning
window to suppress the clicks that result with every jump to a new value:

176
patches/3-7-1-1-granular-theory3.pd

arrayl

Eead -re=size voice.wavr arraYl[lnadsuundf“E

62079 size of sound file
E}?{pr 4100 / $f1|

@ runs at original speed
I
N

playback speed you want
310.9

hasox~

window, here 256
samples in size

tabreadd- arrayl tabread-~ hanning

hanning
1
24 u/\
0 256
*.. 0.8
dac-

The resultant gaps can be filled by using a second grain-reader, shifted by half a period:

177

patches/3-7-1-1-granular-theory4.pd

arrayl

Eead -resire voice.wav arrayl[load sound file

playback speed you want

hasoxr~

phase shift

window, here 236 Eamphuld*v

samples in size

*.. org| window, here 256

samples in size

tabreadd- arrayl| |tabread- hanning] tabreadd- arrayl| |tabread- hanning

= i

0.6 " hanning
dac- 0 /{\K
] 256

The nice thing about granular synthesis is that, in addition to the ability to change pitch without
affecting speed, you can change speed without affecting pitch:

178
patches/3-7-1-1-granular-theory5.pd

arrayl

here you can once again choose your own settings

playback speed you want

window, here 256 Eam_;huldw

iﬁrﬂ window, here 256
samples in size

samples in size

tabreadd- arrayl tabread- ha.rmingl takreadd~ arrayl tabread- hanning

= i

*. 0.6 1]‘7“‘\1““
dac- 0

0 256
3.7.2 Applications

3.7.2.1 Live granular synthesis

For use in live performance, you'll again need to use variable delays:

patches/3-7-2-1-granular-live.pd

179

window width

== 20000

r"
ﬁelmxite~ b1l 5000

transposition {halfsteps)
36

[expr (pow(2, (§£2/12)) - 1) * (44100/§£1)]

1 28 Joa4.1

6E0. 2

'-L

i another way to
wd~ bl I] 2 make a Hanning window
. -
*.
0.65

dac~

180

3.7.2.2 Live with feedback
patches/3-7-2-2-granular-live-feedback.pd

window width
= 30000

transposition (half-steps)

36

100

leXpx (pow(2, (§£2/12)) - 1) * (44100/5f1}]

[-1.28] Eﬂ

680.2

=/

+~ 0.5
M ap -~
*.. _1
et |
+~ 1

=amphold-
* o sig~ 1
another way to
— make a Hanning window
vy O il 9
.. 0.5

*..

L
0.65 4 0-1

—
™, delwrite~ bl 5000

181

3.7.2.3 More exercises

Create four readers each with a variable window size. Experiment!
3.7.3 Appendix

3.7.3.1 Granular technique as a synthesizer

Granular synthesis can also be used as a synthesizer for pitch clouds, most conveniently using a
random generator:

patches/3-7-3-1-granularsynthesizer.pd

random generator

samphold-

frequency offset .

Eahread~ hanning

Eahread~ hanning

0 256

3.8 Fourier analysis

3.8.1 Theory

3.8.1.1 Analyzing partials

Let's return to a basic concept of additive synthesis: a sound comprises partials. If you want to find
out what the component parts of a sound are, you could employ a set of band-pass filters for every

182

partial:
patches/3-8-1-1-analyze-partials.pd

Ep~ 400 50

Enu~ 1024| Enu~ 1024| Enr~ 1024||§nv~ 1uz4|

Ehturms| Ehturms| Ehturms| Ehturms|

volume of 0.230 0.117 0.080 not a partial:

first4 partials 9 3 4

This process performs what is called Fourier transformation. It divides the entire frequency
spectrum into parts of equal size and determines the amplitude and phase for each part. One could
in turn reconstruct the original signal from these values. The derivation of the component parts is

called analysis; the reconstruction is called resynthesis. You can realize this using the objects "rfft~"
and "irfft~"

The size of the individual sections, called bins, is given by the block size. As discussed in Chapter
3.1.1.3.2, Pd always processes all tasks in blocks. Normally the block size in Pd is 64 samples.
Using "print~" shows you all the values in a given block:

print-:

-0.22677 -0.28734 -0.34679 -0.40487 -0.46135 -0.51603 -0.56867 -0.61909
-0.66707 -0.71243 -0.75499 -0.79459 -0.%3107 -0.86428 -0.59409 -0.92039
-0.94307 -0.96205 -0.97725 -0.98862 -0.9961 -0.99967 -0.99931 -0.99501
-0.98681 -0.97473 -0.95882 -0.93915 -0.91579 -0.88884 -0.85839 -0.82457
-0.78751 -0.74734 -0.70425 -0.65839 -0.60994 -0.5591 -0.50606 -0.45104
-0.39424 -0.33589 -0.27622 -0.21547 -0.15387 -0.091666 -0.029103 0.033576
0.096122 0.1582%9 0.21984 0.28052 0.3401 0.39835 0.45502 0.50992
0.56281 0.61349 0.66176 0.70743 0.75031 0.79025 O0.32708 0.86067

183

As with "snapshot~" or "unsig", you can see the amplitude values produced. With "print~" you can
actually see ALL of the values generated, limited in number to one DSP block. Let's first stick to 64
samples; i.e., the entire spectrum up to 44100 Hertz is divided into bins with a size of 44100/64 =
689 Hz. The next thing we have to consider is that the amplitude and phase data with "FFT" is not
represented in the customary format; they appear as sine and cosine values. For now, let's not pursue
this particular facet in further detail; you can transform the data into a more readily comprehensible
form as follows:

patches/3-8-1-1-rfftl.pd

3 frequency in hins

2067.19) frequency in Hertz

0SC~
print-:

FFt- 0.00016308 1.1853e-006 2.8461e-006 31.999 9.2281e-007 3.7156e-007 6.2505e-005
1.0713e-006

4.6265e-007 2.4028e-005 2.3158e-007 3.41%-007 1.091%e-005 1.6738e-006 2.8505e-00
T 4.9734e-006

5.7077e-007 6.7418e-007 2.7057e-006 4.4§34e-007 4.2197e-007 2.1704e-006 8. 8§51de-
007 3.6373e-007

2.3208e-006 3.6463e-007 1.9025e-007 2.465%e-006 7.2557e-007 4.873e-007 1.6233e-0

. | [«. | conversion

e
output: magnitude 881 aoxse-ilg
sqrt- 1.0524e-007 0 I} 1] 0 1] 1} 1]
0 1] 1} 1] 0 1] 1] 1}
1} 1] 1} 1] 0 1] 1] 0
" [} 1] 1} 1] 0 1] 1] 0
rint-

As you can see, "print~" generates 64 values for amplitude. The amplitude is given here as
magnitude, always a positive value (because it was squared). Let's take a closer look: except for the
third bin, which has a value of (ca.) 32, we have nothing but very small values. There is no
calculation for numbers above the Nyquist frequency.

Usually a normalization process is conducted after a FFT process, because the amplitude values
become fairly high. First, this is the block size:

184

You could present the FFT analysis in an array:

patches/3-8-1-1-rfft-array.pd

magnitude

Etru 250

tabwrite-~ magnit,ude|

This way you can see the spectrum of a signal. N.B.: FFT turns information that occurs in time into
information in frequencies; these are updated in every new block. One speaks of the time domain
and the frequency domain.

In Pd, the block size can only be changed in a subpatch. This is achieved using "block~":

inlet| (this is in a subpatch]

block~ 1024
uutlet|

When choosing the block size, be sure to consider that a larger block size allows you to work with
lower frequencies. For example: with a size of 1024 samples, every bin is 44100/1024 = ~43 Hz in
size, so you have a finer resolution. The downside is that the process takes longer.

3.8.1.2 Analyze whatever signal you want

Let's stick with a block size of 64 samples, which we can use to analyze the spectrum of a
fundamental frequency of 689 Hz. But what if other frequencies occur in between?

185

magnitude is spread out over several hins

b o
| o i M
| e
| "
| T

-\-"-\-\.__ -
o
b 8
e

o0sC- | S
T I W Vi e
fft- 6.6733 8.2491 21.246 19.825 6.4411 3. 8493 2.71679 2. 1786
1.808%6 1.5548 1.37 1.2296 1.1194 1.0309 0.95831 0.898
0.84727 0.80421 0.76741 0.7358 0.70856 0.68505 0.66477 0.64732
W | [0.63238 0.61969 O0.60%06 0.6003 0.5933 0.58795 0.5841% 0.5819%4
0.5812 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
sqrt-
rint-

Then the information is divided among several bins and the phase changes with every analysis. This
problem cannot be completely solved; you have to trick it a little bit. The normal way to solve the
problem is to use overlapping windows as in granular synthesis; you create a windowed version of
the original. You can use "tabreceive~" to achieve this, an object that always reads the given array
in block size with a Hanning window - here with 64 samples.

186

patches/3-8-1-2-rfft3.pd

first create a Hanning window

hanning
|samplerate~ 0
o
0
fft- 0
tabwrite~ hanning
LI L
4o
St then show the FFT calculation again
rint-

This way, the magnitude values aren't so "spread out".

print-: v X

0.667T26 2_.7805 13.553 13.596 2. 7072 0.38233 0.12552 0.05617

0.029776 0.017627 0.011262 0.0076271 0. 0053945 0.003956 0.0029%32 0.002303
0.0018144 0.0014507 0.001179 0.0009651% O0.00080112 0.00066662 O.000560%91 O.00047

018

0.00039877 0.0003362 0.00028532 0.00024011 0.00020377 0.00017334 0.00014987 0.00
013504

0.00012983 0 0 1] 0 0 0 0

0 0 0 0 0 1] 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

In addition to windowing, the windows need to overlap each other. This is very easy to do in Pd:
simply enter the number of windows (usually 4) as the second argument of "block~". The result at
the end also has to be windowed. The appropriate normalization for 4 overlapping windows is (3 *
block size) / 2. Because you're using "block~", all of this has to fit in a subpatch.

63

187

patches/3-8-1-2-fft-subpatch.pd

74 fft-hanningfenster.pd* “. % subpatch

hlock~ 64 4| hlocksize and number of overlaps
pd subpatch

first create the Hanning window

tabwrite- hanning‘

then show the FFT calculation again

By overlapping and windowing, the chances are good that a signal will be correctly analyzed.

3.8.2 Applications

3.8.2.1 Filters

What's useful about FFT, of course, is that the values it determines can be changed before you
resynthesize the components into a sounding result. For example, you could set certain bins to be
louder or quieter; you could build filters like high-pass, low-pass, etc., or 'draw' one yourself.

patches/3-8-2-1-ftt-filter.pd

draw filtering process:

gain

AT
f ’—\\—/—ﬁ‘#—
0.01 et

0 Hz

hanning

296 (array values)
22100 Hz (applies to this spectrum)

in subpatch window:

e

tabwrite~ hanning

3.8.2.2 Folding

511

188

Eahreceive~ hanning

e Tﬁlﬂ normalization

Eahreceive~ hanning

..

ﬁutlet~

Convolution is a celebrated effect - folding a signal together with another; i.e., playing the average
of their amplitudes. The Hanning calculation should be familiar to you by now. A block size of 1024

samples and four overlaps is standard.

189

patches/3-8-2-2-convolution.pd

block- 1024 4| standard FFT setting

Use 2 different sound files here

open musikl.wav, 1[

inlet-

open musik?.wavr, 1 . .
|[[Eahreceive~ hanning| windowing
eadsf- 2 Feadsf*» 2

L

I £t~

d fft-analyse

. inlet-
ke | [analysis -

4+

+ 1e_p2p| Aaddition of a tiny value
to avoid division by 0. L FFt~

"rsprt” is 1/sqrt. "q_rsqrt
is even more efficient.

*~ | the values of the other input
are used here like a filter

%.. 0.00065 normalization

3.8.2.3 Compressor

You could also build a compressor. This means that weaker volumes will be amplified a bit to bring
them closer to the louder volumes. Simply use the magnitude values as factors for the outputs of
"rfft", though be aware that values that exceed a certain threshold ("squelch") will simply be cut off
at that point:

patches/3-8-2-3-compressor.pd

try it with a piece of music compression level
Epen musikl .war, 1[squelch
d fft-analys?

the Hanning calculation
should be familiar...

Ipc'l hann-window,

190

hlock~ 1024 4
inlet-~

Eahreceivm hanning

.
fft-
L "
maghitude calculation
e
+~ 1le-020
8 rsqrt-

E sgquelch

Expr 0.01*5£1*5£1

proper calculation of
the threshold

[Ulipw everything above the
threshold is now clipped

*.. 0.00065| normalization

multiplication of the clipped
magnitudes with the original
FFT values, as with a filter

191

If you implement this in the folding of one of the two analyses, you get a richer convolution effect:

Elunk~ 1024 4|

{in the convolution patch)

inlet-~

Ealu:ec!eive~ hanning|

inlet-

Ea.hrece:i.ve~ hanning

[qB_:l: sgrt-
Sgquelch

Expr sF1%5£1%0.01

Eahreceive~ hanning

LIS

3.8.2.4 Spectral delay

You can also play back certain bins with different amounts of delay to achieve what's called a
"spectral delay". The FFT analysis is written to two different buffers. Using an array, you determine
the delay for each bin. The maximum delay time is ca. 2500 milliseconds, as you have a buffer of
10000 milliseconds but 4 overlaps ("block~"), which means 10000/4 = 2500. To be precise, it's
actually 2496 milliseconds: 2496 * 44.1 = ca. 110080 samples, which is 110080 / 512 =215
possible bin positions. Since the input signal usually doesn't fit in the bin size, the values of the
analysis are divided among several neighboring bins (cf. 3.8.1.2). If these neighboring bins occur at
different times, there can be reductions in volume.

192

patches/3-8-2-4-spectral-delay.pd

block- 512 4

first draw the delay pattern...

del ms .
= 215 2496
. = a .
L ". e
— 1 0
0 256
Hz: 0 22050
Melwrite- ar2 10000
- the FFT analysis is
delwrite~ arl 1l]l]l]l]| written to the huffers
- delay array uses huffer
Eﬂ fft‘anﬂll'315| ull Falimecedues delaﬂ to determine reading
L position
dac~
pd Hann-window ap~

-~ | only integers, jump to hin no.

®. 512 every hin is 512 samples in size

/- 44.1| conversion to milliseconds

d- arl [rd- ar2| reading buffers

resynthesis
/- 68| normalization

Eahreceive~ hanning

final windowing

Try this out with a particularly eventful piece of music!

3.8.3 Appendix

3.8.3.1 fiddle~

There is an object in Pd that is based on the FFT algorithm that performs an analysis of both volume
AND pitch. It is called "fiddle~". It also determines the volumes and partials of the input signal.

193

m

LLE-] By

volume (dB)

|ﬁ§l pitch (MIDI)

The arguments it receives are: 1. Window size (in samples), 2. Number of tones to be recognized
simultaneously (max. three different tones), 3. Number of peaks to find, and 4. Number of peaks to
output. The default settings are: 1. 1024, 2. 1, 3. 20, 4. 0. As outputs (from left to right): 1. Pitch in
MIDI (only when there is a change), 2. Volume in dB (only when there is an extreme change
("attack™)), 3. Pitch and volume of the fundamental (as a list), 4. Total volume, and 5. Individual
partials with their respective volumes (in Hertz / rms! - also as a list).

patches/3-8-3-1-fiddle.pd

[Eiddle~ 1024 1 20 3|

I:G.np ack

lﬁrint pitnh| Erint attaﬂk| Uulume (dB

56.9811] pitch (MIDI)

fundamental

test signal: phasor with 220 Hz (MIDI no.5f) and volume 1 (rmsj).

arquments: window size: 1024 samples; recognize 1 tone;
analyze 20 partials to determine fundamental; send 3

of these as output.

Euute 172 :ﬂ

|
wrack] e

fpach

0.31547) | 0.154053]

[0.104071] volume (rms)

220. 208 39.745|

660.95 pitch {Hz)

partial components

total volume (dB)

Messages for "fiddle~": to avoid constant data processing, you can turn off "auto mode" and
activate "poll mode" instead; this only issues numbers when it gets a 'bang' message:

194

auto mode on/off

to send values
manually

You can determine the window size (multiples of two):

hpoints 1024[

hpoints 2048

Fiddle-

101.0

Higher partials are not analyzed as intensively for determining the fundamental. You can change

this, however, by instructing the object to analyze a certain partial at least half as intensely as the
fundamental:

compare:

fundamental pitch (MIDI)

We use 200 Hz as the fundamental. The fundamental is played quietly,

the 7th partial {1400 Hz) loud. Fiddle first identifies the louder tone as

the fundamental until we tell it that the Fth partial is especially loud.

It then concludes that the louder tone must be the 7th partial and correctly
identifies the fundamental.

This is helpful if you know that certain partials of the input signal are especially strong (e.g., the
third partial on a clarinet).

N.B.: The input signal is analyzed every half window size, i.e., if the window size is 1024, then 512
samples, which equals every 11.6 milliseconds. The smallest frequency that "fiddle~" can recognize
is (44100 / window size) * 2.5; for a window size of 1024 samples, this is ca. 108 Hertz.

195

3.8.3.2 Tuner
Here's one way to build a tuner:

patches/3-8-3-2-tuner.pd

Tuner

Frequency (Hertz)

g a50

1 445

1 440

1 a3s graphic representation
for visualization:

1 430

ylabel 3 425 430 435 440 445 450

EEET

425

|5 yticks 425 1 4

For this visualization, an array with only one storage place was used.

3.8.3.3 Octave doubler #2

For the octave doubler described in 3.4.2.9, you can now use a microphone input as long as this
fundamental can be used to conduct calculations (i.e., as long as the input signal is periodic and can
be understood by "fiddle~"):

patches/3-8-3-3-oktavedoubler-fiddle.pd

ado-~

iddle-~
tof
lexpr 500/5£1|

1.451 + 1.451

Ele]_tead» hu:Ef|

delwrite~ buff 100

3.8.3.4 Pitch follower

Many interesting applications can be imagined that use the "fiddle~" object in this way. A

196

prototypical example would be a microphone input, like a singing voice, and to 'trace' the voice's
melodic contour like a laser pointer:

[~
Eiddlm 1uzsﬂ

The following dilemma arises: there is always a delay when using "fiddle~". The smaller the
window size, the shorter this is. However, the smaller the window size, the higher the lowest range
of pitches that can be recognized. Moreover, the result of "fiddle~" is always a bit chaotic. You can
learn how to minimize this under 4.3.1.3

3.8.3.5 More exercises

Instead of simply 'tracing' the microphone input, create a parallel voice a perfect fifth away or even
a whole parallel chord.

3.9 Amplitude corrections

3.9.1 Theory

At the end of this large chapter devoted to audio techniques in Pd, we'll now take a look at
amplitude processing.

3.9.1.1 Limiter

As you learned in 3.1.2.1.2, the loudspeaker membrane can only vibrate up to a certain point;
thereafter it is simply "clipped". You can, however, build an automatic device that reduces parts of a
signal that are too loud before they clip. In acoustic engineering, a device that accomplishes this
task is called a "limiter".

With a limiter, there is only one input signal whose volume has to be measured. If it exceeds the set
upper limit, its volume will be reduced according to a set factor until it reaches the reference point.
(In the following section, volume is calculated in dB.)

197

patches/3-9-1-1-limiter1.pd

threshold / reference

signal to be limited

10

[expr ((5£1 - $£3) [§£2) - $£1 + $£3

value by which the signal must be reduced

In the first example, the threshold is 10 dB, the factor 10, and the input signal 30 dB. The difference
between the input signal and the reference point is 20 dB. The factor determines that it should be
reduced (by a factor of 10) to 2 dB; i.e. the input signal must be reduced by -18 dB to a value of 12
dB.

Now we'll apply the limiting factor to the original signal whenever it exceeds the threshold; if it
stays below the threshold, the factor simply remains 1:

patches/3-9-1-1-limiter2.pd

threshold / reference

e

limit factor

signal to be limited

Expr ((sf1 - 5£3) f 5£2) - 5f1 + 5£3

value by which the signal must be reduced

lexpr 100 + $£1|

COnversion

correction factor of the input signal’s rms value

There are two aspects at work: "env~" takes the average within the given sample, here always in a
window of 1024 samples. That results in a delay of 1024 / 44.1 = 23.22 milliseconds that you can
set. But you could also perform the reduction before the signal exceeds the threshold, which would
delay the original signal even more. In signal processing, the term for this is "feedforward control

198

action". If the delay of the original signal is shorter and the delay of the correction longer, one
speaks of "reverse control action". In this case, the threshold is exceeded briefly before any
correction is made. Some variables that have to be defined here are the speed at which the
correction occurs and also the speed with which the signal returns to its original volume once it falls
below the threshold again; these are called "attack" and "release" times.

patches/3-9-1-1-limiter3.pd

signal to be limited

threshold / reference

-

delwrite~ comp 1I]I]|

23.22| forward control

delread- I:!Dmp|

=

[xpr (i5f1 - £ f 5£2) - 5f1 + 5£3

value by which the signal must be reduced

lexpr 100 + §£1|

conversion

correction factor of the input signal’s rms value

3.9.1.2 Compressor

Once you've established the upper threshold (after which correction occurs) and the reference point
(the point that corrections approach), you can also adjust the settings so that volumes below the
reference point are amplified and those above it are made quieter. A device that accomplishes this
task is called a compressor:

199

patches/3-9-1-2-compressor.pd

input signal

reference

-10
compression
factor

delwrite- comp 1I]I]|

23 .22 forward control

delread- c!umpl

conversion

correction factor of the input signal’s rms value

3.9.2 Applications

3.9.2.1 Larsen tones

If you connect a microphone input to a speaker - e.g., the "adc~" object directly to the "dac~" - and
hold the microphone to the speaker, you'll soon hear a tone (and you'd best point the microphone
away fast!). This is because air always contains some noise; the microphone picks it up and sends it
to the speaker; the speaker plays it and the microphone picks up this amplified signal; etc.
Depending on the distance between the microphone and the speaker, the signal is amplified each
time. Depending on the room, cable length, and latency in the computer, this results in different
high periodic tones, also called "Larsen Tones". At the same time, volume increases dramatically, as
the signal is constantly being amplified. This is the classic case of feedback - a circuit, a recursive
system. Wherever microphones and speakers are used, there is a danger of feedback. A limiter used
between the microphone and the speaker could help allay this danger.

3.9.2.2 More exercises
a) Create an "expander": turn small differences in amplitude into large differences!

b) A volume inversion: change quiet into loud and loud into quiet.

200

3.9.3 Appendix

3.9.3.1 Movements in space

Volume can be used to simulate movement in space. Normally we have a pair of stereo speakers and
therefore two inputs for "dac~". If you change the relative volumes of the speakers gradually -
provided you are directly between the two speakers - you can experience how sound 'travels' back
and forth between the two speakers. This is called a 'phantom sound source'.

patches/3-9-3-1-spatial-stereo.pd

Speaker set-up:

|
sweet spot

If you have, say, four speakers set up in a square, you can create circular movement through space
(naturally, this requires a sound card with four separate outputs; as arguments, you can give the
inputs to the "dac~"):

201

patches/3-9-3-1-spatial-quadro.pd

erzeugt Hin und
Her zwischen
0 und 1

|
sweet spot

A i

In this case as well, the effect only works correctly if you are precisely in the middle (in the "sweet
spot"). In the above example, you can also clearly hear a 'hole' in the volume between the two
highest volume levels for each speaker. You should experiment to see whether the overlapping of
the volume should be linear or exponential (cf. the window types in 3.9.4). The composer has to use
her ear and decide for herself.

202

linear exponential

thick: amplitude of loudspeaker 1
thin: amplitude of loudspeaker 2

3.9.4 For those especially interested

3.9.4.1 Other windows

In previous chapters, "Hanning" windows (which correspond to part of a cosine function) were
often used to avoid clicks. But there are also other types of windows that you could experiment
with:

patches/3-9-4-1-windowing.pd

lexpr 1- (S£1*5£1) |

Eahwrite arrayﬂ

arrayl

0 256

203

Bartlett

[expx 1-abs (s¥1)|

Eahwxite axrayﬂ

array?

0 256

Expr u.5+u.5*\y\us{$f1}|
Fahwrite array%

array3

/\

0

6

204

lexpr 0.54+0.4R*cos (§£1)
1 Y

Eahwrite arrayi

arrayd

/\

0

6

205

Expr u.42+u.5\nus{$f1}+u.ua*nus{2*$f1}
| Y

Eahwrite arrayﬂ

arrayh

0 256

variahle

2

[expr exp (-1%(pow ((5£245£1), 2)))]
] N
Eahwrite arrayﬂ

arrayh

AN

1]

6

206

Chapter 4. Controlling sound

Music occurs in time and a composer would naturally like it for the music to change in time as well.
In the previous chapter, we covered the basics for generating sound. Now we'll take a look at how
you can use Pd to control these generated sounds - or control the control of these sounds - in time.

4.1 Algorithms

4.1.1 Theory

4.1.1.1 What are algorithms?

Algorithm is the technical term for the description of a sequence of steps in a procedure that a
computer program executes.

If you have a subpatch that adds 1 to an entered number, you could already consider this a (very
simple) algorithm: this subpatch's algorithm is the addition of 1.

patches/4-1-1-1-plus-one-algorithm.pd

In essence, every object in Pd executes an algorithm. What used to require the use of a device called
a noise generator is accomplished today with the algorithm contained in the "noise~" object.

In this chapter, we are particularly interested in developing algorithms that, once we initiate
processing, the computer can execute completely on its own and that fulfill the purpose of changing
sound in time. Some examples of this have been named already, like in 2.2.3.2.7

4.1.2 Applications

4.1.2.1 Stochastics

A very simple but abundant way to get the computer to operate on its own is by using a random
generator.

207

patches/4-1-2-1-random.pd

You can apply limits to this random selection that themselves change:

patches/4-1-2-1-random-limits.pd
[«] start

andom 20| B0, 30 20000]

The result of a random generator follows the laws of stochastics, that is, of probability. With
"random 6", every number from 0 to 5 has a probability of 1/6. Though highly improbable, it is
possible that one of the numbers would never appear or wouldn't appear for a very long time. This
probability can also be directly controlled:

Here, the probability that a bang occurs on the left is 30 percent and 70 percent on the right. You

208

can test this as shown here:

patches/4-1-2-1-probability.pd

then click here many times

first click here to initialize

You can use this principle to select different durations for certain sound events: short occur very
frequently, medium once in a while, and long rarely.

patches/4-1-2-1-probability-examples.pd

209

You could also invert this distribution over time...

At the beginning there are only short durations, at the end mainly long ones (which naturally require
a lot of time).

210

Also, a little bit of variation can be introduced to the different durations:

Ea start

0, 80 35000

ine

209.53

[random 100] [random 100] [random 100]

485 |

You can keep going with this, of course, 'randomizing' more and more parameters in your patch as
you see fit.

4.1.2.2 Recursive systems

There is a piece by Alvin Lucier based on a relatively simple idea: someone sits in a room and
speaks into a microphone. This speech is recorded and then played back in the room. This playback
is in turn recorded, played back, re-recorded, and so forth. Each time, the quality of the recording is
worse, more and more information is lost. More specifically, the frequencies that the loudspeaker,
microphone, and room can represent well are propagated while the others are gradually filtered out.

This can be easily programmed in Pd:

211

patches/4-1-2-2-lucier.pd

start recording

stop recording - then everything runs
by itself (keep microphone near speakerl)

Tk
inlet~ ;
inlet folet
¢ thh
open recl.wav, star top Epen req;xﬁhv, start[i
en recl.wav, start[Epen TR start[
eadsf- aE
- safety
itesf- itesf- el 200
safety

outlet

You could say that the algorithm is recording and playback. In this case, the result is fed back into
the algorithm again and again. A process that runs automatically in this way is called a recursion.
Recursions have already been mentioned in 3.4.2.9 and 3.4.2.10.

212

In the next example, we will also use alteration and re-recording. A recursive ring modulation:

start recording

stop recording - then everything runs by
itself (keep microphone near speakerl)

ring modulation each time

Recursions that work purely with numbers can also be interesting. One of the most well known
examples of this that frequently occurs in music is the Fibonacci series. The algorithm is that the
last two numbers in a list are added together to produce a new final result in the list.

patches/4-1-2-3-fibonacci.pd

series

recursion

4.1.2.3 More exercises

a) Record a sample and play it back at the wrong speed. Record this 'wrong' playback, play it back,
record, and so forth. Try this while (1) playing back the sample with the same 'wrong' speed and (2)
with a different 'wrong' speed.

b) Create a recursive wave shaping algorithm using delay (i.e. an algorithm in which the output is
fed back as input).

213

4.1.3 Appendix

4.1.3.1 DSP loop

Recursive algorithms used to distort sound have technical limits. If you do the following...

osc~ 440

...the error message "DSP loop detected" appears and audio will no longer be sent through the loop.
Without using time delay on the signal, you can't create any (audio) recursions.

Here's how you can avoid errors:

osc~ 440

@elread~ aa 11

ﬁelwritEM aa 11

4.1.4 For those especially interested

4.1.4.1 Algorithmic composition

The use of algorithms in musical composition is a broad field. Algorithmic principles can be
observed in the work of medieval composers and it has been a widely used area in music since the
20th century. Algorithmic compositions can be fascinating purely from a mathematical perspective.
Nature is rich with examples of algorithms. For more information:

http://en.wikipedia.org/wiki/Algorithmic_composition

4.2 Sequencer

4.2.1 Theory

Instead of automatic processes, we can also write proper "scores" for a Pd patch. A simple example
would be the use of many "send" commands, as described in 2.2.4.1.3:

214

: click here
mary 1;
olm hh;
tom -4

55 |
But to be able to include much more information and determine the chronological sequence, the
following section will cover ways to realize 'scores' in Pd.

4.2.1.1 Text file

You can retrieve numbers and symbols from a normal text file or, conversely, save numbers and
symbols to a text file using "textfile". Let's first look at the saving function. Click the messages
from top to bottom:

Erite filel.txt[

Now Pd has created a text file called "filel.txt" in the same directory as the patch. It contains:

hello;
world!;

"add" creates a symbol or number and follows it with a semicolon. "add2" doesn't create a
semicolon.

If you want to read what you've saved, load the file and use "rewind" to go all the way to the
beginning. Now every time you hit 'bang', one line (up to the semicolon) will be sent through the
left outlet. After the last line, a bang is sent out the right outlet.

215

Eead filel.txt[

You can also write something and read it with an object without ever saving it as a file. You can also
use "clear" to delete everything. "set" first deletes everything and then begins a new line. Click from
top to bottom:

You can also load a file so that the semicolons don't appear:

Eead filel. txt E!I[

216

"write name.txt cr" also works in the same way.

4.2.1.2 Qlist

A practical expansion to "textfile" is "qlist". This can be used to send chronologically ordered
messages with a text file to "receive" objects. The file "orders.txt" has these contents:

0 tom 55;
1000 imi -12;
4000 tom 3;
2000 imi -2;

Eead urders.txt[first load

then start

At the beginning, "tom" receives the number 55; one second later, "imi" receives -12; four seconds
later "tom" receives 3; two seconds later "imi" receives -2. It works the same way with symbols.

Otherwise, "qlist" has the same functions as "textfile": add, add2, rewind, clear.

You can also modify the tempo using "tempo" and a factor:

Eead urders.txt[first load

Eampu 0.5, rewind, hang[

Eﬁmpu 2, rewind, hang[

4.2.2 Applications

4.2.2.1 Score for a patch

Provided the sounds have been assembled, you can now write a piece of music as a text file. Let's
say you have this patch...

217

patches/4-2-2-1-score.pd

Eﬁmpn 1, rewind, hang[play

Eempu 2, rewind, hang(

...and this "score" (patches/p.txt):

0 ploff 1000;

0 pltogg 1;

0 plamp 1;

0 amp 0.5;

3000 p2off 100;
0 p2togg 1;

0 p2amp 1;

2000 p20off 400;
3000 plamp 0.2;

3000 p2amp 0;

1000 p2off 2100;
0 p2amp 0.8;

5000 amp O;
0 pltogg 0O;
0 p2togg 0;

218

You could also write information from sounds:

patches/4-2-2-1-write-score.pd

| | start, or play a sound file, then stop

ﬁhkﬁum 300

N
random 100
F 100

1 100

i

ine-

[T]
D

Eleu’]:E\find[Erite protokoll. txt EI[

Eextfilﬂ

219

4.2.2.2 More exercises

Write stochastic algorithms into a text file that uses a "qlist" to play back the patch from 4.2.2.1 at
different speeds.

4.2.3 Appendix

4.2.3.1 Modifying qlist

The time for qlist are delta values, that is, they always describe the time interval from one event to
the next. Sometimes it might be more practical to write text file with absolute time intervals instead.
The "remote" object can be used to accomplish this. "remote" (not available in the original version
of Pd; it's part of Pd-extended) receives the name of a receive object as a list followed by the value
that you want to send there. This saves you from having to use several "sends":

click

tut 77 [ei 89(

So you can build your own qlist using absolute values:

http://www.pd-tutorial.com/english/ch04s02.html#chapt4.2.2.1

220

patches/4-2-3-1-klist.pd

load file
start!
:.] ead l:!mnnands—ahs.t,xt,[
pd klist

And here's how to change a list of delta values into absolute values:

221

patches/4-2-3-1-klist-convert1.pd

first click on both file names

inlet
start! Eead cnmnands—tlelt.txt[T

gj // Erite cmnnands—ahs.txt[e

d delt?ahs|
H . T ew]

! —
done! g

textfil
iagars

th £ 4

thh

oute]ﬁ

create clickable message
findend [ignore @

o fﬂ‘fﬁ-Erite cumnandﬂ.txt[

ar

outlet

textfile

222

And conversely:

patches/4-2-3-1-klist-convert2.pd

first click on hoth file names inlet

Eead nmmnands—ahs.txt[

start! thhh
Fj Eead cmnmands—delta.txt[inlet
ewind
Ed abs2deltal —
done! S
textfilﬂ
iagard 1
t b f £ bl
i
0
ylue
5 symbol add
ylue
thh
L 2
ite cmnnands3.txt[
oute list
1
clear
ignore 10
textfile
outlet

4.2.4 For those especially interested

4.2.4.1 Creating lists externally: Lisp

You can also take "textfile" to use text files that contain previously conducted algorithms. There are
special programming languages that can accomplish this. One of these languages is LISP, which is
especially well suited to the creation and processing of lists:

http://en.wikipedia.org/wiki/Lisp (programming_language)

223

4.3 HIDs

4.3.1 Theory

It's possible to play a patch live, just like you might play an instrument live on stage. While
something is running in the patch, you can click on GUI objects, though using the mouse is fairly
impractical if you want be precise with respect to time. For this reason, there are Human Interface
Devices (HIDs), interfaces between man and machine. The mouse and keyboard are technically
HIDs, but there are also many others, some of which are specially designed for use in music, for
example to control a Pd patch.

4.3.1.1 Keyboard and mouse

If you click in a number box, you can enter a value with the keyboard. You could also use the
keyboard to transmit other information directly:

The keys are numbered (with some exceptions, the F1 and F12 keys, for example). "key" registers
that a key has been pressed, "keyup" that it has been released. Each time, the key's number is sent.
"keyname" shows a key's normal name.

Using the "MouseState" (case-sensitive!) external from Pd-extended, you can also use data from the
mouse:

Efmgi current position

[] mouse button

With "poll" and "unpoll" you can start/stop the display (in my version you have to click "unpoll"
first and then "poll" for it to work). This displays absolute x/y-coordinates, delta values, and also
whether the left mouse button is held.

224

Normally the coordinates 0/0 appear in the monitor's upper left; with "zero" you can select another
point as a reference:

Dmuuse button

4.3.1.2 MIDI

At the beginning of the 80s, large electronic instrument manufacturers established a standard data
transfer protocol for use with an array of input devices called Musical Instrument Digital Interface
(MIDI). Now there are MIDI keyboards, MIDI mixers, MIDI gloves, etc. In Pd, there are objects for
receiving and sending MIDI data. You can send this input to a device or patch where it is converted
into sound. However, most computer soundcards contain MIDI sounds as well, so MIDI data can
also be converted into sound there.

MIDI protocol itself doesn't contain any sounds, but comprises commands for controlling the patch
or other instruments, e.g., "note-on", "velocity", and "note-off". In addition to these basic
commands MIDI uses other more specialized commands that could be used to, say, load other
sounds or to modify loaded sounds using control data produced using switches, buttons, or tuning

knobs.

Every standard MIDI command (except for system-exclusive data, SysEx for short) carries a
channel number in addition to its command ID and command data. The channel number is 4 bits

long, which means 24=16 channels can be controlled. Depending on the software, the channels are
numbered either 0 to 15 or 1 to 16, though the latter is more common.

Since MIDI is a serialized protocol and the data rate of MIDI interfaces is fairly small by today's
standards, there can often be timing problems when many notes are played at once, especially in
conjunction with a sequencer program. Even just striking a chord comprising several notes can lead
to an audible delay, because MIDI can never send notes simultaneously, only one at a time.

For the following examples, MIDI hardware is necessary. You can set these devices in Pd under
Media MIDI settings.

The most basic object is "midiin". Every MIDI input is displayed there, the value on the left and the
channel number on the right.

225

If you have a MIDI keyboard or other input device with definite pitches, with "notein" you get the
following values:

T4 1
pitch |Bl velocity
channel

The MIDI number for the pitch appears on the left, the velocity (strength of the attack) in the
middle, and the channel number on the right.

Conversely, you could send this information to an instrument. If only one instrument is connected,
you don't have to enter a channel number. You'll need to use "noteout" and then "makenote", the
latter of which combines the entries in a manner similar to the "pack" object:

pitch velocity duration

El.akenute a0 25|1| arquments are: velocity and duration

|
Euteuut

There are also control values, which are entered with "ctlin" and "ctlout". Let's take a look at
"ctlin":

226

The left output is the value, the middle the number of the controller, and the channel on the right.
You could also enter the middle value as an argument directly in the object to select the controller.

All other MIDI senders and receivers function like this as well. Among them are "pgmin", "bendin",
"touchin", and "sysexin".

4.3.1.3 Using signals to control sound

Sound input received through a microphone can not only be used purely as sound, but also as
control data. As you learned in 3.8.3.1, you can use "fiddle~" to determine information regarding
amplitude and frequency:

volume (dB)
g3 . 24| pitch (MIDI])

These numbers — again, Pure Data works only with numbers — can be used in conjunction with
parameters in a patch.

One problem here is that data that comes from the "fiddle~" object is very chaotic. There is a trick
you can use to filter it:

A low-pass filter can also receive control data input. In this case, only relatively slow changes are
allowed to pass.

4.3.2 Applications

4.3.2.1 Playing patches live

Using the input devices/methods described above, parameters in a patch can be changed externally:

227

patches/4-3-2-1-patch-play.pd

press "1" on the keybhoard for this

press 71 on the MIDI controller for this

osc~ 400

It's clear that different devices have different functions: a button stands for on/off, a knob for
gradual changes.

For controllers that have a row of numbers, like knobs or sliders, it is recommended that you use
interpolation (especially because they have only 128 values in MIDI).

In Pd-extended (but only if GEM isn't loaded), there is a very useful external you can use for this:
"scale". For example, if you change frequencies between 69 and 81 (MIDI numbers) and want to
use a MIDI controller for this (which generates numbers from 0 to 127), you could write:

Enale 0 127 69 81 E|

81.09| 69-81

The last argument stands for linear (0) or exponential (1).

4.3.2.2 More exercises
a) Use external MIDI sounds instead of oscillators for the algorithms in 4.1.2.1.

b) Use parameters from any of the patches in Chapter 3 with input devices.

228

4.3.3 Appendix

4.3.3.1 Other HIDs

In addition to the normal keyboard, mouse, and MIDI devices, the number of other input devices
continues to rise: anything from joysticks for computer games, to tablets for drawing, to motion
sensors. Though there is at present (June 2008) no single object in Pd that will work with all of
these devices, the following externals should be mentioned:

"joystick", which can receive information from joysticks; "wintablet" for Wacom tablets in
Windows; and "hid" in Linux and MacOSX, which works with many different input devices. A
device called an Arduino Board has also been around for awhile; this device digitizes information it
receives from analog instruments that are connected to it. With additional software, this information
can also be received by Pd.

4.3.3.2 Video input

There is also a video component in Pd called GEM that can be used to extract numbers from a video
signal - either previously recorded or live - that could, of course, then be used to control sound
parameters.

4.3.4 For those especially interested

4.3.4.1 Instrument design

I have also given a presentation (in German) in the Lagerhaus Lecture Series in Freiburg, Germany
on the art of using external input devices in a composition. It can be viewed online at this address:

http://www.kreidler-net.de/theorie/instrument-design.htm

4.4 Network

The following section deals with networking several computers that are to be used not only for
sound processing, but also communication with other people at other computers in order to play a
piece of music together.

4.4.1 Netsend / Netreceive
A Pd patch on one computer can exchange data with a Pd patch on another computer.

First you connect the computers with a network cable, both of which are running Pd. Use "netsend"
to connect your computer to another one. Enter the message "connect [name] [port number]";
instead of the name, you could also enter the IP address of the other computer. "disconnect"
terminates the connection.

connect localhost 1I]I]I][

229

Once connected, use "send" followed by the symbols you want to send, to send messages to the
other computer. It receives this data using "netreceive [port number]".

connect localhost lﬂﬂﬂ[

@iscunnect[Eend hello

Eetsend

hetreneive lﬂﬂﬂ

print

4.4.2 OSC

In Pd-extended, the OSC objects that are used by many other computer programs for data exchange
are also available. OSC stands for open sound control. They work almost exactly like "netsend" and
"netreceive".

You have to be connected to another computer with a network cable and both must be running OSC.
Use "sendOSC" (case-sensitive!) to connect to another computer. Give the message "connect" as
well as the IP address and port number of the other computer. Terminate the connection using
"disconnect".

connect 1.1.1.3 2uuu[

disconnect

Once connected, use "send" followed by the symbols you want to send, to send messages to the
other computer (which also must be running OSC). The other computer receives the data using
"dumpOSC" with the port of the sender as the argument.

connect 1.1.1.3 zuuu[

disconnect

Eend hello there[

dumposc 3000

print

230
Chapter 5. Miscellaneous

5.1 Streamlining

5.1.1 Theory

5.1.1.1 Subpatches

You already learned how to create subpatches in Pd in 2.2.4.4 . Now, you'll learn how to use them
wisely.

Let's say you have this patch:
patches/5-1-1-1-subpatchl.pd

random glissandi

recording

Epen TEecC.wavr, sta_tt[

231

You could tidy it up by storing everything that doesn't require immediate access in a subpatch:

patches/5-1-1-1-subpatch2.pd

232

It also makes sense to store the contents in several subpatches, in case you want to edit a specific
part of it later.

patches/5-1-1-1-subpatch3.pd

glissandig

d glissandi| —

volume

pd E|Em11|

ey

e | start recording
stop recording

You could build a certain algorithm (here: random lines) for a patch that could be used in different
places:

233

patches/5-1-1-1-module.pd

[]
@ zu:EaJ_'I.sl:i.nes| _D

d
E& zﬁfﬁlisligfs —
oS0 T

A subpatch like this is called a "module".

5.1.1.2 Abstractions

If you have a subpatch that can be used universally, like the following one, which records two
seconds in an array, then plays back the sample at a certain speed with variable amplitude:

patches/5-1-1-2-abstraction]1.pd

any sound ntet
¥ : table tabl 88200
inlet- del 2000
thh
ang
speed factor stop
volume

tabwrite~ tahl

inlet

expr 2000*5f1
e |

inlet

234

...and you want to use it in different locations, then a problem arises: once the subpatch has been
duplicated, you have to rename the array and enter a new input (for the speed). Instead you could
make an abstraction out of it; this is a patch that is stored as a separate file and can be retrieved with
a multiple of variables.

Take the subpatch from before and save it as "record.pd". Then open a new patch and save it as
"main" in the same directory as "record.pd". Then create an object called "record":

"record" does not actually exist as an object in Pd. But if a patch with this name (plus the suffix
".pd") exists in the same directory, an object can be created that treats this patch like a subpatch.

An advantage of this lies in the variables. Reload the "record.pd" patch (File Open). You can write
variables in form of "$1", "$2", etc. inside objects. Let's define variables for the array name and the
speed:

inlet
. table $1 88200
inlet- del 2000
t b b
ang
stop
tabwrite- $1
$2

lexpr 2000*5£1

inleq

Now you can write the "record" object in the "main.pd" patch again, this time with two arguments
for the two variables; the first argument is the array name and the second is the playback speed.

235

Ehasur~ 440

recfplay

Rl

ecord tah? 0 ET|

The volume, which we want to change in the main patch as well, is set as an inlet just as for a
subpatch.

But we've still got the problem that the array has to be given a unique name every time we load
"record" in the main patch. There is a special option in Pd to solve this that generates an individual
random number that can be used as a name for a certain patch. This is generated by $0. You could
make the abstraction "z-number.pd":

A random number with an offset of 1000 is generated, and it counts up from there. Now, every time
you call up the abstraction another number will be generated:

z—numher| |z—numher|

print: 1021
print: 1022
print: 1023
print: 1024

This is used to give the array a unique name. The conventional form is: $0-[arrayname]. You still
need to set a variable ($1) for the speed. The volume should stay variable.

236

inlet
_ |tahle 50-tah 88200
inlet- del 2000
t b b
ang
stop
tabwrite- $D—tah|
51

expr 2000%5f1
e |

0, 88200 51

Finally, you can bring in graphic elements from an abstraction using the function "graph on parent".
In the "record" patch, you can create a number box instead of an inlet for the volume, then right-
click anywhere on the white surface Properties. Check "graph on parent" and then click "apply":

inlet-

tabwrite- $ﬂ—tah|

237

You should see a red rectangle. All GUI objects that are enclosed within this red rectangle will
appear later in the object. Move the number box for the volume inside the red rectangle, save

"record.pd", and then create the object in the new patch:

|tahle 50-tah 88200

inlet-

F 51
Expr 2000*5£1
0, 88200 $1

|

line-

[tabreadd- $0-tab|

=

In the new patch:

recoxrd

b

You can change the size and position of the red field here:

238

tabwrite- $I]—tah|

"Graph on Parent" also works with subpatches.

Two important points: you can view and change the contents of an abstraction in the main patch
(simply click on the object in the main patch). However, changes you make here will not be saved!
Only if you open the abstraction itself as a normal patch in Pd are the changes you make actually
saved. The second point is that $-variables can only be written in objects in an abstraction; $1 in a
message box would just have the normal meaning of an input in the message box (cf. 2.2.2.1.4). For
example:

And, of course, if you copy the main patch and want to use it elsewhere (e.g., in another directory or
on another computer) you have to copy the "record" patch as well. You make abstractions available
at all times by saving them in the "extra" directory in the Pd directory. All patches found saved here
are always available as abstractions. Similarly, you can create your own directory containing
abstractions and configure it to load automatically. You can set a path for this under File Path.

5.1.1.3 Expanding Pd

Many useful objects not included in the original version of Pd have been developed by
programmers around the world since its inception. These objects are called "externals". Collections
of externals are called "libraries", e.g., the zexy library or the MaxLib library. You have to put them
in the folder called "Extra" and also integrate them into the startup process (File Startup). A new

239

version of Pd called "Pd-extended" already includes libraries that expand the original version.

Pd can also be expanded through the use of additional programs. GEM is the most well known and
is used to process video data and video files in a manner similar to how Pd processes sound and
sound files. Additionally, open sound control (OSC) data from other programs that also have an
OSC connection can be used in Pd. The Pd versions of some programmers have been expanded to
such an extreme degree that they are barely recognizable as versions of Pd.

5.1.2 Applications

5.1.2.1 Customize your Pd

As mentioned in the previous chapter, Pd can be customized to a large extent. Let's create some
useful abstractions.

For normal programming needs, a "dac~" object with a built-in volume slider, now called "dac":

patches/dac.pd

Eﬂﬂ

A DSP switch, called "+dsp":
patches/+dsp.pd

+d=p

Graphic representation of a waveform:

240

patches/wave.pd

size ii 3000
50-5 i

;nletw

ii 1 size
Wave ~speed

50-s

etro 50} -

tabwrite~ éq—s

speed{l00 |

5.1.2.2 More exercises

As abstractions:

a) Integrate the DSP switch into the "dac" abstraction as well as a mute on/off button.
b) Build a compressor.

¢) Build a graphic representation for an incoming spectrum.

5.1.3 Appendix

5.1.3.1 Creating a patch automatically

We have a patch with a subpatch called "test". In the main patch, we send the following messages to
the subpatch using "s pd-test" from top to bottom:

g 10 10 hallo[
obj 10 50 print| '

Eunnect 001 D[

allo

print

s pd-test

"obj" creates an object; you enter the x/y-coordinates and the name of the object with its arguments.
The same goes for the message box. The connection works like this: "connect [object number]
[outlet number] [object number] [inlet number]". The objects are numbered in the order they are
created, the outlets and inlets from left to right. Everything is initially set to 0. The message "clear"
deletes the content of the subpatch.

241

Here is an overview of all the commands. At present (June 2008) some of these don't yet work:

Eoxes

ob 300 10 » test[

nsg 300 40 bn:ng'[

] emkbatom 300 70[

Fymbolatom 300 100 symbol|

rext 300 150 c-cm'me:nt[

rraph

Connections

[n:::ay s00 190
[:cala.r S00 22Di

ronmect 0 0 1 l:l[

[:estore

Leotions

Flick §1 §2 §35 34

hotion $1 §2 §3(

houseup #1 22 $3(

Delete

[t

datp structures

Fead textfile. tut(

e £ e teutfile.tut(

Window Positien

Felocate 10u20+4300+300 EDR3DHDD+SDD[

Jryph-on-parent

lonecanirasdialeog 1 -1 1 0 -1 1 1 50 50 100 1IZIIZIE

s pd-subpatch

pd subpatch

5

UL

ENLE A1

|

Faveto

I

ERIERIE []] B H. & &
sl 0] s L] Fu H H
H + | |H +] B [
oL B e
P E‘ =] 5
+ + w *
") * P

] W

o

P = W e B e | A

relectall

[o s B rroee |

henufont

Fonk 10 100 100[

Find test

—

Findagain

Findparent

ik

tdi tmade

i
iy

[o o e B e |

| cadbang

SHENN

[= T

P e = T o e |

This makes it possible - albeit in a fairly complicated manner - to, say, create a certain number of
arrays with an abstraction, which cannot be accomplished in Pd any other way (cf. 3.2.3.1):

242

patches/ntables.pd

ntables1 [number tables] [size tables]

zel 200| upper limitto he safe

With this abstraction, you can create ten arrays in the subpatch with a size of 44100:

Inta.hlesl 10 441uu|

In this way, you could also create the subpatch in your main patch:

243

ntabhles1 [number tables] [size tables] [name subpatch]

.;hta.hles 10 44100 tahles

!
EM __‘Eahe\filename nid|
makefilename pd-¥s| - \
&“k sfst akefilename pd-ss

61 obj 300 §2 table $3 §4

5.1.4 For those especially interested

5.1.4.1 Writing your own objects

...1s naturally also possible. Pd is merely a surface for a program in the programming language C,
which allows you to write your own objects ("externals"). Here is a guide to help you do this:
http://iem.at/pd/externals-HOWTO/

244

5.2 Visuals

5.2.1 Theory

5.2.1.1 Pd is visual and this can be programmed

The tools for visual representation were already introduced in 2.2.4.3. Here, we'll examine how to
control a canvas.

Create a canvas (Put Canvas) and give it the receive symbol "c1" under properties (right-click on
the box in the canvas's upper left):

o L L
- teztlabel

O
RN | 5 [

Corce| e | 0k |

Now you can send the canvas messages:

http://www.pd-tutorial.com/english/ch02s02.html#chapt2.2.4.3

245

patches/5-2-1-1-canvas.pd

color
label color

width
|T ® delta position E:::]

v delta position height
 fE ack 0 0
ac

] 1..12‘
cl delta 51 52‘ cl vis size §1 §

cl color 51 52

[0 Jx label

v label 34 |x position get position
gele it b 172|y position i
cl get pos

; pack 0 0

cl label pos 51 52‘ g ‘

0 | font cl pos §1 §2

D height

ack £ £ change send-name

; cl send c2?

cl label font §1 52

change receive-name Leindwa

name lahel . ‘

¥ cl receive cll
cl lahel Leindwand‘

size of hlue switchhoz

cl size 51

5.2.2 Applications

5.2.2.1 Main patch window and subpatches

This should be clear from the previous material: a tidy patch comprises the main window and
subpatches (cf. 3.4.2.4 and 5.1.1.1). In this manual, I've usually refrained from this sort of
organization for the sake of clarity (it's easier to comprehend a graphic when all the required
information is present in just one window).

5.2.2.2 Canvasses as display

The colorful elements in canvasses can greatly enhance the clarity of your patches (cf. 3.4.2.4). For
displaying functions, they can also be used in variable manner. For example, you could display the
results of a random generator like this:

246

patches/5-2-2-2-canvas-display.pd

lexpr 100-5£1]

cc pos 300 51‘

247

You could also display a number in a larger size (however, a symbol must always accompany the
number; here, a ">" is used):

74 MY_CAHVAS-PROPERTIES =|O] x|
15|

100

lexpr 100-5£1]

cc pos 300 $1|

Eﬂkefilenamﬂ =%d

Lo L
i [=]

HE WEEEREE
_ (i | (][

Corce| oy | 0|

The possibilities are nearly endless; you could even produce complete graphic scores using
canvasses.

5.2.2.3 Canvasses as expanded GUI

Canvasses can be laid over other GUI objects; the order in which they are created is critical. You
could make your own toggles:

. .
" .

ocx color 15| |ox colox 19

First, a toggle with a size of 55 was created and attached to "sel 1". Then, a canvas with a size of 55
and a receive symbol "cx" was created and superimposed directly on top of the toggle (the order of
creation is essential; otherwise, the canvas disappears behind the toggle). The "sel 1" object and all
the rest could be separated into a subpatch and an internal "send" object for the toggle could be
used.

248

Here again, the possibilities are endless. To name just one example, you could replace an octave of
piano keys like this (clearly, I am not the most talented Pd graphic designer):

patches/5-2-2-3-piano-display.pd

pd pno

I

The subpatch contains:

m m
r

10 | (12
iz
I \i\isxl color 51

ST
= 2 [0]

vl

=
'
s

L]

e d
N T o

10
A
C¥l Color :
(1)

Behind the 'piano keys' is a series of bangs:

249

76 MY_CAHVAS-PROPERTIES o] x|

15
15 a0
20 12
..
- 74 BAHG-PROPERTIES =|o] x|
15
50 250
cif
0 -E

o=[=ao | testlabel

5.2.2.4 More exercises
a) Create a stopwatch.

b) Create a graphic for a running 5/8 meter, i.e., a visual click track.

5.2.3 Appendix

5.2.3.1 Data structures
Data structures are an entire family of graphics in Pd.

You can place graphic elements in a subpatch. First you create the subpatch "graphic" and define
variables and a graphic for this subpatch. This is called a "template". It contains the variables with
"struct"; for its argument, enter the template's name (here "gl") and then pairs comprising type and
name - in this case, float x float y float q. "float" is the type (a decimal number); X, y, and q are
freely chosen names.

250

pd graphic

|Et:r_'ul:!t gl float x float y float q|

The graphic can be defined with the objects "drawcurve", "drawpolygon", "filledcurve", and
"filledpolygon". Let's use "filledpolygon" for our first example. A polygon is a geometric shape
with many sides. The arguments from left to right are interior color, perimeter color, perimeter
width, pairs of coordinate points (starting from upper left and proceeding clockwise).

pd graphic

|_st:r_'ul:!t gl float x float y float ql

[filledpolygon 22 12 3 0 0 100 0 100 100 0 100|

To create a graphic, we need "append". Its first argument is the template's name and then possible
variables - x and y should always be used. The right input is the place in the subpatch where the
graphic is to be placed. You have to imagine that graphic elements in a subpatch are ordered one
after another as in a list. "append" must first know the place in the list that the "pointer" object has
named. Give "pointer" the Message "traverse pd-graphic"; this causes "pointer" to go to the
beginning of the list. A "bang" message will send this place on the list (to "append"). Then give data
for the variables into the "append" object's left inlet.

patches/5-2-3-1-data-structures1.pd

traverse pd-graphic first here
finally here m then here

Euint exr

Elppend gl = }—r|

bd graphic| —

|Etruc!t gl float x float y float q|

[filledpolygon 22 12 3 0 0 100 0 100 100 0 100

Just for the sake of clarity: "x" and "y" are special names for a graphic element used in data
structures. It defines an absolute position, 50/50. You've now created a "filledpolygon" with the
interior color 22, the perimeter color 12, the perimeter width 3, and with 4 points: upper left at a
distance of 0/0 from the absolute position, upper right at a distance of 100/0 from the absolute
position, lower right at 100/100, and lower left at 0/100. If you simply removed the last two
numbers from "filledpolygon", you'd be left with a triangle. You can apply this same method to
create a polygon with any number of sides.

251

"traverse pd-graphic" basically takes you right to the beginning of the subpatch "graphic"; a "bang"
sends this position to "append" and, when we send it data with the necessary variables, "append"
creates the graphic at this position.

But you could also change something about this graphic. You defined the variable "q" (a float) for
the template "g1". Now enter the following for the "filledpolygon": "filledpolygon 22 12300 q 0
100 100 0 100". One point has just one variable. The point disappears and you now have a triangle.
This variable can be set using "append":

patches/5-2-3-1-data-structures2.pd

traverse pd-graphic first here
finally here m then here

Euint er

Elppend gl = }—r|

pd graphic ==

|Etruct gl float x float y float q|

[filledpolygon 22 12 3 0 0 q 0 100 100 0 100

...but also by using "set". This must also receive the information from the pointer regarding the
position where something is to be changed in the subpatch. In this case, it is one step after the
beginning. Use "traverse pd-graphic" to go all the way to the beginning. The beginning is empty;
use "next" to go to the next graphic. Now you can enter a value for q in the left input.

patches/5-2-3-1-data-structures3.pd

first create e

tebohsh Eraverse pd—g:l:aph:i.c[

m then here

finally here

Eravers% pd-graphic, ha.ng[

pd-graphic clear

Eppend gl = _',—r|

=

pd graphic [y B

|_st:r_'uc!t gl float x float y float ql

[filledpolygon 22 12 3 0 0 g 0 100 100 0 100

Many graphics can be made simply by sending messages to "append". Use "next" to move from one
graphic to the next.

252

patches/5-2-3-1-data-structures4.pd

first create
then here
thhh

traverse pd-graphic
E [

Eraversﬁ pd-graphic, hang[

. ; -nlnte:r i
pd-yraphic clear

append gl x y

\Etruct gl float x float y float q|

Filledpolygon 22 12 3 0 0 q 0 100 100 0 100

Regarding the other graphic elements: "drawpolygon" is just a line with angles; the first argument
with the interior color is omitted. The same is true of "drawcurve", except that its angles are

rounded. "filledcurve", however, results in a closed shape and the first argument is again reserved
for the interior color.

patches/5-2-3-1-data-structures5.pd

create
thhh

travers& pd-graphic, hang[

50 50 HL_
|1 ulnte:r_'
pd-graphic clear

Elppend gl = 1—r|

=

pd graphic -

|Etruc!t gl float =x float y float q|

[filledpolygon 22 12 3 0 0 100 100 0 100

[drawpolygon 4444 2 150 0 200 100 220 40|

ﬁxawnuxve 1 2 150 100 200 200 220 14u|

Eillednuxve 22 12 4 0 150 100 250 D 250

Another important point: the points (vortices) of a graphic that have variables can be changed with

the mouse; the cursor changes its shape at the point, meaning you can now click and drag to modify
the graphic's shape.

253

If you use "append" to design a graphic object, the output is a new pointer for this new object (as
with "next"):

patches/5-2-3-1-data-structures6.pd

first create
tbhhh

Eravers§ pd-graphic, ha.ng[then adjust here

‘a
pd-—graphic clear

Elppend gl = }—r|

=T

pd graphic

|_st:|:uc!t gl float x float y float ql

filledpolygon 22 12 3 0 0 ¢ 0 100 100 0 100

A pointer is a type of information, e.g., for "trigger":

patches/5-2-3-1-data-structures7.pd

first create
tbhhh

Eravers§ pd-yxraphic, ha.ng[
Y

pd—graphic clear

Elppend gl = 3—r|

pd graphic

|_strul:!t gl float x float y float q|

[filledpolygon 22 12 3 0 0 g 0 100 100 0 100

You can use "get" to receive information from graphic elements that are attached to pointers:

254

patches/5-2-3-1-data-structures8.pd

first create
thhh
then information this

\
Eravers% pd-ygyraphic,

pd-graphic ElE-Ell‘|

50 50

Elppend gl = }—r|

11 d g:r_'aphik

|Et:|:uc!t gl float x float y float q|

[filledpolygon 22 12 3 0 0 q 0 100 100 0 100|

Last, you can create a (graphic) array using data structures. The array is defined in "struct" with a
name and another allocated template. Use "plot" to define the color, width, starting point (x/y), and
distance between points for this array.

|Etruc!t g2 float x float y array tab g2h|

lﬁlut tab 27 2 40 40 3|

Another subpatch must contain the other template that determines the array's variables:

|Et:|:uc!t g2 float x float y array tab g2h| ‘

plot tab 27 2 20 40 3| pd g2h| — >

|Etruc!t g2bh float y

The variable "y" is automatically understood as the height of the array. This variable is necessary to
create the array correctly.

Here is the created array:

255

patches/5-2-3-1-data-structures9.pd

create pd graphic?| —,
t hhh

Erﬁm@_ﬂ pd-graphic2, ha.ng[2

Eppend g2 x _',—r|

pd-yraphic?2 clea:r‘

|Etruc!t g2 float =x float y array tab g2h|

Elut tab 27 2 40 40 3

You can change the size with "setsize":

=
create pd graphic?
thhbhbh

E:E}nk_grse pd-graphic?, ha.ng[

Y
adjust @ninte:ﬁl\ =
size :

= Elppend g2 = }—r|

pd-graphic? clear

setzize g2 tab
E]

|Etruc!t g2 float x float ¥ array tab g2h|

Elut tah 27 2 40 40 ﬂ

m

The variable "y" has to be changed somewhat indirectly; use "element" to access it.

256

create pd graphic? —
t hhh

Er\%n(grse pd-graphic2, ha.ng[
It
@ninte:ﬁl_

"

pd-graphic? clear

Elppend g2 x _':r|

adjust E- ¥

size

ElmﬂnﬁE tal;|
s

Eetsize g2 tal?|

|Et:r_'uc:t g2 float x float y array tah g2h|

lﬁlut tab 27 2 40 40 3|

The form of data structures may change in the future (date of writing: June 2008). Furthermore,
additional special functions for data structures can be found in the original Pd documentation.

5.2.4 For those especially interested

5.2.4.1 GEM

As mentioned previously, there is an additional program for Pd called GEM that is used for video
generation and editing.

http://gem.iem.at

257

Afterword

Now that you've finished this tutorial and tried out all the techniques presented, hopefully you're
eager to combine all the objects with each other and make your own discoveries - after all, that's
exactly the intention behind Pd's design.

There is, of course, virtually no end to further study of the concepts presented here. Many other
books about digital sound processing await your perusal - especially "Theory and Techniques of
Electronic Music" by Pd's main designer Miller Puckette. It would certainly be advisable to further
increase your proficiency with and knowledge of acoustics, studio recording techniques, and
programming. You may also want to consider acquiring fluency with the basics of a sequencing
program for programming sound. However, enthusiasm, artistic satisfaction, and aesthetic reflection
are still the most important things.

For any further questions about Pd, I encourage you to contact the "Pd-list" Pd community. This
book was written according to Pd version 0.39 from late 2007. Hopefully the information contained
here will not be outdated too quickly.

Johannes Kreidler

258

Appendix A. Solutions

Here you'll find the suggested solutions to the "More exercises" sections found at the end of every
chapter. These are by no means comprehensible; in most cases, other correct solutions are possible.

2.2.1.2.8

a) Two simultaneous random melodies:

patches/a-1-two-randommelodies.pd

b) Select (any) two different intervals using two bangs:

patches/a-2-two-intervals.pd

¢) Use "expr" to calculate exponential functions, e.g., y=x>ory=xZ ¥ ory=1-(2%:

259
patches/a-3-exponentialfunctions.pd

yrmid y=x" (2+x) y=1-(2"x)

lexpr pow($£1, 2)| lexpr pow($£1, (2+§f1))|lexpr 1-(pow(2, $f1))

2.2.2.2.6

a) A sequence of lists with pitch and volume:

patches/a-4-listsequence.pd

oute 1 2 345 g

40 0.5 (500 0.9([573 0.2 [540 u.ﬁ[@uu u.4[@43 1[

pack £ £

on/off switch

b) A function that, given a list of two numbers (the start and end values for the x-domain), can

calculate the y-values - e.g., to calculate the values of the function y = 3* for the range from x = -2
tox =4:

patches/a-5-functionpart.pd

260

m some other values...

[expr pow(3, §£1)] y=3'x

261

2.2.3.2.9

a) A random melody that jumps to the next tone every 0.5 seconds (alternatively: as a glissando
rather than a jump):

patches/a-6-randommelody500.pd

with glissando

b) A metronome with irregular random rhythms (for which you can set the average tempo):

patches/a-7-irregmetro.pd

average tempo, max. 120

lexpz 1000/ ($£1/60)|

random 1000

¢) A metronome, that beats five times at tempo quarter note = 60 and five times at quarter note =
100:

patches/a-8-twometro.pd

262

d) A melody that changes between very high and very low registers every two seconds:

patches/a-9-highlowmelody.pd

tro 250

tro 2000

éandum 200

263

3.1.1.2.2

a) Two glissandi: one linear and one logarithmic (to the human ear) from C3 to C6.

patches/a-10-linloggliss.pd

{any duration]
linear logarithmic

las, 82 30000 261.6, 1046.5 30000(

ine

b) A quarter-tone scale:

patches/a-11-quarterton.pd

264

3.1.2.2.5

a) (random) glissando chords that also have random volume changes for each individual tone:
patches/a-12-randchord.pd

This main patch...:

51 20[the more oscillators,
the smaller this value!

ine-

...with this subpatch "ol1":

b) The volume of the microphone input controls an oscillator's pitch (alternatively: many oscillators'
pitches having different frequency offsets):

265

patches/a-13-adcampcont.pd

266

3.3.2.3

Experiment with filtering the "glissando orchestra" (3.1.2.2.4):

patches/a-14-orchestrafilter.pd

try out values here

b 1o 1 b]

||; te:mpu‘F amhitus”; nffset|

i B B OE OB E B B B E E B F B
pd ollpd ollpd oifpd olfpd olfpd olpd olfpd olfpd oilpd oifpd olfpd ollpd olpd ollpd oilpd ol

51 200 the more oscillators,

ine-| thesmaller this value!
but, depending on the filter,
you need a strong signal again.

try out values here

267

3.4.2.11

a) Build a record function into the sample player:

patches/a-15-recsampler.pd
A toggle is added to the main patch of 3.4.2.4 that sends to "rec".

Sample-Player

. first load sound file

left limit

L | |
L |

right limit

L

playhack speed
r

volume

-

In the subpatch:

Eead -resize 51 a:n::n:ayl[

b limit left |
b= limit-right

tfh|

difference of hoth
{always calculated,
not only if there is a
input on the left)

Expr 44100 / q'f1|

268

269

b) Create a patch for reverb or a texture with different delay times for the input signal, e.g., with

multiples of the Fibonacci series (in which the next number is always the sum of the previous two: 0

11235813):
patches/a-16-fibodelay.pd

hase delay

alternative to microphone input

rite- buffl 1uuuu|

[] *
[y
I.E wn

LY L

E- total volume

)

-
]

2]

[8

=]
&

d~ buffl

..

¢) Use different Karplus-Strong sounds to make textures of varying densities:

patches/a-17-karplus-text.pd

d- buffer 100

* 0.5
fr 08 i

Euise~ average calculation
+-

b *. 0.99

=~ 1| delay by 1 sample

damping factor (hetween 0 and 1)

delngt’~ buffer 1000
te~ buffl 10000

- loop duration loop duration
loop duration

loop duration

total volume

270

271

d) Apply a comb filter to patches presented in the previous sections:

patches/a-18-combfilteruse.pd

E.g., using the "filter colors" (3.3.2.1) (use a very short delay, e.g., 15 ms):

|
]

Enise~

.

moise~

Eamlum 1uuuﬁ\

Eamlum 1uuuﬁ\

bp~ 0 50

bp~ 0 50

new color

8

noige-

r
Euism o

eandem 10000]

random 10000]

bp- 0 50

A
moise~

)
moisge~

Eandum 1uuuﬁ\

Eandum 1uuuﬁ|

-|-~
total volume

L%
dac-

e 1
delwrite~ huff 1000
delay (ms)

bp~ 0 50

[T~
moise-

s
moise~

random 10000]

[andom 10000]

bp- 0 50

hp- 0 50

272

3.5.24

A wave that changes constantly:

patches/a-19-wavechange.pd

random values

frequency

phasor-

ahwrite- axray1|

i

arrayl

273

3.7.2.3

Four readers, each with a variable window size. Experiment!

patches/a-20-four-reader.pd

arrayl

this can he freely chosen

freely chosen playback speed
window size

Eahreatld*v arrayl‘ Eahread4~ a..rayl‘ tabreadd- a._rayl‘ Eahread4~ a._rayl‘

tabread- hming‘ tahread- hanning| tahread- hanning

] T -

tabread- harming|

274

3.8.3.5

Instead of simply 'tracing' the microphone input, a parallel voice a perfect fifth away or even a
whole parallel chord:

patches/a-21-followers.pd

Fiddle~ 1024

275

3.9.2.2

a) An "expander" - small differences in amplitude are turned into large differences:

For this, you just need to use a value larger than the input signal as a reference in the compressor
patch (3.9.1.2).

b) A volume inversion: quiet becomes loud and loud becomes quiet.

patches/a-22-ampinvert.pd

input signal

delwrite- comp 1l]l]|

delread- comp 23.22|

[expr (($£1 - 100) 7 10) - $£1 + 100 [expr ((SE1 - 20) / 10) - SE1 + 20

90 | 63

fexpr 100 + 5£1] [expr 100 + 5£1]

%1 20| release: 20 ms

attack: 20 ms

276

4.1.2.3

a) Record a sample and play it back at the wrong speed. Record this 'wrong' playback, play it back,
record, and so forth. Try this while (1) playing back the sample with the same 'wrong' speed and (2)
with a different 'wrong' speed.

patches/a-23-sample-false.pd

[table array2 100000

arrayl
| | ‘ ‘l [table array3 100000

ead -resize voice.wav arrayl[

B

&
!I
1~

=1

different every time:

start

tﬂhreaﬂﬂw arrayEl E%hreiﬁﬁl array3
/

array? resgize ﬁ]i”

e ﬁf / : i ‘
E Tte~ ﬂY2| 3y3 resize §1 array? resize 51

Eahwrite~ array3| Eahwxite~ array?

. 0.7

dac~

277

b) A recursive wave shaping algorithm using delay (i.e. an algorithm in which the output is fed back
as input):

patches/a-24-waveshape-feedback.pd

@elxead~ buffi3 750

ﬁelmxite~ buff33 1000

arrayl

278

4.2.2.2

Write stochastic algorithms into a text file that uses a "qlist" to play back the patch from 4.2.2.1 at
different speeds:

patches/a-25-textcreate.pd

in a simpler version:

createl
tbhhbh
i

zi 100

Eouteﬂl23Nﬂ_

a
g‘m random 2

L m h bbE t bbbf z

pitogs(faad[[symbol ploff] m lsymbol. plamp Eﬂ:[[symbol p2togy M [symbol p2ofE]

i randd 3[|_E| randgm 300 randgm 300
Eacksfsf—| @acksfsf pack s £ s £ ksfsf Eacksfsf—| Eacksfsf @acksfsfl
L ™

et | fmwel] e le] pesdis e de] powede] e T

/

i

™
prrite ptct|
==

then load "p1.txt" in the patch 4-3-3.1.score.pd

http://www.pd-tutorial.com/english/ch04s02.html#chapt4.2.2.1

279

5.1.2.2

As abstractions:

a) Integrate the DSP switch into the "dac" abstraction as well as a mute on/off button:

patches/a-26-dac-extended.pd

lute |[DSP OFF

280

b) A compressor:

patches/a-27-compress~.pd

delread~ F0-comp 1. 5|

281

¢) A graphic representation of an incoming spectrum:

patches/a-28-spectrum.pd

s oo Tz 2059

|17-1unk~ 4096 1

5.2.2.4

a) A graphic representation of a stopwatch:

patches/a-29-stop.pd

gstart fztop

Igd stnpl

>0.0

...with the subpatch "stop":

282

JIIIrEm]m: symbol :=-%§|

time label 51‘

...and the following canvas settings:

283

size:

------ wizible_rectangle[pi=[pis];-----

width; |1] height: |1 L)

zend-zsymbal;
receive-gumbaol | time
label:
narne: |>0.01

w_off: (20 u_off: I'IE

fant: helvetical fontzize: IEE

colors:

' backgd label

SOMPOSE n:u:ulu:ul | testlabel '

------ or click color prezet-------

e

Eancell Apply | aE. |

In the toggle, it is configured that it sends to "stort".

b) A graphic for a running 5/8 meter, i.e., a visual click track. See patch file.

patches/a-30-opt-track.pd

	Programming Electronic Music in Pd
	Johannes Kreidler
	Preface
	Introduction to this book's methodology
	Chapter 1. Introduction to Pd
	1.1 General remarks
	1.2 Installing and setting up Pd
	Chapter 2. Programming with Pd for the first time
	2.1 Introduction
	2.1.1 A simple example
	2.1.2 Surface elements in Pd
	2.1.3 Summary
	2.1.4 Appendix
	2.1.4.1 List of all objects
	2.1.4.2 Help file
	2.1.4.3 Duplication
	2.1.4.4 Short cuts
	2.1.4.5 Comments

	2.1.5 For those especially interested: Atoms

	2.2 The control level
	2.2.1 Mathematical operations and order
	2.2.1.1 Theory
	2.2.1.1.1 Basic mathematical functions
	2.2.1.1.2 Order
	2.2.1.1.3 Expression
	2.2.1.1.4 Other mathematical operations
	2.2.1.1.5 Float and counter
	2.2.1.1.6 Summary

	2.2.1.2 Applications
	2.2.1.2.1 Two frequencies – two volume levels
	2.2.1.2.2 An interval
	2.2.1.2.3 Random melody
	2.2.1.2.4 Rounding
	2.2.1.2.5 How long is this score?
	2.2.1.2.6 Counting in a series
	2.2.1.2.7 Random without repetitions
	2.2.1.2.8 More exercises

	2.2.1.3 Appendix
	2.2.1.3.1 Input for bang
	2.2.1.3.2 How numbers are represented
	2.2.1.3.3 More on trigger

	2.2.1.4 For those especially interested
	2.2.1.4.1 About series
	2.2.1.4.2 Regarding float

	2.2.2 Different types of data
	2.2.2.1 Theory
	2.2.2.1.1 Bang – a GUI object
	2.2.2.1.2 Messages
	2.2.2.1.3 Lists
	2.2.2.1.4 Messages with variables
	2.2.2.1.5 Messages: Set
	2.2.2.1.6 Makefilename
	2.2.2.1.7 Openpanel
	2.2.2.1.8 Simple data storage
	2.2.2.1.9 Route
	2.2.2.1.10 Demultiplex
	2.2.2.1.11 Spigot
	2.2.2.1.12 Toggle

	2.2.2.2 Applications
	2.2.2.2.1 Using lists with pitches and dynamics
	2.2.2.2.2 On/off switch
	2.2.2.2.3 Pitches with names
	2.2.2.2.4 simple sequence
	2.2.2.2.5 A limited counter
	2.2.2.2.6 More exercises

	2.2.2.3 Appendix
	2.2.2.3.1 Symbol boxes
	2.2.2.3.2 Slider
	2.2.2.3.3 Radio
	2.2.2.3.4 Using slider and radio

	2.2.2.4 For those especially interested: Other type specifications and more about boxes

	2.2.3 Time operations
	2.2.3.1 Theory
	2.2.3.1.1 Metro
	2.2.3.1.2 Delay
	2.2.3.1.3 Pipe
	2.2.3.1.4 Line
	2.2.3.1.5 Timer

	2.2.3.2 Applications
	2.2.3.2.1 Automatic random melody
	2.2.3.2.2 Glissando
	2.2.3.2.3 Glissando melody
	2.2.3.2.4 Irregular random rhythms
	2.2.3.2.5 Canons
	2.2.3.2.6 Rests
	2.2.3.2.7 Crescendo/Decrescendo
	2.2.3.2.8 Metronome
	2.2.3.2.9 More exercises

	2.2.3.3 Appendix
	2.2.3.3.1 Distributing lists
	2.2.3.3.2 Time resolution for control data

	2.2.4 Miscellaneous
	2.2.4.1 Sending and receiving
	2.2.4.1.1 Send/Receive
	2.2.4.1.2 Sending with lists
	2.2.4.1.3 A series of send lists
	2.2.4.1.4 Value

	2.2.4.2 Loadbang
	2.2.4.3 GUI options
	2.2.4.3.1 Number and symbol box
	2.2.4.3.2 Bang
	2.2.4.3.3 Toggle
	2.2.4.3.4 Slider
	2.2.4.3.5 Radio
	2.2.4.3.6 Canvas
	2.2.4.3.7 Examples of altered GUI objects
	2.2.4.3.8 Change font size
	2.2.4.3.9 Tidy up

	2.2.4.4 Subpatches
	2.2.4.4.1 Space
	2.2.4.4.2 Modularization

	Chapter 3. Audio
	3.1 Basics
	3.1.1 Pitch
	3.1.1.1 Theory
	3.1.1.1.1 Controlling speakers digitally
	3.1.1.1.2 Waves
	3.1.1.1.3 Measurement
	3.1.1.1.4 Sample rate
	3.1.1.1.5 Samples – milliseconds

	3.1.1.2 Applications
	3.1.1.2.1 Tempered – Random
	3.1.1.2.2 More exercises

	3.1.1.3 Appendix
	3.1.1.3.1 Nyquist Theorem
	3.1.1.3.2 DSP

	3.1.1.4 For especially interested
	3.1.1.4.1 da- / ad- conversion
	3.1.1.4.2 Sound waves
	3.1.1.4.3 Converting MIDI numbers into frequencies
	3.1.1.4.4 Noise periodicity

	3.1.2 Volume
	3.1.2.1 Theory
	3.1.2.1.1 Measurement
	3.1.2.1.2 Problems
	3.1.2.1.3 Phase
	3.1.2.1.4 Sound waves are additive

	3.1.2.2 Applications
	3.1.2.2.1 Chord
	3.1.2.2.2 Glissandi
	3.1.2.2.3 Processing adc-input
	3.1.2.2.4 Oscillator concert
	3.1.2.2.5 More exercises

	3.1.2.3 Appendix
	3.1.2.3.1 Other tilde objects
	3.1.2.3.2 Bit depth

	3.1.2.4 For those especially interested
	3.1.2.4.1 Sound pressure vs. sound intensity
	3.1.2.4.2 Control data vs. signals

	3.2 Additive Synthesis
	3.2.1 Theory
	3.2.1.1 The harmonic series

	3.2.2 Applications
	3.2.2.1 A random klangfarbe (German: sound color)
	3.2.2.2 Changing one klangfarbe into another
	3.2.2.3 Natural vs. equal-tempered
	3.2.2.4 More exercises

	3.2.3 Appendix
	3.2.3.1 Pd's limitations

	3.2.4 For those especially interested
	3.2.4.1 Studie II
	3.2.4.2 Composing with spectra

	3.3 Subtractive synthesis
	3.3.1 Theory
	3.3.1.1 White noise
	3.3.1.2 Filters

	3.3.2 Applications
	3.3.2.1 Filter colors
	3.3.2.2 Telephone filters
	3.3.2.3 More exercises

	3.3.3 Appendix
	3.3.3.1 White noise and clicks
	3.3.3.2 Pink noise
	3.3.3.3 DC offset

	3.3.4 For those especially interested
	3.3.4.1 How digital filters work

	3.4 Sampling
	3.4.1 Theory
	3.4.1.1 Storing sound
	3.4.1.1.1 Sound files
	3.4.1.1.2 Buffers

	3.4.1.2 Playback of saved sound
	3.4.1.3 Audio delay

	3.4.2 Applications
	3.4.2.1 A simple sampler
	3.4.2.2 With variable speed
	3.4.2.3 Any position
	3.4.2.4 Sampler-player
	3.4.2.5 Loop generator
	3.4.2.6 Reverb
	3.4.2.7 Texture
	3.4.2.8 Comb filter
	3.4.2.9 Octave doubler
	3.4.2.10 Karplus-Strong algorithm
	3.4.2.11 More exercises

	3.4.3 Appendix
	3.4.3.1 Array oscillator
	3.4.3.2 Array playback
	3.4.3.3 Playing back an array in a block
	3.4.3.4 Glissandi of samples
	3.4.3.5 Additive synthesis with array
	3.4.3.6 Latency

	3.4.4 For especially interested
	3.4.4.1 4-point interpolation
	3.4.4.2 Sample-wise delay

	3.5 Wave shaping
	3.5.1 Theory
	3.5.1.1 Waveforms
	3.5.1.2 Transfer functions
	3.5.1.3 (Controlled) Random waveforms
	3.5.1.4 Wave stealing

	3.5.2 Applications
	3.5.2.1 Singing waveforms
	3.5.2.2 Transfers
	3.5.2.3 Even / odd partials
	3.5.2.4 More exercises

	3.5.3 Appendix
	3.5.3.1 Foldover

	3.5.4 For those especially interested
	3.5.4.1 GENDY

	3.6 Modulation synthesis
	3.6.1 Theory
	3.6.1.1 Ring modulation
	3.6.1.2 Frequency modulation

	3.6.2 Applications
	3.6.2.1 More sonically complex ring modulation
	3.6.2.2 Live ring modulation
	3.6.2.3 Live frequency modulation
	3.6.2.4 More exercises

	3.6.3 Appendix
	3.6.3.1 Phase modulation

	3.7 Granular synthesis
	3.7.1 Theory
	3.7.1.1 Theory of granular synthesis

	3.7.2 Applications
	3.7.2.1 Live granular synthesis
	3.7.2.2 Live with feedback
	3.7.2.3 More exercises

	3.7.3 Appendix
	3.7.3.1 Granular technique as a synthesizer

	3.8 Fourier analysis
	3.8.1 Theory
	3.8.1.1 Analyzing partials
	3.8.1.2 Analyze whatever signal you want

	3.8.2 Applications
	3.8.2.1 Filters
	3.8.2.2 Folding
	3.8.2.3 Compressor
	3.8.2.4 Spectral delay

	3.8.3 Appendix
	3.8.3.1 fiddle~
	3.8.3.2 Tuner
	3.8.3.3 Octave doubler #2
	3.8.3.4 Pitch follower
	3.8.3.5 More exercises

	3.9 Amplitude corrections
	3.9.1 Theory
	3.9.1.1 Limiter
	3.9.1.2 Compressor

	3.9.2 Applications
	3.9.2.1 Larsen tones
	3.9.2.2 More exercises

	3.9.3 Appendix
	3.9.3.1 Movements in space

	3.9.4 For those especially interested
	3.9.4.1 Other windows

	Chapter 4. Controlling sound
	4.1 Algorithms
	4.1.1 Theory
	4.1.1.1 What are algorithms?

	4.1.2 Applications
	4.1.2.1 Stochastics
	4.1.2.2 Recursive systems
	4.1.2.3 More exercises

	4.1.3 Appendix
	4.1.3.1 DSP loop

	4.1.4 For those especially interested
	4.1.4.1 Algorithmic composition

	4.2 Sequencer
	4.2.1 Theory
	4.2.1.1 Text file
	4.2.1.2 Qlist

	4.2.2 Applications
	4.2.2.1 Score for a patch
	4.2.2.2 More exercises

	4.2.3 Appendix
	4.2.3.1 Modifying qlist

	4.2.4 For those especially interested
	4.2.4.1 Creating lists externally: Lisp

	4.3 HIDs
	4.3.1 Theory
	4.3.1.1 Keyboard and mouse
	4.3.1.2 MIDI
	4.3.1.3 Using signals to control sound

	4.3.2 Applications
	4.3.2.1 Playing patches live
	4.3.2.2 More exercises

	4.3.3 Appendix
	4.3.3.1 Other HIDs
	4.3.3.2 Video input

	4.3.4 For those especially interested
	4.3.4.1 Instrument design

	4.4 Network
	4.4.1 Netsend / Netreceive
	4.4.2 OSC

	Chapter 5. Miscellaneous
	5.1 Streamlining
	5.1.1 Theory
	5.1.1.1 Subpatches
	5.1.1.2 Abstractions
	5.1.1.3 Expanding Pd

	5.1.2 Applications
	5.1.2.1 Customize your Pd
	5.1.2.2 More exercises

	5.1.3 Appendix
	5.1.3.1 Creating a patch automatically

	5.1.4 For those especially interested
	5.1.4.1 Writing your own objects

	5.2 Visuals
	5.2.1 Theory
	5.2.1.1 Pd is visual and this can be programmed

	5.2.2 Applications
	5.2.2.1 Main patch window and subpatches
	5.2.2.2 Canvasses as display
	5.2.2.3 Canvasses as expanded GUI
	5.2.2.4 More exercises

	5.2.3 Appendix
	5.2.3.1 Data structures

	5.2.4 For those especially interested
	5.2.4.1 GEM

	Afterword
	Appendix A. Solutions
	2.2.1.2.8
	2.2.2.2.6
	2.2.3.2.9
	3.1.1.2.2
	3.1.2.2.5
	3.3.2.3
	3.4.2.11
	3.5.2.4
	3.7.2.3
	3.8.3.5
	3.9.2.2
	4.1.2.3
	4.2.2.2
	5.1.2.2
	5.2.2.4

