
SIMD Programming Manual
for Linux and Windows

Springer-Verlag London Ltd.

Paul Cockshott and Kenneth Renfrew

SIMD Programming
Manual for Linux
and Windows

~Springer

Paul Cockshott, BaEcon, DipEd, MSc, PhD
Department of Computing Science
University of Glasgow
17 Lilybank Gardens
Glasgow G12 8RZ
UK

Kenneth Renfrew, BSc(Hons)
Crookhill Farm
Gateside
By Beith
Ayrshire KA15 1HQ
UK

British Library Cataloguing in Publication Data
Cockshott, W. Paul

SIMD programming manual for Linux and Windows. - (Springer professional computing)
1. Parallel computing (Computer science)
1. Title II. Renfrew, Kenneth
005.2'75

ISBN 978-1-84996-920-8

Library of Congress Cataloging-in-Publication Data
Cockshott, W. Paul, 1952-

SIMD programming manual for Linux and Windows/Paul Cockshott and Kenneth Renfrew.
p. cm. - (Springer professional computing)

Includes index.
ISBN 978-1-84996-920-8 ISBN 978-1-4471-3862-4 (eBook)
DOI 10.1007/978-1-4471-3862-4
1. Parallel programming (Computer science) 2. Linux. 3. Microsoft Windows
(Computer file) I. Renfrew, Kenneth, 1962- II. Title. III. Series.

QA76.642C63 2004
005.2'75-dc22 2003067311

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

ISBN 978-1-84996-920-8

springeronline.com

© Springer-Verlag London 2004
Originally published by Springer-Verlag London Berlin Heidelberg 2004
Softcover reprint of the hardcover 1 st edition 2004

The use of registered names, trademarks etc. in this publication does not imply, even in the
absence of a specific statement, that such narnes are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Typeset by Gray Publishing, Tunbridge Wells, UK
34/3830-54321 Printed on acid-free paper SPIN 10962251

List of Tables

List of Figures

List of Algorithms

Introduction

I SIMD Programming
Paul Cockshott

Contents

xvii

xix

xxiii

XXV

1

1 Computer Speed, Program Speed 3
1.1 Clocks . 3
1.2 Width . 4
1.3 Instruction Speed . 5
1.4 Overhead Instructions . 6
1.5 Algorithm Complexity. 8

2 SIMD Instruction-sets 11
2.1 The SIMD Model . 11
2.2 The MMX Register Architecture . 12
2.3 MMX Data-types. 13
2.4 3DNow! . 15

2.4.1 Cache Handling . 17
2.4.2 Cache Line Length and Prefetching 18

2.5 Streaming SIMD . 19
2.5.1 Cache Optimisation 21

2.6 The Motorola Altivec Architecture . 22

3 SIMD Programming in Assembler and C 23
3.1 Vectorising C Compilers 23

3.1.1 Dead for Loop Elimination 24
3.1.2 Loop Unrolling. 25

3.2 Direct Use of Assembler Code 25
3.2.1 The Example Program 26

3.3 Use of Assembler Intrinsics . 27

v

vi Contents

3.4 Use of C++ Classes . 27
3.5 Use of the Nasm Assembler 28

3.5.1 General Instruction Syntax. 29
3.5.2 Operand Forms 29
3.5.3 Directives. 32
3.5.4 Linking and Object File Formats 34
3.5.5 Summing a Vector . 35

3.6 Coordinate Transformations Using 3DNow! 38
3.7 Coordinate Transformations Using SSE Instructions 44

4 Intel SIMD Instructions 47
4.1 Types , 47
4.2 shrl . 51
4.3 saturate . 51
4.4 Instructions . 51

4.4.1 ADDPS . 52
4.4.2 ADDSS . 52
4.4.3 ANDNPS . 52
4.4.4 ANDPS . 52
4.4.5 CMPPS . 53
4.4.6 CMPSS . 54
4.4.7 COMISS 54
4.4.8 CVTPI2PS . 55
4.4.9 CVTPS2PI . 55
4.4.10 CVTTPS2PI 55
4.4.11 CVTSI2SS 56
4.4.12 CVTSS2SI 56
4.4.13 CVTTSS2SI 56
4.4.14 DIVPD 56
4.4.15 DIVPS. 57
4.4.16 DIVSD. 57
4.4.17 DIVSS 57
4.4.18 EMMS. 57
4.4.19 FXRSTOR . 58
4.4.20 FXSAVE 58
4.4.21 MASKMOVQ 59
4.4.22 MAXPD. 59
4.4.23 MAXPS . 60
4.4.24 MAXSD. 60
4.4.25 MAXSS . 60
4.4.26 MINPD 61
4.4.27 MINPS 61
4.4.28 MINSD 61
4.4.29 MINSS 61
4.4.30 MOV APSJoad . 62
4.4.31 MOVAPS_store 62
4.4.32 MOVDJoad 62

Contents vii

4.4.33 MOVD_store 0 o o 0 o o o o 0 o o o 0 0 o o o 0 0 o o o o o o o o o o o 63
4.4o34 MOVDJoad_sse 0 63
4.4o35 MOVD_store_sse o o o o o o o o o o o o o o o 0 o o o o o o o o o o o o 63
4.4o36 MOVHLPS o 63
4.4o37 MOVHPSJoad o 64
4.4o38 MOVHPS_storeo 64
4.4o39 MOVLHPS o 64
4.4.40 MOVLPSJoad o 64
4.4.41 MOVLPS_store o 64
4.4.42 MOVMSKPS o 65
4.4.43 MOVNTPSo 65
4.4.44 MOVNTQ o 65
4.4.45 MOVQJoad o 66
4.4.46 MOVQ_store 0 0 0 0 0 0 o 0 66
4.4.47 MOVSSJoad o 0 o o 66
4.4.48 MOVSS_store o 0 0 0 66
4.4.49 MOVUPSJoad o 67
4.4o50 MOVUPS_storeo o o o o o o o o o o o o o o o o o 0 o o o o o o o o o o 67
4.4o51 MULPD o 67
4o4o52 MULPS o 0 0 o 67
4o4o53 MULSD o 0 0 0 0 68
4.4o54 MULSS o 68
4o4o55 ORPSo 0 0 o o o 0 0 o o 0 0 0 0 68
4.4o56 PACKSSDW o · o o o o o o o o o o 69
4.4.57 PACKSSWB o 0 o o 69
4.4o58 PACKUSWB o 0 0 o 69
4o4o59 PADDB o 0 0 70
4.4o60 PADDB_sseo 70
4.4o61 PADDWo o. o o •• o o o ••• o o o. o o. o o o o o o o. o o. 0. 0 70
4.4o62 PADDW_sse o o o o o o o o o 0 o o o o 0 o o o. o o o o o o o o o o 0 0 71
4.4o63 PADDD o 71
4.4o64 PADDD_sse o o o o o o o o • o o •• o o o o o o o o o o o o o • o o o o 71
4.4o65 PADDQ o. o. o o o o o o. o. o o o. o o o o o o o o o o o o o. o o 0 72
4.4.66 PADDQ_sse o o o o o o o o • o ••• o o o o o o o o o o o o o o o o o o 72
4o4o67 PADDSB o o o o o o o. o 72
4.4o68 PADDSB_sseo. o o o o. o o o o o o o. o o o o o o o o o o o o o o o o 73
4.4.69 PADDUSB o o o o o. o o o o o o o. o o o o o o o o. o o o o. o o. o 73
4.4.70 PADDUSB_sse o o o o o o • o o o o o o o o o o o o o o o o o • o o o o 74
4.4o71 PAND o o o o o o o o o. o o o o o o o o o o o o o o o o o o. o o o. 0 0 74
4.4.72 PAND_sse. o o o o o • o • o 0 0 74
4.4.73 PANDN o. o 0 o 75
4.4.74 PANDN_sse o. o o o o o o o o o o o o o o o o o o o •• o o o o o o. 0 75
4o4o75 PAVGB o o o o o o o o. o. o o o o o o o o o. o o o. o o o o o o o. o 75
4.4o76 PAVGB_sseo o o o o o. o. 0 0 0 0 76
4.4.77 PAVGWo o •• o o. o o o o o o o o. o o o o o o o o o o o o o o o o 0 0 76
4.4o78 PAVGW_sse o o o o o o o o o o o o o o o •• o o o. o •••• o o o o o 76
4.4o79 PCMPEQB. o o o o o o • o o o o o o •• o o o o o o •• o o o o o o 0 0 77
4.4o80 PCMPEQB_sse o • o o 0 • o o o o 77

viii Contents

4.4.81 PCMPEQW 77
4.4.82 PCMPEQW _sse. 78
4.4.83 PCMPEQD 78
4.4.84 PCMPEQD_sse . 79
4.4.85 PCMPGTB . 79
4.4.86 PCMPGTB_sse . 79
4.4.87 PCMPGTW . 80
4.4.88 PCMPGTW _sse. 80
4.4.89 PCMPGTD. 80
4.4.90 PCMPGTD_sse 81
4.4.91 PEXTRW 81
4.4.92 PEXTRW_sse 81
4.4.93 PINSRW . 82
4.4.94 PMADDWD. 82
4.4.95 PMAXSW. 82
4.4.96 PMAXUB. 83
4.4.97 PMINSW . 83
4.4.98 PMINUB . 84
4.4.99 PMOVMSKB . 84
4.4.100 PMULHUW. 84
4.4.101 PMULHW . 85
4.4.102 PMULLW. 85
4.4.103 POR. 86
4.4.104 PREFETCHNTA. 86
4.4.105 PREFETCHTI. 86
4.4.106 PREFETCHTO 86
4.4.107 PSADBW. 87
4.4.108 PSHUFD . 87
4.4.109 PSHUFW. 87
4.4.110 PSxxf 88
4.4.111 PSUBx . 89
4.4.112 PSUBSx . 89
4.4.113 PSUBUSx 90
4.4.114 PSWAPD 90
4.4.115 PUNPCKHBW . 90
4.4.116 PUNPCKLBW . 91
4.4.117 PUNPCKHWD 91
4.4.118 PUNPCKLWD 91
4.4.119 PUNPCKHDQ 92
4.4.120 PUNPCKLDQ 92
4.4.121 PXOR . 92
4.4.122 RCPPS 93
4.4.123 RCPSS 93
4.4.124 RSQRTPS 93
4.4.125 RSQRTSS 94
4.4.126 SFENCE. 94
4.4.127 SQRTPS. 95
4.4.128 SQRTSS 95

Contents ix

4.4.129 SUBPS . 95
4.4.130 SUBSS. 96
4.4.131 UNPCKHPS ·. 96
4.4.132 UNPCLPS.............................. 96
4.4.133 XORPS . 97

5 3DNOW Instructions 99
5.0.1 FEMMS . 99
5.0.2 PF2ID. 99
5.0.3 PFACC. 99
5.0.4 PFADD. 100
5.0.5 PFCMPEQ . 100
5.0.6 PFCMPGT . 100
5.0.7 PFCMPGE . 101
5.0.8 PFMAX . 101
5.0.9 PFMIN. 101
5.0.10 PFMUL. 102
5.0.11 PFNACC 102
5.0.12 PFPNACC 102
5.0.13 PFRCP . 103
5.0.14 PFRCPIT . 103
5.0.15 PFSUB . 104
5.0.16 PFSUBR . 104
5.0.17 PI2FD. 105
5.0.18 PI2FW . 105
5.0.19 PREFETCH............................... 105

II SIMD Programming Languages 107
Paul Cockshott

6 Another Approach: Data Parallel Languages 109
6.1 Operations on Whole Arrays . 109

6.1.1 Array Slicing. 111
6.1.2 Conditional Operations. 113
6.1.3 Reduction Operations . 114
6.1.4 Data Reorganisation . 114

6.2 Design Goals. 116
6.2.1 Target Machines. 118
6.2.2 Backward Compatibility. 119
6.2.3 Expressive Power . 119
6.2.4 Run-time Efficiency. 120

7 Basics of Vector Pascal 121
7.1 Formating Rules . 121

7.1.1 Alphabet . 121

X Contents

7.1.2 Reserved Words and Identifiers 122
7.1.3 Character Case . 124
7.1.4 Spaces and Comments. 124
7.1.5 Semicolons. 124

7.2 Base Types . 125
7.2.1 Booleans. 125
7.2.2 Integer Numbers. 125
7.2.3 Real Numbers. 125
7.2.4 Characters and Strings. 126

7.3 Variables and Constants. 127
7.3.1 Declaration Order. 127
7.3.2 Constant Declarations. 128
7.3.3 Variable Declarations. 129
7.3.4 Assignment. 129
7.3.5 Predefined Types. 129

7.4 Expressions and Operators . 130
7.4.1 Arithmetic . 130
7.4.2 Operations on Boolean Values. 132
7.4.3 Equality Operators . 133
7 .4.4 Ordered Comparison. 133

7.5 Matrix and Vector Operations . 135
7.5.1 Array Declarations . 135
7.5.2 Matrix and Vector Arithmetic 136
7.5.3 Array Input/Output. 139
7.5.4 Array Slices . 140

7.6 Vector and Matrix Products. 142
7.6.1 Inner Product of Vectors. 142
7.6.2 Dot Product of Non-real Typed Vectors. 144
7.6.3 Matrix to Vector Product . 145
7.6.4 Data-flow Hazards . 146
7.6.5 Matrix to Matrix Multiplication. 148

7.7 Typography of Vector Pascal Programs. 149

8 Algorithmic Features of Vector Pascal 151
8.1 Conditional Evaluation. 151
8.2 Functions . 152

8.2.1 User-defined Functions . 152
8.2.2 Procedures . 155
8.2.3 Procedure ReadAndValidate. 156
8.2.4 Function H. 157
8.2.5 Function Log2. 157

8.3 Branching. 157
8.3.1 Two-way Branches. 157
8.3.2 Multi-way Branches. 158

8.4 Unbounded Iteration . 159
8.4.1 While. 159
8.4.2 Repeat . 160

Contents xi

8.5 Bounded Iteration. 161
8.5.1 For to... 161
8.5.2 For Downto . 162

8.6 Goto. 163

9 User-defined Types 165
9.1 Scalar Types . 165

9.1.1 SUCC and PRED ••••.•.•........••.••.••••.. 166
9.1.2 ORO . . . • • • • . • • • • • • • • • • . • • . 168
9.1.3 Input/Output of Scalars . 168
9.1.4 Representation. 168

9.2 Sub-range Types . 169
9.2.1 Representation. 170

9.3 Dimensioned Numbers. 170
9.3.1 Arithmetic on Dimensioned Numbers. 173
9.3.2 Handling Different Units of Measurement. 174

9.4 Records . 175
9.5 Pointers . 177

9.5.1 Pointer Idioms . 179
9.5.2 Freeing Storage . 181

9.6 Set Types . 182
9 .6.1 Set Literals . 182
9.6.2 Operations on Sets . 183

9.7 String Types . 183

10 Input and Output 187
10.1 FileTypes 187

10.1.1 Binary Files. 187
10.1.2 Text Files . 188
10.1.3 Operating System Files 188

10.2 Output. 190
10.2.1 Binary File Output. 190
10.2.2 Text File Output . 190
10.2.3 Generic Array Output . 193

10.3 Input . 193
10.3.1 Generic Array Input. 193
10.3.2 Binary File Input. 194
10.3.3 Text File Input . 194

10.4 File Predicates. 195
10.5 Random Access to Files . 195

10.5.1 Seek. 195
10.5.2 filepos. 195
10.5.3 Untyped i/o . 196

10.6 Error Conditions. 196

11 Permutations and Polymorphism 197
11.1 Array Reorganisation . 198

11.1.1 An Example 200

xii Contents

11.1.2 Array Shifts . 200
11.1.3 Element Permutation . 200
11.1.4 Efficiency Considerations 202

11.2 Dynamic Arrays. 202
11.2.1 Schematic Arrays . 203

11.3 Polymorphic Functions. 204
11.3.1 Multiple Uses of Parametric Units. 205
11.3.2 Function dategt . 206

III Programming Examples 209
Paul Cockshott

12 Advanced Set Programming 211
12.1 Use of Sets to Find Prime Numbers. 211

12.1.1 Set Implementation . 212
12.2 Ordered Sets . 213

12.2.1 openfiles . 215
12.2.2 loadset . 216

12.3 Sets of Records . 218
12.3.1 Retrieval Operations. 219

12.4 Use of Sets in Text Indexing 219
12.5 Constructing an Indexing Program 222

12.5.1 dirlist: A Program for Traversing a Directory Tree . 222
12.5.2 intodir. 223

12.6 blooriifilter . 224
12.6.1 hashword. 225
12.6.2 setfilter . 225
12.6.3 testfilter. 226

12.7 The Main Program to Index Files 226
12.7.1 processfile . 227
12.7.2 A Retrieval Program. 227

13 Parallel Image Processing 229
13.1 Declaring an Image Data Type 229
13.2 Brightness and Contrast Adjustment 229

13.2.1 Efficiency in Image Code 230
13.3 Image Filtering . 231

13.3.1 Blurring. 233
13.3.2 Sharpening . 233
13.3.3 Comparing Implementations. 235

13.4 genconv . 238
13.4.1 dup. 240
13.4.2 prev . 241
13.4.3 pm . 241
13.4.4 doedges. 242
13.4.5 freestore . 242

Contents xiii

13.5 Digital Half-toning. 242
13.5.1 Parallel Half-tone. 244
13.5.2 errordifuse. 245

13.6 Image Resizing. 247
13.7 Horizontal Resize. 249
13.8 Horizontal Interpolation. 251
13.9 Interpolate Vertically . 251
13.10 Displaying Images . 251

13.10.1 demoimg- An Example Image Display Program . . 251
13.11 The Unit BMP. 257

13.11.1 Procedure initbmpheader 260
13.11.2 Procedure storebmpfile. 261
13.11.3 Function loadbmpfile 261
13.11.4 Procedure adjustcontrast. 262
13.11.5 Procedure pconv . 263
13.11.6 Procedure convp . 264

14 Pattern Recognition and Image Compression 265
14.1 Principles of Image Compression. 265

14.1.1 Data Compression in General. 265
14.1.2 Image Compression . 266
14.1.3 Vector Quantisation of Images 266
14.1.4 Data Structures . 268
14.1.5 encode . 269

14.2 The K Means Algorithm. 271
14.2.1 Vector Quantisation of Colour Images. 277

15 3D Graphics 279
15.1 Mesh Representation . 280
15.2 linedemo: An Illustration of 3D Projection. 282
15.3 demo3d: Main Procedure of linedemo. 283

15.3.1 Viewing Matrices . 283
15.3.2 SDL Initialisation. 285

15.4 Create a Rotation Matrix . 287
15.4.1 Calculate x mod 3 . 288

15.5 2D Projection . 288
15.5.1 Entry Point to Line Drawing. 289

15.6 Bresenham Line Drawing Procedure. 290
15.7 Performance . 292

IV VIPER
Ken Renfrew

293

16 Introduction to VIPER 295
16.1 Rationale. 295

16.1.1 The Literate Programming Tool 295
16.1.2 The Mathematical Syntax Converter 296

xiv Contents

16.2 A System Overview. 296
16.3 Which VIPER to Download? 297
16.4 System Dependencies . 297
16.5 Installing Files . 298
16.6 Setting Up the Compiler. 298
16.7 Setting Up the System . 298

16.7.1 Setting System Dependencies. 299
16.7.2 Personal Set-up . 300
16.7.3 Dynamic Compiler Options 301
16.7.4 VIPER Option Buttons. 303

16.8 Moving VIPER . 303
16.9 Programming with VIPER . 303

16.9.1 Single Files . 303
16.9.2 Projects. 304
16.9.3 Embedding U\'IEX in Vector Pascal. 306

16.10 Compiling Files in VIPER. 306
16.10.1 Compiling Single Files . 306
16.10.2 Compiling Projects. 306

16.11 Running Programs in VIPER . 307
16.12 Making VPTE)C 307

16.12.1 VP'IEX Options 307
16.12.2 VPMath. 308

16.13 J6fE)C in VIPER . 308
16.14 HTML in VIPER 309
16.15 Writing Code to Generate Good VPTE)C. 309

16.15.1 Use of Special Comments. 309
16.15.2 Use of Margin Comments. 310
16.15.3 Use of Ordinary Pascal Comments. 311
16.15.4 Levels of Detail Within Documentation. 311
16.15.5 Mathematical Translation: Motivation

and Guidelines. 312
16.15.6 U\'IEX Packages . 313

Appendix A Compiler Porting Tools 315
A.1 Dependencies. 315
A.2 Compiler Structure. 316

A.2.1 V ectorisation . 317
A.2.2 Porting Strategy . 320

A.3 ILCG . 321
A.4 Supported Types . 321

A.4.1 Data Formats . 321
A.4.2 Typed Formats . 322
A.4.3 ref Types . 322

A.5 Supported Operations. 322
A.5.1 Type Casts. 322
A.5.2 Arithmetic . 322
A.5.3 Memory. 322

Contents XV

A.S.4 Assignment . 323
A.5.5 Dereferencing . 323

A.6 Machine Description . 323
A.6.1 Registers . 323
A.6.2 Register Sets . 324
A.6.3 Register Arrays. 324
A.6.4 Register Stacks . 324
A.6.5 Instruction Formats . 325

A.7 Grammar of ILCG 325
A.8 ILCG Grammar . 326

A.8.1 Helpers . 326
A.8.2 Tokens. 327
A.8.3 Non-terminal Symbols . 329

Appendix B Software Download 335

Appendix C Using the Command Line Compiler 337
C.1 Invoking the Compiler. 337

C.l.l Environment Variable. 337
C.l.2 Compiler Options. 337
C.l.3 Dependencies . 338

C.2 Calling Conventions. 338
C.3 Array Representation . 341

C.3.1 Range Checking . 341

References 343

Index 345

List of Tables

1.1 Intel processors . 5
1.2 Performance on vector kernels. 9
2.1 MMX data types. 13
2.2 The XMM registers support both scalar and vector arithmetic 21
3.1 Nasm constant operators 31
3.2 Register encodings . 31
3.3 Object file formats and compilers that use them 34
3.4 Comparative performance of the 3DNow and SSE versions

of coordinate transformation . 45
6.1 Speeds of different implementations. 118
7.1 Vector Pascal reserved words. 122
9.1 Effect of the compiler directives $m and $r. 168
9.2 The set operators . 183
12.1 Comparative performances of different Pascal implementations

on the Sieve program as a function of set size. 213
13.1 Comparative performance on convolution 238
15.1 Relative performance. 292
C.1 Code generators supported . 338
C.2 Structure of an array . 341

xvii

1.1
2.1
2.2
2.3

2.4
2.5

2.6

3.1
3.2

3.3

3.4

3.5

3.6

6.1
6.2
7.1

7.2

7.3
8.1
8.2
8.3
8.4
8.5
8.6

List of Figures

The use of clocked pipelines . 4
The Intel IA32 with MMX register architecture. 12
The MMX data formats . 13
The AMD 3DNOW! extensions add 32-bit floating point data
to the types that can be handled in MMX registers 17
The cache structure. 18
With four banks of cache it is possible for a loop using two source
and one destination array to stream data in distinct banks whilst
reserving one bank for local variables . 19
The Streaming SIMD extensions add additional 128-bit
vector registers, with multiple formats . 20
Stackframe on entry to pmyfunc 37
Mapping a one-dimensional array to a two-dimensional array
suitable for vectorisation. 37
Translation. The triangle a,b,c with coordinates [1,1],[1,2],
[2,2] is translated to the triangle d,e,f with coordinates
[3,0.5],[3,1.5],[4,1.5] by adding [2, -0.5] to each vertex. 39
Scaling. Triangle d,e,f is obtained by multiplying the
vertices of a,b,c by 2. 40
Illustration of the effect of rotations by ~ on the unit vectors
x = [1,0], y = [0,1]. The result is that x ____, [a,b] = [Jz-,)z-J
andy____, [-a,b] = [- ,1,)z-J ~ .. 2 •••••••• 40
Contrast between the linear layout of the matrix and vectors in
memory and the layout once loaded into 3DNow registers 41
Different ways of slicing the same array 112
Reorganising by transposition . 115
Projection of one vector on to another. In the example,
v2 = (1,2), v1 = (1,1) . 143
Illustration of VPT£X formating applied to the program shown
in Alg. 28 to find the mean of the first 4 primes. 149
The mapping from ASCII to TEX. format 150
An example of conditional evaluation. 151
Three functions . 152
Use of local identifiers within a function 153
Two uses of var parameters . 154
Mutual recursion requires forward declaration 155
Use of unbounded iteration to sum the integers in a file up to
the first 0 value . 161

xix

XX List of Figures

8.7 Use of a while loop to achieve the same result as in
Figure 8.6 . 161

8.8 The use of a for loop to perform operations on an array
contrasted with the use of explicit array arithmetic 162

8.9 The use of GOTO to escape from an error condition. 163
9.1 A program illustrating both the comparability of user-defined

scalar types and their cyclical nature. 166
9.2 Illustrating how the 0 RD function can be used to allow

arithmetic on a scalar type, in this case char 168
9.3 The use of sub-range types . 169
9.4 Function oillnEuros . 172
9.5 A simple program which uses dimensioned types in the

context of a commodity trading problem. 173
9.6 Procedure euroquote. 173
9.7 The preferred approach to using dimensioned numbers to

handle different units of measure. 176
9.8 An approach to sorting a file using a fixed-size buffer.

It should be noted that the inefficient bubble sort
procedure is presented just for simplicity 178

9.9 A more efficient sorting program than in Figure 9.8,
one which, moreover, makes use of dynamic storage
allocation from the heap . 180

9.10 A program which illustrates the effect of the set operators 184
10.1 The formating rules for output of multi-dimensional arrays. 194
10.2 The use of i ores u 1 t to check the validity of file open calls 196
11.1 Demonstration of the use of transpose to produce tables:

VPT:EXed program. For the original Pascal source,
see Figure 11.2 . 20 1

11.2 Demonstration of the use of transpose to produce tables:
the original Pascal source . 202

11.3 Use of getmem to allocate dynamically a two-dimensional
array for image data . 203

11.4 A polymorphic sorting unit . 205
ll.5 Procedure sort . 205
11.6 A program that uses the integer sorting unit. 206
11.7 A unit to export dates and their order . 206
11.8 The use of two instantiations of the same parametric unit

within one program . 207
12.1 Use of a hash function to store words in an ordinal set. 221
12.2 The upper line shows the probability of false positives with a set

in the range 0 ... 1023 as the number of unique words stored
in it rises. The lower trace shows the probability of false
positives if unanimous results must be obtained from eight
independently hashed sets . 221

13.1 Test images used to illustrate brightness, contrast adjustment
and filtering. The images (a)-(e) were produced by the
program graphio. 232

13.2 The effect of a blurring filter on a finite impulse. 233

List of Figures

13.3

13.4
13.5

13.6
13.7
13.8
13.9

13.10

13.11
14.1

14.2

14.3

14.4

15.1
15.2
15.3
15.4

16.1
16.2
16.3
16.4
16.5
16.6
16.7

The image at the top is the original. The bottom left image
has been subjected to a blurring filter (0.25,0.5,0.25) and that
on the right to a sharpening filter
Effect of a sharpening filter on a finite impulse
Effect of applying a diagonal edge detection
filter to Mandrill.
Mandrill rendered with a 4 x 8 mask
Mandrill rendered using error diffusion
Naive resampling used to scale pictures introduces artifacts
Anti-aliased rescaling using blurring and interpolation
reduces artifacts
Horizontal interpolation of a new pixel position r
between existing pixel positions p and q
Effect of applying resize to Barbara.bmp
Outline of the vector quantisation process. Patches from
the image are unwound into vectors and these are then looked
up in a codebook of vectors to find the best match.
Then the index of the best match is output as a
surrogate for the patch
The process of decoding a VQ image is inherently faster
than encoding since the codebook searching used during
encoding is replaced by a fetch from a calculated offset into the
codebook. The vector found is formed into a patch and
placed in the image
Effect of increasing number of iterations of the K
means on image quality. All images have been compressed to
16K from an 192K original, using the program vqencode,
and then decoded using v q decode . Compare these with
the images in Figure 13.3
This shows how detail becomes apparent within the image
blocks as iterations of the K means algorithm progress
The graphics pipeline used in this chapter
A sequence of four frames drawn by LineDemo
The pinhole camera model
The projection triangles. p is a vector in object space and
q is its image under pinhole projection. We can treat p as
either the x or y component of a point in camera coordinates.
a is the focal length of the virtual camera and b is the distance
from the pinhole to the base of the vector. ; = £ by
similarity of triangles, thus q = p~ and where a= 1,
then q = £
File format entries in Compiler Options
Dependencies window
The Viper Option windows
Dynamic Option window
The right click menu
The Project Properties window
The Run Options panel

xxi

234
234

244
245
246
247

248

249
255

267

268

275

276
279
284
285

289
299
300
301
302
304
305
307

xxii List of Figures

16.8 The VPT:EX Options panel. 308
A.1 Vector Pascal toolset . 316
A.2 The translation of Vector Pascal to assembler 317
A.3 Sequential form of array assignment . 318
A.4 Parallelised loop. 318
A.S After applying simplify to the tree 319
A.6 The result of matching the parallelised loop against the

Pentium instruction-set . 319
A.7 The method get Parallelism for a P4 processor. 320

List of Algorithms

1 Forming a total with a for loop . 7
2 Forming a total with an unrolled loop . 7
3 C code to add two images and corresponding assembler for the

inner loop. Code compiled on the Intel C compiler version 4.0. . . 16
4 MMX version of Alg. 3 . 16
5 A simple example of prefetching. 19
6 An example that makes more effective use of prefetching than

Alg. 5.. 20
7 Assembler version of the test program. 26
8 C version of the test program. 27
9 C++ version of the test program . 28

10 Examples of the use of section and data reservation directives. . . . 33
11 Use of MMX instructions to sum a vector of integers. 36
12 Illustration of calling pmyfunc from C . 38
13 3DNow routine to multiply a vector by a matrix. 43
14 Matrix-vector multiplication using SSE code. 44
15 C variant of the matrix to vector multiply. 45
16 Inner product in assembler. 82
17 Use ofRCPPS...................................... 93
18 Use of RSQRTSS to normalise a vector. 94
19 Use of PFRCP. 104
20 Example program in Vector Pascal . 117
21 Illustrating the embedding of a newline in a string. 127
22 Program to compute the velocity of a falling body. 128
23 Effect of string length and character values on string order. 133
24 truth tab, a program to print the truth tables for all of the

dyadic Boolean operators . 134
25 Simple example of array operations. 135
26 Element by element multiplication of each row of a

matrix by a vector. 137
27 Flood filling an array with a scalar . 138
28 An example of operator reduction . 138
29 Reduction using MAX . 139
30 Illustration of how a multi-dimensional array is printed. 140
31 The use of array slices . 141
32 The dot product of two vectors. See Figure 7.1 for explanation. . . 144
33 The danger of overflow when computing dot products

using limited precision. 145

xxiii

xxiv

34

35
36
37

38
39
40
41

42

43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

list of Algorithms

Use of the dot product operator to output the number
263 as the roman number CCLXIII. 146
Using a spiral rotation matrix to operate on the unit x vector. . . . 147
Matrix by matrix multiplication . 149
The use of formatted output and also the use of Chinese
characters in reserved words. The equivalent Standard
Pascal program commands are shown as comments. 192
The sieve of Eratosthenes, coded using sets 211
Main program for unique words. 214
Body of the function intodir. 223
Simple manipulations of image contrasts and brightnesses.
The type pimage used is a pointer to an image 230
A more efficient way of adjusting contrast. Note that in this
example the type line refers to a vector of pixels 231
The sharpening method . 235
Standard Pascal implementation of the convolution 236
The program dconv, a test harness for image convolution
written to work under several Pascal compilers 237
The procedure showtime . 237
Vector Pascal implementation of the convolution. 238
Main body of the generalised convolution 239
The function which checks for duplicate kernel elements 240
Function to find a previous instance of a kernel element 241
The premultiplication function. 241
The edge processing algorithm . 243
The release of temporary store . 244
Parallel half-toning using a fixed mask . 245
Classical error diffusion, non-parallel code. 246
Resize an image. 249
Horizontal resize an image. 250
Vertical resize routine . 252
Horizontal interpolation routine. 253
Vertical interpolation of image lines . 254
The vector quantisation routine proper. This takes a vector
and searches the codebook for the vector with the closest
Euclidean distance to the source vector and returns the
index of the closest matching vector . 270

62 The program vqdecode. This takes two parameters, a filename
without extension for the encoded file and a filename with
extension as the destination file. Input is assumed to be in
the format generated by the v q encode program and
output is a Windows BMP file . 271

63 Basic training step of the vector K means algorithm. 274
64 The main image encode program. 274
65 Encodes an image given the codebook. 275
66 The generator function for triangle meshes 281
67 Bresenham's algorithm in Pascal. 291

Introduction

A number of widely used contemporary processors have instruction-set
extensions for improved performance in multi-media applications. The aim is
to allow operations to proceed on multiple pixels each clock cycle. Such
instruction-sets have been incorporated both in specialist DSPchips such as the
Texas C62xx (Texas Instruments, 1998) and in general purpose CPU chips like
the Intel IA32 (Intel, 2000) or the AMD K6 (Advanced Micro Devices, 1999).

These instruction-set extensions are typically based on the Single Instruc­
tion-stream Multiple Data-stream (SIMD) model in which a single instruction
causes the same mathematical operation to be carried out on several operands,
or pairs of operands, at the same time. The level or parallelism supported ranges
from two floating point operations, at a time on the AMD K6 architecture to
16 byte operations at a time on the Intel P4 architecture. Whereas processor
architectures are moving towards greater levels of parallelism, the most widely
used programming languages such as C, Java and Delphi are structured around
a model of computation in which operations takeplace on a single value at a
time. This was appropriate when processors worked this way, but has become
an impediment to programmers seeking to make use of the performance
offered by multi-media instruction -sets. The introduction of SIMD instruction
sets (Peleg et al., 1997; Intel, 1999) to personal computers potentially provides
substantial performance increases, but the ability of most programmers to
harness this performance is held back by two factors:

1. The first is the limited availability of compilers that make effective use of
these instruction-sets in a machine-independent manner. This remains the
case despite the research efforts to develop compilers for multi-media
instruction-sets (Cheong and Lam, 1997; Leupers, 1999; Krall and Lelait,
2000; Srereman and Govindarajan, 2000).

2. The second is the fact that most popular programming languages were
designed on the word at a time model of the classic von Neumann
computer.

Vector Pascal aims to provide an efficient and concise notation for
programmers using multi-media enhanced CPUs. In doing so it borrows
concepts for expressing data parallelism that have a long history, dating back
to Iverson's work on APL in the early 1960s (Iverson, 1962).

Define a vector of type T as having type T[]. Then if we have a binary
operator w : (T ® T) -+ T, in languages derived from APL we automatically

XXV

xxvi Introduction

have an operator w: (T[] ® T[]) ~ T[]. Thus, if x,y are arrays of integers
k = x + y is the array of integers where ki = Xi + Yi·

The basic concept is simple; there are complications to do with the
semantics of operations between arrays of different lengths and different
dimensions, but Iverson provides a consistent treatment of these. The most
recent languages to be built round this model are J, an interpretive language
(Iverson, 1991, 2000; Burke, 1995), and F (Metcalf and Reid, 1996) a
modernised Fortran. In principle, though, any language with array types can
be extended in a similar way. Iverson's approach to data parallelism is machine
independent. It can be implemented using scalar instructions or using the
SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson's approach to data parallelism. Its aim is
to provide a notation that allows the natural and elegant expression of data
parallel algorithms within a base language that is already familiar to a con­
siderable body of programmers and combine this with modern compilation
techniques.

By an elegant algorithm is meant one which is expressed as concisely as
possible. Elegance is a goal that one approaches asymptotically, approaching
but never attaining (Chaitin, 1997). APL and J allow the construction of very
elegant programs, but at a cost. An inevitable consequence of elegance is the
loss of redundancy. APL programs are as concise as or even more concise than
conventional mathematical notation (Iverson, 1980) and use a special
character set. This makes them hard for the uninitiated to understand. J
attempts to remedy this by restricting itself to the ASCII character set, but still
looks dauntingly unfamiliar to programmers brought up on more conven­
tional languages. Both APL and J are interpretive, which makes them ill suited
to many of the applications for which SIMD speed is required. The aim of
Vector Pascal is to provide the conceptual gains oflverson's notation within a
framework familiar to imperative programmers.

Pascal (Jensen and Wirth, 1978) was chosen as a base language over the
alternatives of C and Java. C was rejected because notations such as x+y for x
and y declared as i n t x [4] , y [4] , already have the meaning of adding the
addresses of the arrays together. Java was rejected because of the difficulty of
efficiently transmitting data parallel operations via its intermediate code to a
just in time code generator.

Part I

SIMD Programming
Paul Cockshott

1.1 Clocks

Computer Speed,
Program Speed

Since their invention in the 1940s, the speed of electronic computers has
increased exponentially. Their raw speed is usually measured in MHz or
millions of cycles per second. In the last few years, MHz have been replaced
by GHz, or thousands of millions of cycles per second. These figures describe
what is called the clock speed of the computer.

Since the invention of escapement mechanisms in the Middle Ages, all
clocks have had at their heart a device that oscillates, the regularity of whose
cycles determines the clock's accuracy. In mechanical clocks the oscillator was
typically a pendulum or a balance wheel bound by a spring, which might
oscillate once per second. The clockwork mechanism then used toothed wheels
to count these cycles and show the result in terms of seconds, minutes and
hours. Such clocks were, in a sense, the first computers.

Nowadays, clocks use quartz crystals which vibrate rapidly when a voltage is
placed across them. The crystals used in modern watches typically vibrate some
30 000 times per second. The vibrations produce as a side effect electronic
pulses; digital circuits or registers count these vibrations and show or register
the time on the face of the watch.

When we talk about the clock speed of a computer, we are referring to the
rate of a similar sort of crystal-controlled oscillator. The pulses produced by it
are used to synchronise all of the internal operations of the processor chip.
Like a clock, the chip contains registers which hold the numbers on which
calculations are performed. The registers are designed so that they can change
their values only when a pulse arrives from the oscillator.

In between the registers are arithmetic circuits which perform the actual
calculations, as shown in Figure 1.1. Register A feeds information into a
calculation circuit and the result is registered in B. It takes a small but definite
time for these calculation circuits to operate, and chip designers have to ensure
that the results will arrive at B before the next clock pulse. As the components
making up the arithmetic circuits are made smaller and smaller, the time taken
for electrical pulses to propagate through them declines, allowing designers to
shorten the intervals between successive clock pulses. In a modern computer
the parts are so small that delays between pipeline stages are less than a
nanosecond, a billionth of a second.

3

4 SIMD Programming Manual for linux and Windows

'
: ALU :
~---r ___ : Clock

Figure 1.1. The use of clocked pipelines.

The first computer to operate with a 1 MHz clock was built in the mid-
1950s. By 2000, clocks were 1000 times faster. The driving force in all of this
has been the ability of the semiconductor industry to make transistors smaller
and smaller, reducing the time it takes for electrons to pass through them. This
reduction in size has also made computers far cheaper. Twenty years ago Cray
mainframe computers had clock speeds of over 100 MHz, but they were so
expensive that only major national laboratories could afford them. Two
decades later we have computers with 2 GHz clocks so cheap that they are used
to amuse children.

1.2 Width

Clock speeds sell computers and, historically, improvements in clock speeds
have been by far the most important factor in increasing the power of
computers. Clock speeds have gone up 1000-fold since the mid-1950s but
individual computers are probably some 100000 times faster than they were
then. The remaining factor of 100 stems from improvements in the internal
design or architecture.

Consider the problem of adding together two four-digit numbers, 1204 +
1801. If you were to do this by hand you would proceed as follows: 1 + 4 = 5
and carry 0, 0 + 0 = 0 and carry 0, 2 + 8 = 0 and carry 1, 1 + 1 + 1 = 3, so
the answer is 3005. We have done this working on at most three digits at a
time. At primary school we memorised the addition tables of all the pairs of
digits, knowing these we can perform the calculation in four steps.

We do pencil and paper arithmetic a single digit at a time, but using the
methods of long addition, long multiplication, etc., people can perform sums
on numbers of arbitrary length. A single decimal digit can be stored in a 4-bit
binary number, so a computer capable of adding together two numbers each
4 bits long would be a emulate our paper and pencil methods. In one cycle it

Chapter 1 • Computer Speed, Program Speed 5

could add a single pair of digits, in the next another pair, etc., taking four
cycles to do 1204 + 1801. Indeed, this is exactly how most cheap pocket
calculators work, they add pairs of digits at a time. When you press the square
root key of a pocket calculator a software subroutine is invoked that calculates
the square root by a laborious process involving repeated single digit
arithmetic, but, since the cycle time is very short compared with humans, it
appears to perform the operation instantaneously.

However, if you compare a 4-bit computer with a 16-bit computer then the
addition 1204 + 1801 can now be performed in a single operation. Thus, aside
from clock frequency, the 16-bit machine will be four times faster than the
4-bit machine. However, this only holds so long as the calculations are four
digits long. Leaving aside considerations of clock speed, a 4-bit machine will be
just as efficient as a 16-bit machine on single digit arithmetic.

Taking into account both clock speed and data width, we get a measure of
CPU speed s as

cb
s=­

w

where c is the clock speed, b the bit width of the machine's arithmetic and
w the bit width of the operands on which the program is working.

1.3 Instruction Speed

A further complication is that the number of clock cycles required to perform
an instruction varies.

Different designs of CPUs take varying numbers of clock cycles to perform
an instruction. If you look at Table 1.1, you can see that the number of clocks
per instruction has gone down over the years with successive models of Intel
CPUs. The factors entering into this are the speed of memory relative to the
clock and the depth of the data processing pipeline. Early processors took
several clock cycles to access memory. On newer processors, this has been cut
thanks to the ability of the CPU to fetch several instructions in one memory

Table 1.1. Intel processors

CPU Year Register Clock MHz Clocks per Throughput
width instruction MIPS

4004 1971 4 0.1 8 0.0125
8080 1974 8 2 8 0.25
8086 1978 16 5 8 0.33
386 1985 32 16 3 5.0
Pentium with MMX 1997 64 200 0.5 400
P4 2001 128 1600 0.5 3200

The first Intel microprocessor, the 4004, was targeted at pocket calculators. It had a 4-bit accumulator, just enough to
hold a decimal digit. Subsequent processors have seen the widths of their registers increase by successive factors of two.

6 SIMD Programming Manual for linux and Windows

access and to the use of caches, small auxiliary high-speed memories, to reduce
the mean time to read a memory location. The most recent processors are
super-scalar, meaning that they can execute more than one instruction each
clock cycle. A Pentium class processor can issue two instructions per clock.

This modifies our speed equation to

cb
s = ----;

W1

where i is the number clocks per instruction. On a given processor, the most
important factor determining the number of clocks per instruction is memory
access. Since memory speeds have consistently lagged behind processor speeds,
an algorithm with many load and store instructions will be slower than one
with fewer. Since the main technique used by CPU designers to reduce i has
been the use of caches, another crucial determinant of speed is the extent to
which the data used by an algorithm will fit into the cache. If the dataset is
small enough, memory fetches will execute in one or two instructions. If not,
they can take 10 times as long.

1.4 Overhead Instructions

When we consider an algorithm in the abstract, we can determine the
minimum number of basic arithmetic operations required to perform a task. If
we want to form the total of an array of four numbers, then we know that we
need at least three additions. On most designs of CPU, however, it would be
hard to code this with so few instructions.

If the addition is performed using a f o r loop (see Alg. 1), then there will be
additional instructions to increment the iteration variable, to test it against
limits and to perform jumps. Even the basic addition step t: =t+a [i] can
involve several instructions. In Alg. 1, a total of 36 instructions are required to
perform the three basic additions.

If we unroll the loop and express it in a single statement as shown in Alg. 2,
then the compiler is able to make a better job of translating the code, so we
end up with only five instructions to perform the three adds that are required.

The number of overhead instructions needed depends on:

• the sophistication of the compiler used
• the coding style used by the programmer
• the expressive power of the CPU's instruction-set.

We can summarise the effects of these factors in a number u, which is defined as

useful instructions
u = total instructions

In the program fragment in Figure 1.1 we get u = f2 and for the unrolled
code we obtain u = ~·

Chapter 1 • Computer Speed, Program Speed 7

High Level Code Resulting machine code

t:=O;
XOR AX,AX
MOV T,AX

for i:=l to 4 do t:=t+a[i];
MOV I,DDDl
JMP DD2D
INC
MDV AX,T -+
MDV DI.I I
SHL DI.l I t:=t+a[iJ
ADD AX, [DI+AJ I
MDV T,AX -+
CMP I ,4
JNZ OOlC

Instructions executed 36

Note that the high-level code generates many more lines of assembler. Even the basic stage of
computing each step of the total t : =t +a [i] requires five instructions.

Algorithm 1. Forming a total with a for loop.

t:=a[l]+a[2J+a[3J+a[4];
MOV AX. [A]
ADD AX. [A+2]
ADD AX. [A+4 J
ADD AX. [A+6]
MOV T,AX

Instructions executed 5

Note that in this case the compiler is able to optimise access to the array elements and to dispense
with the loop code, giving a much better efficiency.

Algorithm 2. Forming a total with an unrolled loop.

Taking overhead instructions into account, we obtain a new equation for
program speed:

ucb
s=-.

Wl

Another factor that one has to consider is Amdahl's law, which states that
the effective speedup of a program due to parallelisation will be constrained by

8 SIMD Programming Manual for linux and Windows

the fraction of the program that cannot be executed in parallel:

where A is the acceleration achievable, 'ljJ is the number of inherently serial
instructions in the program, p is the potentially parallel instructions and n is
the number of processing units available to perform the operations. This
means that for real programs the effective speedup tends to be less than that
which might appear to be possible simply by looking at the parallelism of the
instruction-set. For instance, assume we have a computer capable of perform­
ing four operations in parallel, and a program in which 8 million of the dynam­
ically executed operations are potentially parallelisable, with a residuum of
2 million that are inherently serial:

Serial Parallel Parallelism Total
instructions instructions

Problem 2000000 8 000000
Machine 1 2000000 8 000000 1 10000000
Machine 2 2000000 2 000000 4 4000000
Speedup 150%

1.5 Algorithm Complexity

The factors described so far relate to the speed and architecture of the CPU
and to the compiler's effectiveness in using it. However, for large programs
these factors are dominated by the algorithmic complexity of the program.
This describes how the number of basic arithmetic operations required by the
program grows as a function of the size of the problem. Thus a naive searching
algorithm would require of the order of n basic operations to search a table
of n elements, but a better algorithm can achieve the same function with of
the order of log n basic operations. We use the notation C(n) to denote the
complexity of the algorithm. C(n) gives the minimum number of basic
arithmetic operations that are required by the algorithm assuming that u = 1,
i.e. that we have a perfectly efficient compiler. We call this minimum number
of operations the base operations. Thus our final model for determining the
speed of a program is given by

s = C(n) uc~
WI

where wi < b, and a modified versions of Amdahl's equation in other cases:

s= C(n)uc('t/J+~)
't/J+wi

Chapter 1 • Computer Speed, Program Speed 9

Table 1.2. Performance on vector kernels

w b

16 (BP) 32 (DevP) 32 (TMT) 32 (DP) 32 (VP 486) 64 (VP K6) test

8 46 71 80 166 333 2329 unsigned byte +
8 38 55 57 110 225 2329 saturated unsigned byte +
8 23 49 46 98 188 2330 pixel+
8 39 67 14 99 158 998 pixel x
16 39 66 74 124 367 1165 short integer +
32 47 85 59 285 349 635 long integer +
32 33 47 10 250 367 582 real+
32 32 47 10 161 164 665 real dot prod
32 33 79 58 440 517 465 integer dot prod

In these tests the clock speed c = 1 GHz is held constant, and the number of base operations is known
for each row of the table. All figures are in terms of millions of base operations per second measured on
a 1 GHz Athlon. Different rows of the table have different effective data type widths w. Variations in
speed going down a column show the effects of w, and also measure the relative efficiency, u, of the
compilers for different data types.

The rows measuring dot product also potentially show variations in i because there are opportunities
in the dot product operation for caching operands in registers. Where these are taken, the effect is to
reduce the mean number of clocks to access an operand, thus giving higher performances.

The bit width of the registers available varies between the columns since one compiler was targeted
on the 286 instruction-set giving b = 16, another was targeted on the K6 instruction-set with b = 64
and the others on the 486 instruction-set with b = 32. The resulting variations in performance along
the rows measure the effect of b and u varying between the compilers.

It can be seen that the combined effects of variations in bu can amount to a performance variation of
100 to 1 along the rows.

The following compilers were used: BP = Borland Pascal compiler with 287 instructions enabled range
checks off, b = 16, release of 1992; DevP = Dev Pascal version 1.9, b = 32; TMT = TMT Pascal version
3, b = 32, release of 2000; DP =Delphi version 4, b = 32, release of 1998; VP 486 =Vector Pascal
targeted at a 486, b = 32, release of 2002; VP K6 =Vector Pascal targeted at an AMD K6, b = 64,
release of 2002.

Clearly the most important factor here is C(n), since, despite gains in clock
speed, etc., for sufficiently large n an On algorithm will run faster on an old
8086 than an On2 algorithm on a P4.

However, if we assume that the complexity of the algorithm C(n) is
unchanged and that we have a particular processor to work with, thus fixing c,
then changes to the remaining factors can still produce dramatic changes in
program speed.

If we select our numeric precision w to be no greater than required, use
large register widths b and produce few overhead instructions, some programs
can be speeded up by more than an order of magnitude (see Tables 1.2 and
13.1). Vector Pascal improves program performance by concentrating on these
factors. To understand how this is possible we have to look at how Intel and
AMD have widened the registers on their latest processors, and introduced
new data-types targeted at image processing problems. This is the subject
matter of the next chapter.

SIMD Instruction-sets

In the performance model presented in Chapter 1, we identified two crucial
factors to be b the bit width of the machine's registers and w the width in bits
of the numbers being used in the program. We examined the situation where
w > b, taking the example of a 4-bit machine doing 16-bit arithmetic. In this
case we saw that performance would vary as b!w.

In this chapter, we look at how processor manufacturers have attempted to
deal with the opposite case, b > w, where the register widths are substantially
wider than the data types being operated on. This occurs frequently when
dealing with images and sound, which are typically represented by 8- or 16-bit
discrete samples. Modern processors tend to have at least some 64-bit
registers, since these are required for floating point operations. The challenge
has been to keep performance increasing as a function of b!w whilst b > w.

2.1 The SIMD Model

A number of widely used contemporary processors have instruction-set exten­
sions for improved performance in multi-media applications. The aim is to allow
operations to proceed on multiple pixels each clock cycle. Such instruction­
sets have been incorporated both in specialist DSP chips such as the Texas C62xx
(Texas Instruments, 1998) and in general-purpose CPU chips such as the Intel
IA32 (Intel, 1999, 2000) or the AMD K6 (Advanced Micro Devices, 1999).

These instruction-set extensions are typically based on the Single Instruction­
stream Multiple Data-stream (SIMD) model in which a single instruction causes
the same mathematical operation to be carried out on many operands, or pairs
of operands, at the same time. The SIMD model was originally developed in
the context of large-scale parallel machines such as the ICL Distributed Array
Processor or the Connection Machine. In these systems, a single control pro­
cessor broadcast an instruction to thousands of single-bit wide data processors
causing each to perform the same action in lockstep. These early SIMD pro­
cessors exhibited massive data parallelism but, with each data processor having
its own private memory and data-bus, they were bulky machines involving
multiple boards each carrying multiple memory chip, data-processor chip pairs.
Whilst they used single bit processors, the SIMD model is not dependent on
this. It can also be implemented with multiple 8-, 16- or 32-bit data processors.

11

12 SIMD Programming Manual for Linux and Windows

The incorporation of SIMD technology in modern general-purpose
microprocessors is on a more modest scale than were the pioneering efforts.
For reasons of economy the SIMD engine has to be included on the same die as
the rest of the CPU. This immediately constrains the degree of parallelism that
can be obtained. The constraint does not arise from the difficulties of incorpo­
rating large numbers of simple processing units. With contemporary feature
sizes, one could fit more than 1000 1-bit processors on a die. Instead, the degree
of parallelism is constrained by the width of the CPU to memory data path.

The SIMD model provides for all data processors to transfer simultaneously
words of data between internal registers and corresponding locations in their
memory banks. Thus with n data processors each using w-hit words one needs
a path to memory of nw bits. If a CPU chip has a 64-bit memory bus then it
could support 64 1-bit SIMD data processors, or eight 8-bit data processors,
two 32-bit processors, etc.

For bulk data operations, such as those involved in image processing, the
relevant memory bus is the off-chip bus. For algorithms that can exploit some
degree of data locality, the relevant bus would be that linking the CPU to the
on-chip cache, and the degree of parallelism possible would be constrained by
the width of the cache lines used.

Whilst memory access paths constrain the degree of parallelism possible, the
large numbers of logic gates available on modern dies allow the complexity of
the individual data processors to be raised. Instead of performing simple 1-bit
arithmetic, they do parallel arithmetic on multi-bit integers and floating point
numbers.

As a combined result of these altered constraints we find that SIMD instruc­
tions for multi-media applications have parallelism levels of between 32 bits
(Texas C62xx) and 128 bits (Intel P4), and the supported data types range
from 8-bit integers to 64-bit floating point numbers.

2.2 The MMX Register Architecture

The MMX architectural extensions were introduced in late models of the
Pentium and subsequent processors from Intel and exist in compatible chips

32 64
4 •

eax mmxO

ebx mmx1
ecx mmx2
edx mmx3
ebp mmx4

esi mmxS
edi mmx6
esp mmx7

Figure 2.1. The Intel IA32 with MMX register architecture.

Chapter 2 • SIMD Instruction-sets 13

produced by AMD, Cyrix and others. They can now be considered part of the
baseline architecture of any contemporary PC.

The data registers available for computational purposes on processors
incorporating the MMX architecture are shown in Figure 2.1. The original
IA32 architecture had eight general-purpose registers and an eight-deep stack
of floating point registers. When designing the multi-media extensions to the
instruction-set, Intel wanted to ensure that no new state bits were added to the
process model. Adding new state bits would have made CPUs with the exten­
sions incompatible with existing operating systems, as these would not have
saved the additional state on a task switch. Instead, Intel added eight new
virtual 64-bit registers which are aliased on to the existing floating point stack.
These new multimedia registers, mmO ... mm7, use state bits already allocated to
the Floating Point Unit (FPU), and are thus saved when an operating system
saves the state of the FPU.

The MMX instructions share addressing mode formats with the instructions
used for the general-purpose registers. The 3-bit register identification fields
inherited from the previous instructions are now used to index the eight multi­
media rather than the eight general-purpose registers. The existing addressing
modes for memory operands are also carried over, allowing the full gamut of
base and index address modes to be applied to the loading and storing of
MMX operands.

2.3 MMX Data-types

The MMX registers support four data formats as shown in Figure 2.2. A
register can hold a single 64-bit QWORD, a pair of 32-bit DWORDS, four 16-bit
WORDS or eight BYTES. Within these formats the data types shown in Table 2.1
are supported.

8 8-bit BYTES
I I I I

4 16-bit WORDS
I I I

2 32-bit DWORDS
I

1 64-bit QWORD

Figure 2.2. The MMX data formats.

Table 2.1. MMX data types

Format Signed Unsigned Signed saturated Unsigned saturated

BYTE Yes Yes Yes Yes
WORD Yes Yes Yes Yes
DWORD Yes Yes No No

14 SIMD Programming Manual for linux and Windows

The saturated data types require special comment. They are designed to
handle a circumstance that arises frequently in image processing when using
pixels represented as integers: that of constraining the result of some arithmetic
operation to be within the meaningful bounds of the integer representation.

Suppose we are adding two images represented as arrays of bytes in the range
0.255 with 0 representing black and 255 white. It is possible that the results may
be greater than 255. For example, 200 + 175 = 375 but in 8-bit binary

11001000
+ 10101111

1 01110111

Dropping the leading 1, we get 01110111=119, which is dimmer than either
of the original pixels. The only sensible answer in this case would have been
255, representing white.

Consider the problem of applying the following vertical edge sharpening
convolution kernel to an image represented as signed bytes:

-0.25 0.75 -0.25
-0.5 1.5 -0.5
-0.25 0.75 -0.25

Since the kernel is unitary, that is, its elements sum to 1, it produces no overall
change in the contrast of the image. The image, being represented in signed
bytes, will have pixels in the range -128 ... 127, with -128 representing black
and 127 representing white. The effect of the convolution should be to
enhance the contrast on any vertical lines or vertical edges.

Now consider the effect of applying the kernel to the 3 x 4 pixel pattern

0 -70 -70 0
0 -70 -70 0
0 -70 -70 0

which represents a 2 pixel wide dark-grey vertical line on a mid-grey
background. The intended effect should be to enhance the contrast between
the line and the background.

If we perform the calculations for the convolution using real arithmetic, 1

the pixels p representing the dark -grey line (the -70s) are mapped to p' = 3 x
-70 + (-1 x -70) = -140. The snag is that -140 is less than the smallest
signed 8-bit integer. The only 'sensible' value that can be assigned top' would
be -128 =black. If we simply converted -140 to an 8-bit signed value by

1 For speed we might use 16-bit integers representing the convolution as

-1 3 -1
-2 6 -2
-1 3 -1

followed by a shift right two places to normalise the result, but the argument above would
still hold.

Chapter 2 • SIMD Instruction-sets 15

truncation, we would obtain 01110011 binary or 115 decimal. The dark line,
would have been mapped to a light line, contrary to intention.

To avoid such errors, image processing code using 8-bit values has to put in
tests to check if values are going out of range, and force all out-of-range values
to the appropriate extremes of the ranges. This inevitably slows the computa­
tion of inner loops. In addition to introducing additional instructions, the
tests involve conditional branches and pipeline stalls.

The MMX seeks to obviate this by providing packed saturated data types
with appropriate arithmetic operations over them. These use hardware to ensure
that the numbers remain in range.

The combined effect of the use of packed data and saturated types can be to
produce a significant increase in code density and performance.

Consider the C code in Alg. 3 to add two images pointed to by v 1 and v 2,
storing the result in the image pointed to by v 3. The code includes a check to
prevent overflow. Compiled into assembler code by the Visual C ++ compiler
the resulting assembler code has 18 instructions in the inner loop. The poten­
tial acceleration due to the MMX can be seen by comparing it with the hand­
coded assembler inner loop in Alg. 4.

The example assumes that v 1, v 2, v 3 are indexed by e s i for the duration of
the loop. Only five instructions are used in the whole loop, compared with 18
for the compiled C code. Furthermore, the MMX code processes eight times as
much data per iteration, thus requiring only 0.625 instructions per byte
processed. The compiled code thus executes 29 times as many instructions to
perform the same task. Although some of this can be put down to the
superiority of hand-assembled versus automatically compiled code, the
combination of the SIMD model and the saturated arithmetic is obviously a
major factor.

2.4 3DNow!

The original MMX instructions introduced by Intel were targeted at increasing
the performance of 2D image processing, giving their biggest performance
boost for images of byte-pixels. The typical operations in 3D graphics, pers­
pective transformations, ray tracing, rendering, etc., tend to rely upon floating
point data representation. Certain high 2D image processing operations requir­
ing high accuracy such as high-precision stereo matching can also be imple­
mented using floating point data. Both Intel and AMD have seen the need to
provide for these data representations. AMD responded first with the 3DNow!
instructions, then Intel introduced the Streaming SIMD instructions which we
discuss in the next section.

The basic IA32 architecture already provides support for 32- and 64-bit
IEEE floating point instructions using the FPU stack. However, 64-bit floating
point numbers are poor candidates for parallelism in view of the data-path
limitations described in Section 2.1.

AMD provided a straightforward extension of the MMX whereby an addi­
tional data type, the pair of 32-bit floats shown in Figure 2.3, could be operated

16 SIMD Programming Manual for linux and Windows

rna in ()
{

}

unsigned char v1[LENJ.v2[LEN],v3[LEN];
i nt i , j , t;
for(j=O;j<LEN;j++){
t=v2[j]+vl[j];
v3[j]=Cunsigned char)Ct>255?255:t);

}

ASSEMBLER
xor edx, edx

$B1$3: Preds Bl5
mov eax, edx
lea ecx. DWORD PTR [esp]
movzx ecx, BYTE PTR [eax+ecx]
mov DWORD PTR [esp+19200], edi
lea edi, DWORD PTR [esp+6400]
movzx edi. BYTE PTR [eax+edi]
add ecx, edi
cmp ecx, 255
mov edi , DWORD PTR [esp+19200J
jle Bl5 Prob 16%

$B1$4: Preds $B1$3
mov ecx, 255

$81$5: Preds $81$3
inc edx
cmp edx, 6400
mov DWORD PTR [esp+19200], edi
lea edi, DWORD PTR [esp+12800]
mov BYTE PTR [eax+edi], cl
mov edi, DWORD PTR [esp+19200]
jl $B1$3 ; Prob 80%

\end{verbatim}

; 9.8

$B1$2
10.9
10.6
10.6

10.12
10.12
10.12
11.26

11.26

11.26
$81$4

9.18
9.3

11.4
11.4

9.3

Algorithm 3. C code to add two images and corresponding assembler for the inner loop. Code
compiled on the Intel C compiler version 4.0.

11: movq mmO.[esi+ebp-LENJ
paddusb mm0,[esi+ebp-2*LENJ
movq [esi+ebp-3*LENJ,mm0
add esi ,8
loop 11

load 8 bytes
packed unsigned add bytes
store 8 byte result
inc dest pntr
repeat for the rest

Algorithm 4. MMX version of Alg. 3.

Chapter 2 • SIMD Instruction-sets 17

Real Real

32 bit

Figure 2.3. The AMD 3DNOW! extensions add 32-bit floating point data to the types that can be
handled in MMX registers.

on. Type conversion operations are provided to convert between pairs of
32-bit integers and 32-bit floats.

The range of operators supported includes instructions for the rapid
computation of reciprocals and square roots - relevant to the computation of
Euclidean norms in 3D space.

2.4.1 Cache Handling

A significant extension with 3DNow, copied in the Streaming SIMD exten­
sions, is the ability to prefetch data into the cache prior to its use. This is pot­
entially useful in any loop operating on an array of data. For instance the loop
in the previous section could be accelerated by inserting the marked prefetch
instructions.

The instruction count rises; despite this, performance goes up since loads
into the cache are initiated prior to the data being needed. This allows the
loading of the cache to be overlapped with useful instructions rather than
forcing calculations to stall whilst the load takes place.

To understand why this is useful, it is worth taking a closer look at how the
cache on a modern processor works. We will describe the P4 cache as an example;
the Athlon cache differs only in details. The account we give is simplified but
sufficient to understand how the prefetch instructions work.

The P4 has an 8 kb level 1 cache with 64-byte cache lines and four-way set
associativity (see Figure 2.4).

This means that it has four banks of memory each of which contains
32 lines. When a memory fetch occurs, the CPU generates a 32-bit store
address. The address is split into three fields as shown. The bottom 6 bits select
a byte offset within a cache line. The next 5 bits are used to select one of 32lines
in each bank. The remaining 21 bits constitute the tag field of the address. This
is compared in parallel to the tag fields of each four selected cache lines. In
addition to checking the tag fields for identity, validity flags associated with the
lines are validated. If the tag field of one of the lines is found to match with the
tag field of the address, then a cache hit occurs, otherwise a cache miss occurs.

In the event of a hit, the word in the line indicated by the byte select bits is
returned as the operand of the instruction. In the event of a cache miss then a
cache load is initiated to the next level of the store hierarchy- the level2 cache.
Here a similar process is repeated except that here the cache is larger and the
access time longer. A miss on the level2 cache causes a line of the level 2 cache
to be loaded from main memory.

When a fetch percolates down to the main store, the processor will fetch a
whole cache line as a single transaction, spread over several clock cycles. There

18 SIMD Programming Manual for linux and Windows

4 quadwords per line

A cache I i~r-w__ 1'--
r- 321ines per

= bank

f:: • \
\ 1\

~anks 1\ \
\

l \ \
~Tags

COMPARE Flags ~ectbits
T Tag bits

I I
I 21 I 5 I 6 I 32-bit address word

Figure 2.4. The cache structure.

-

Line
select
bits

is an initial memory setup time during which the address is transfered to the
dynamic ram chips and an appropriate page within the dynamic ram chips is
selected. Following this, eight memory cycles each transfering 8 bytes are used
to fill the cache line. The reason for having relatively long cache lines is that it
enables the cost of address setup to be amortised over multiple fetched memory
words. This runs the risk that some of the data fetched into the cache will not be
used, and will therefore show its greatest advantage either when an algorithm
moves sequentially through adjacent memory locations or when a small group
of frequently accessed variables can be loaded into a single cache line.

In parallel with the fetching of a new line's worth of data from memory, the
CPU selects one of the four cache banks to receive the data. The mechanism
used to choose which bank will get the data varies. Some caches use a pseudo
random number generator to select a bank, others select the bank containing
the oldest cache line to be replaced (Hennessy and Patterson, 2003). The block
being replaced has its tag field replaced with the tag field of the requested word
and the line is marked as invalid. Once the data has been loaded into the cache,
the flags are set to indicate that it is now valid.

A moment's consideration will show that with a four-bank cache it is pos­
sible to store data from four distinct areas of memory which share the same low
order address bits. As soon as a fifth block is accessed sharing these addresses,
then one of the previous blocks must be discarded. However, as Figure 2.5
shows, it is still possible to perform many useful loops without such clashes
occurring.

2.4.2 Cache Line Length and Prefetching

Since entire cache lines are fetched at a time, we can see that if the processor
has 64-byte cache lines, Alg. 5 will issue unnecessary prefetch instructions. We
only need to issue a single prefetch instruction for each use of a new cache line,
that is, once every 64 bytes processed. Alg. 6 illustrates this, having two nested
loops. Immediately prior to entering the inner loop, it prefetches the data that

Chapter 2 • SIMD Instruction-sets 19

Cache banks

Local variables

Array A

Array B

Array (

Main memory

Figure 2.5. With four banks of cache it is possible for a loop using two source and one destination array
to stream data in distinct banks whilst reserving one bank for local variables.

mov ecx, LEN
shr ecx, 3

11: movq mmO.[esi+ebp-LENJ
prefetch [es i+ebp - LEN+8]
paddusb mm0,[esi +ebp -2*LENJ
prefetch [es i+ebp-2* LEN+8]
movq [es i +ebp-3*LENJ,mm0
prefetchw [es i+ebp-3*LEN+8]

add esi,8
loop 11

ecx gets
number of times
round loop
load 8 bytes
get next 8 into cache
packed unsigned add bytes

store 8 byte result
set up cache to write
8 bytes of data
inc dest pnt r
repeat for the rest

Algorithm 5. A simple example of prefetching.

will be need for the following iteration of the outer loop. It does this by
prefetching data that is 64 bytes on from the data to be accessed on the
following iteration of the inner loop.

2.5 Streaming SIMD

Intel produced their own functional equivalent to AMD' s 3D NOW! instruction­
set with the Pentium III processor. They called the new instructions Streaming

20 SIMD Programming Manual for Linux and Windows

mov eax,LEN
shr eax,6

prefetch [esi+ebp-LEN+64J
prefetch [esi+ebp-2*LEN+64J
prefetchw [esi+ebp-3*LEN+64J

10: mov ecx,8
11: movq mmO,[esi+ebp-LENJ

paddusb mm0,[esi+ebp-2*LENJ
movq [esi+ebp-3*LENJ,mm0
add esi ,8
loop 11
dec eax
jnz l 0

eax gets
number of times
round outer loop
get next line to cache
ditto
set up cache to write

times round inner loop
load 8 bytes
packed unsigned + bytes
store 8 byte result
inc dest pntr
repeat for the rest
decrement outer loop count

Algorithm 6. An example that makes more effective use of prefetching than Alg. 5.

I I I I I I I
Figure 2.6. The Streaming SIMD extensions add additional 128-bit vector registers, with multiple
formats.

SIMD. As with 3DNOW!, the Streaming SIMD instructions combine cache
prefetching techniques with parallel operations on short vectors of 32-bit
floating point operands. With the P4 these were extended to allow operations
on other data types as shown in Figure 2.6.

The most significant difference is in the model of machine state. Whilst the
original MMX instructions and 3DNOW! add no new state to the machine
architecture, Streaming SIMD introduces additional registers. Eight new 128-
bit registers (XMMO ... 7) are introduced. The addition of new state means
that operating systems have to be modified to ensure that XMM registers are
saved during context switches. Intel provided a driver to do this for Microsoft
Windows NT 4.0; Windows 98 and subsequent Windows releases have this
support built in.

The default format for the XMM registers is a 4-tuple of 32-bit floating point
numbers. Instructions are provided to perform parallel addition, multi­
plication, subtraction and division on these 4-tuples. Other formats are:

1. A set of Boolean operations are provided that treat the registers as 128-bit
words, useful for operations on bitmaps.

Chapter 2 • SIMD Instruction-sets

Table 2.2. The XMM registers support both scalar and
vector arithmetic

Vector addition
ADDPS xmmO,xmm1

xmmO 1.2 1.3 1.4 1.5
xmm1 2.0 4.0 6.0 8.0 +
xmmO 3.2 5.3 7.4 9.5

Scalar addition
ADDSS xmmO,xmm1

xmmO 1.2 1.3 1.4 1.5
xmm1 2.0 4.0 6.0 8.0 +
xmmO 1.2 1.3 1.4 9.5

21

2. Scalar floating operations are provided that operate on the lower 32 bits
of the register. This allows the XMM registers to be used for conventional
single-precision floating point arithmetic. Whereas the pre-existing Intel
FPU instructions support single-precision arithmetic, the original FPU is
based on a reverse Polish stack architecture. This scheme does not fit well
with the register allocation schemes used in some compilers. The existence
of what are effectively eight scalar floating point registers can lead to more
efficient floating point code.

The scalar and vector uses of the XMM registers are contrasted in Table 2.2.
A special move instruction (MOVSS) is provided to load or store the least
significant 32 bits of an XMM register.

From the introduction of the P4 processor the following data types became
available:

1. The registers can hold two double-precision floating point numbers.
2. The low 64 bits of the registers can be treated as scalar double-precision

floating point numbers.
3. The registers can be treated as holding four integers of length 32 bits.
4. They can hold eight integers of length 16 bits.
5. They can hold 16 integers of length 8 bits.

2.5.1 Cache Optimisation

The Streaming side of the Streaming SIMD extensions is concerned with
optimising the use of the cache. The extensions will typically be used with large
collections of data, too large to fit into the cache. If an application were adding
two vectors of a million floating point registers using standard instructions,
the 4MB of results would pollute the cache. This cache pollution can be avoided
using the non-temporal store instructions, MOVNTPS and MOVNTQ, operat­
ing on the XMM and MM registers, respectively.

A family of prefetch instructions is provided to pre-load data into the cache.
This is more sophisticated than the equivalent 3DNOW! instruction described

22 SIMD Programming Manual for Linux and Windows

above. The AMD instruction applies to all cache levels. The Intel variant allows
the programmer to specify which levels of cache are to be preloaded.

Whereas all previous IA32 load and store instructions had operated equally
well on aligned and unaligned data, the Streaming SIMD extensions introduces
special load and store instructions to operate on aligned 128-bit words. General­
purpose load and store instructions capable of handling unaligned data are
retained. However, these are much slower than the aligned loads and stores. For
algorithms which cannot guarantee that operands will be 16-byte aligned, this
can lead to significant performance penalties. For unaligned accesses to integer
types it is generally more efficient to process data 64 bits at a time using the
MMX registers than to process it 128 bits at a time using XMM registers.

2.6 The Motorola Altivec Architecture

Motorola have a vector extension, called AltiVec, on their G4 processor that is
functionally similar to the SIMD instructions ofthe P4. The AltiVec unit con­
tains 32 128-bit vector registers identified as vO through v31. Data is represented
in vector registers as either integer (byte, half, word size) or single-sized (32-
bit) floating point data. The operations supported on these registers are broadly
similar to those provided by Intel in the P4 with the following significant
restrictions and extensions.

Restrictions
1. As a RISC processor the G4 requires all operands of arithmetic or logical

instructions to be in registers. There are no memory to register instructions.
2. The alignment rules are even stricter than the P4 alignment rules. There is

no unaligned load or store instruction. If an unaligned address is supplied
to a load or store, the bottom 4 bits of the address are ignored.

3. Double-precision floating point numbers are not supported.
4. When using altivec instructions, a special register, the VRSA VE register, is

used to indicate to the operating system which vector registers are in use. A
bit set in the register indicates that your program is using the corresponding
V register. The application is responsible for setting these bits and, if they are
not set, the registers will not be saved during a context switch.

Extensions
1. Multiply accumulate instructions are provided.
2. Instructions are provided to produce scalar sums over vector registers.

Motorola also claim to obtain better floating point performance on their
parallel single-precision instructions than Intel do. This claim, which the author
has been unable to validate, must be set against the markedly slower clock speed
of Motorola CPU s.

SIMD Programming
in Assembler and C

There is little exploitation of the SIMD instructions described in the previous
chapter because of relatively poor compiler support. When the MMX and SSE
instructions became available, Intel supplied a C compiler that had low-level
extensions allowing the extended instructions to be used. Intel terms these
extensions 'assembler intrinsics'. Syntactically these look like C functions but
they are translated one for one into equivalent assembler instructions. The use
of assembler intrinsics simplifies the process of developing MMX code, in that
programmers use a single tool - the C compiler, and do not need to concern
themselves with low-level linkage issues. However, the other disadvantages of
assembler coding remain. The Intel C compiler comes with a set of C++ classes
that correspond to the fundamental types supported by the MMX and SIMD
instruction sets. The SIMD classes do a good job of presenting the underlying
capabilities of the architecture within the context of the C language. The code
produced is also efficient. However, although the C++ code has a higher level
of expression than assembler intrinsics, it is not portable to other processors.
The same approach of essentially allowing assembler inserts into a high-level
language was adopted by other compilers: TMT-Pascal, Free-Pascal and a
release of gee for the G4 processor used in the iMac.

3.1 Vertorising C Compilers

There has been recent interest in the application of vectorisation techniques to
instruction level parallelism. Thus, Cheong and Lam (1997) discuss the use of
the Stanford University SUIF parallelising compiler to exploit the SUN VIS
extensions for the UltraS pare from C programs. They report speedups of around
4 on byte integer parallel addition. Krall and Lelait's compiler (Krall and Lelait,
2000) also exploits the VIS extensions on the Sun Ultra-SPARC processor from
C using the CoSy compiler framework. They compare classic vectorisation tech­
niques with unrolling, concluding that both are equally effective, and report
speedups of 2.7 to 4.7. Sreraman and Govindarajan (2000) exploit Intel MMX
parallelism from C with SUIF, using a variety of vectorisation techniques to
generate in-line assembly language, achieving speedups from 2 to 6.5. All of
these groups target specific architectures. Finally, Leupers (1999) has reported a
C compiler that uses vectorising optimisation techniques for compiling code
for the multimedia instruction sets of some signal processors, but this is not
generalised to the types of processors used in desktop computers.

23

24 SIMD Programming Manual for Linux and Windows

Tools of this sort have recently become commercially available with the
launch of version 6 of the Intel C compiler and also the V ectorC compiler
from Codeplay. These allow unmodified C source programs to be compiled to
the MMX and SSE instructions. The compilers are able to spot vectorisable
for-loops and compile them into sequences of vector instructions.

The code generator analyses inner loops and those which have the general
form

f o r (i = l ow ; i < = h i g h ; i ++)
a [i J =b [i J n1 c[i Jn2d [i J

are vectorised if vector instructions to perform operations nl> 02, etc. exist.
The resulting code takes the form of two loops, the quotient loop and the

remainder loop. The quotient loop is executed in parallel up to the parallelism
factor defined by the machine vector registers, the remainder loop is then
serialised.

Suppose low= 0 and high= 10 and the type of a[i], b[i], etc., is 32-bit float
and that the machine is P4, then the quotient loop translates to

for(i=O;i<=7;i+=4)
a[i .. i+3]=b[i .. i+3Jnlc[i .. i+3Jn2d[i .. i+3]

the remainder loop translates to

for(i=8;i<=lO;i++)
a [i J =b [i Jn1 c [i Jn2d [i J

The absence of scalar to vector arithmetic instructions on the Intel and
AMD processors means that the gains from vectorisation are more limited if
any of the operands in the assignment statement are scalars rather than
vectors. The code generator will attempt to vectorise these, but in doing so it is
forced to make multiple copies of scalars prior to loading them into vector
registers, which is relatively costly.

3.1.1 Dead for Loop Elimination

The above transformations give rise to many null loops or loops with a single
iteration, so the vectorisation is combined with algorithms to eliminate null
loops. Given

for(i=el;i<=e2;i++) cl

then if we know at compile time that e 1 will always be greater than e 2, we can
remove the entire for statement.

In the loop

for(i=el;i<=e2;i++) cl

If we know that e 1 = e 2, then we can substitute it with

i:=el;cl;

Chapter 3 • SIMD Programming in Assembler and C 25

3.1.2 Loop Unrolling

It is advantageous to unroll loops to some degree. Unrolling loops has the
advantages that:

1. Since the size of basic block is increased, the chances of pipeline stalls are
reduced. This may be less significant with the very latest processors.

2. The total number of instructions executed can be reduced since in simple
an inner loop the comparison and branch instructions can make up around
30% of the instructions executed. If we perform 5-fold unrolling we reduce
this overhead, allowing the loop to execute about 25% faster.

A for loop of the form

for(i=1;i<=10;i++) x[i]=j[i]+1;

can be expanded to

for (i =1; i <=1 0; i ++) {
x[i]=j[i]+1;
i=i+1;
x[i]=j[i]+1;
i=i+1;
x[i J=j[i]+1;
i=i+1;
x[i]=j[i]+1;
i=i+1;
x[i]=j[iJ+1;

resulting in a loop that is only gone round twice.
Since vectorisation and loop unrolling are performed prior to dead loop

removal and unitary loop handling, the net effect is that:

1. Many loops are replaced with vectorised straight line code.
2. In the case of loops whose length modulo the vector register length is zero,

the remainder loop is elided, giving a fully vectorised loop.

Although the VectorC and Intel C compilers do provide a means by which
unmodified C code can take advantage of SIMD instructions, the compilers are
expensive: several thousand dollars for VectorC, somewhat less for the Intel one.

3.2 Direct Use of Assembler Code

With instruction-sets as complex as those incorporated into the latest Intel and
AMD processors, careful hand-written assembler language routines produce the
highest quality machine code.

Microsoft's MASM assembler supports the extended instruction-set, as does
the free assembler N asm. The latter has the advantage of running on both

26 SIMD Programming Manual for linux and Windows

section .text;
global _main
LEN equ 6400
_main: enter LEN*3,0

1 0:
mov ebx,100000 perform test 100000 times

mov es i , 0 set es i registers to
index the elements

mov ecx,LEN/8 set up the count byte
11: movq mmO,[esi+ebp-LENJ load 8 bytes

paddb mmO,[esi+ebp-2*LENJ packed unsigned add
movq [esi+ebp-3*LENJ,mm0 store 8 byte result
add esi ,8 inc dest pntr
loop 11 ; repeat for the rest
dec ebx
jnz 10
mov eax,O
1 eave
ret

Algorithm 7. Assembler version of the test program.

Linux and Windows, and provides support for MMX, 3DNOW! and SIMD
instructions.

If one either cannot obtain or cannot afford better tools, then it can be
worth directly coding inner loops as assembler routines. The disadvantages of
using assembler are well known:

1. It is not portable between processors. A program written in assembler to
use the AMD extensions will not run on an Intel processor nor, a fortiori,
on a G4.

2. It requires the programmer to have an in-depth knowledge of the underly­
ing machine architecture, which only a small proportion of programmers
now have.

3. Productivity in terms of programmer time spent to implement a given
algorithm is lower than in high-level languages.

4. The programmer must further master the low-level linkage and procedure
call conventions of the high-levellanguage used for the rest of the application.

5. Programmers have to master additional program development tools.

All of these militate against widespread use.

3.2.1 The Example Program

The assembler version of the example program is shown in Alg. 7. It runs in
4.01 son the test machine, a 233 MHz Pentium II, a throughput of 160 million
byte arithmetic operations per second.

Chapter 3 • SIMD Programming in Assembler and C

#define LEN 6400
#define CNT 100000
main()
{

unsigned char vl[LENJ,v2[LENJ,v3[LEN];
i nt i , j, t;
for(i=O; i <CNT; i++)

for(j=O;j<LEN;j++) v3[j]=v2[j]+vl[j];

Algorithm 8. C version of the test program.

27

The C version is shown in Alg. 8. When compiled with the Intel C compiler
(Version 4.0) it runs in 72 son the test machine, a performance of around 8.9
million arithmetic operations per second. Thus the assembler version using
MMX is about 20 times faster than the C version.

3.3 Use of Assembler lntrinsics

Intel supply a C compiler that has low-level extensions allowing the extended
instructions to be used. Intel terms these extensions 'assembler intrinsics'. For
example, the ADDPS instruction which adds four packed single-precision
floating point numbers is mirrored by the Intel C/C++ Compiler Intrinsic
Equivalent

__ m128_mm_add_ps (__ ml28 a, __ m128 b)

which adds the four single-precision floating point values of a and b.
Syntactically these look like C functions but they are translated one for one

into equivalent assembler instructions. The use of assembler intrinsics simpli­
fies the process of developing MMX code, in that programmers use a single
tool, the C compiler, and do not need to concern themselves with low-level
linkage issues. However, the other disadvantages of assembler coding remain:

1. It is still not portable between processors.
2. It still requires the programmer to have an in-depth knowledge of the

underlying machine architecture.
3. Productivity is unlikely to be higher than with assembler.

3.4 Use of C++ Classes

The Intel C compiler comes with a set of C++ classes that correspond to the
fundamental types supported by the MMX and SIMD instruction-sets. For
instance, type lu8vec8 is a vector of eight unsigned 8-bit integers, ls32vec2 a
vector of two signed 32-bit integers, etc. The basic arithmetic operators for
addition, subtraction, multiplication and division are then overloaded to
support these vector types.

28

#define LEN 800
#define CNT 100000
#include "ivec.h"
main ()
{

SIMD Programming Manual for Linux and Windows

Iu8vec8 vl[LEN],v2[LEN],v3[LEN];
i nt i , j , t;
for(i=O;i<CNT;i++)

for(j=O;j<LEN;j++)
v3[j]=v2[j]+vl[j];

Algorithm 9. C++ version of the test program.

Alg. 9 shows the example program implemented in C++ using the Intel
SIMD class Iu8vec8. The SIMD classes do a good job of presenting the under­
lying capabilities of the architecture within the context of the C language. The
code produced is also efficient; the example program in C++ runs in 4.56 s on
the test machine, a performance of 140 million byte operations per second.
However, it has to be borne in mind that the C++ code is not portable to
other processors. The compiler always generates MMX or SIMD instructions
for the classes. If run on a 486 processor, these would be illegal. The C++ code
built around these classes, although it has a higher level of expression than
assembler intrinsics, is no more portable.

There are many disadvantages to these approaches. First, programmers
must have deep knowledge both of low-level architectural behaviour and of
architecture-specific compiler behaviour to integrate assembly language with
high-level code. Second, effective use of libraries depends on there being a
close correspondence between the intended semantics of the application
program and the semantics of the library routines. Finally, use of architecture­
specific libraries inhibits program portability across operating systems and
CPU platforms.

3.5 Use of the Nasm Assembler

The Nasm assembler is an open source project to develop a Net-wide
Assembler. The assembler is included as standard in most Linux distributions
and is available for download to run under Windows. It provides support for
the full Intel and AMD SIMD instruction-sets and also recognises some extra
MMX instructions that run on Cyrix CPUs. Nasm provides support for
multiple object module formats from the old MS-DOS com files to the obj and
elf formats used under Windows and Linux. If one is programming in
assembler, Nasm provides a more complete range of instructions, in association
with better portability between operating systems than competing assemblers.
Microsoft's MASM assembler is restricted to Windows. The GNU assembler,
as, runs under both Linux and Windows, but uses non -standard syntax which
makes it awkward to use in conjunction with Intel documentation.

Chapter 3 • SIMD Programming in Assembler and C 29

It is beyond the scope of this book to provide a complete guide to assembler
programming for the Intel processor family. Instead, we will concentrate on
those features of the assembly language that are needed to write SIMD subrou­
tines that can be called from high -level languages. We document the Intel SIMD
instructions in Chapter 4 and the 3DNow instructions in Chapter 5. Readers
wanting a general background in assembler programming should consult
appropriate text books in conjunction with the processor reference manuals
published by Intel (1999, 2000) and AMD (Advanced Micro Devices, 1999).

3.5.1 General Instruction Syntax

Assembler programs take the form of a sequence of lines with one machine
instruction per line. The instructions themselves take the form of an optional
label, an operation code name conditionally followed by up to three comma
separated operands. For example:

11: SFENCE ; Ooperandinstruction
PREFETCH [100] ; 1 operand instruction
MOVQ MMO ,MM1 ; 2 operandi nstructi on
P SHU F D X MM 1 , X MM 3 , 0 0 1 0 1 0 11 b ; 3 operand i n s t r u c t i on

As shown above, a comment can be placed on an assembler line, with the com­
ment distinguished from the instruction by a leading semi-colon. The label, if
present, is separated from the operation code name by a colon, ___ _

Case is not significant either in operation code names or in the names
of registers. Thus pre fetch is equivalent to PRE FETCH and mm4 is equivalent
to MM4.

In the Nasm assembler, as in the original Intel assembler, the direction of
assignment in an instruction follows high-level language conventions. It is
always from right to left, 1 so that

MOVQ MMO, MM4

is equivalent to

MMO:=MM4

and

ADDSS XMMO, XMM3

is equivalent to

XMMO:=XMMO+XMM3

3.5.2 Operand Forms

Operands to instructions can be constants, register names or memory locations.

1 If you chose to use the GNU assembler instead of Nasm you should be aware that this follows
the opposite convention of left to right assignment. This is a result of as having originated as a
Motorola assembler that was converted to recognise Intel opcodes. Motorola follow a left to right
assignment convention.

30 SIMD Programming Manual for Linux and Windows

Constants

Constants are values known at assembly time, and take the form of numbers,
labels, characters or arithmetic expressions whose components are themselves
constants.

The most important constant values are numbers. Integer numbers can be
written in base 16, 10, 8 or 2.

mov a l. Oa2h ; base 16 leading zero required
mov bh. $0a2 ; base 16 altern ate notation
movcx,Oxa2 ;base16Cstyle
addax,101 ;base10
movbl,76q ;baseS
xorax,ll0100llb; base2

Floating point constants are also supported as operands to store allocation
directives (see Section 3.5.3):

dd3.14156
dq9.2e3

It is important to realise that due to limitations of the AMD and Intel
instruction-sets, floating point constants can not be directly used as operands
to instructions. Any floating point constants used in an algorithm have to be
assembled into a distinct area of memory and loaded into registers from there.

Constants can also take the form of labels. As the assembler program is
processed, Nasm allocates an integer value to each label. The value is either the
address of the operation-code prefixed by the instruction or may have been
explicitly set by an EQU directive:

Fseek equ 23
Fread equ 24

We can load a register with the address referred to by a label by including the
label as a constant operand:

mov esi. sourcebuf

Using the same syntax, we can load a register with an equated constant:

mov cl. tread

Constant Expressions

Suppose there exists a data-structure for which one has a base address label, it
is often convenient to be able to refer to fields within this structure in terms of
their offset from the start of the structure. Consider the example of a vector of
four single-precision floating point values at a location with label myvec. The
actual address at which myvec will be placed is determined by Nasm, we do
not know it. We may know that we want the address of the third element of
the vector:

m o v e s i . my v e c + 3 * 4

Chapter 3 • SIMD Programming in Assembler and C 31

to place the address of this word into the e s i register. Nasm allows one to
place arithmetic expressions whose sub-expressions are constants wherever a
constant can occur. The arithmetic operators are written C style as shown in
Table 3.1.

Registers

Operands can be register names. The available register names are shown in
Table 3.2. In the binary operation codes interpreted by the CPU, registers are
identified using 3-bit integers. Depending on the operation code, these 3-bit
fields are interpreted as the different categories of register shown in Table 3.2.

One should be aware that in the Intel architecture a number of registers are
aliased to the same state vectors, for example, the e ax, ax, a l , a h registers all
share bits. More insidiously, the floating point registers STO ... ST7 not only
share state with the MMX registers, but also their mapping to these registers is
dynamic and variable.

Memory Locations

Memory locations are syntactically represented by the use of square brackets
around an address expression, thus [1 0 0], [my v e c], [e s i] all represent

Table 3.1. Nasm constant operators

Operator Means Operator Means

or + add
II xor subtract
& and * multiply
<< shift left I signed division
>> shift right II unsigned division
% modulus %% unsigned modulus

Table 3.2. Register encodings

Number Alia sed dword reg Aliased sse reg

byte reg word reg float reg nnx reg

0 al ax eax stO mmO xmmO
1 cl bx ecx stl mml xmml
2 dl ex edx st2 mm2 xmm2
3 bl bx ebx st3 mm3 xmm3
4 ah sp esp st4 mm4 xmm4
5 ch bp ebp st5 mm5 xmm5
6 dh si esi st6 mm6 xmm6
7 bh di edi st7 mm7 xmm7

32 SIMD Programming Manual for Linux and Windows

memory locations. The address expressions, unlike constant expressions, can
contain components whose values are not known until program execution.
The final example above refers to the memory location addressed by the value
in the e s i register and, as such, depends on the history of prior computations
affecting that register. Address expressions have to be encoded into machine
instructions, and since machine instructions, although of variable length on a
CISC are nonetheless finite, so too must the address expressions be. On Intel
and AMD machines this constrains the complexity of address expressions to
the following grammar:

memloc::= address I format address
format ::=byte I word I dword I qword
address::= [const] I [aexp] I [aexp+ const]
aexp ::=reg I reg+ iexp
iexp ::=reg I reg* scale
scale ::= 2 I 4 I 8
reg ::=eax I ecx I ebx I edx I esp I ebp I esi I edi
const ::=integer I label

The format qualifiers are used to disambiguate the size of an operand in
memory where the combination of the operation code name and the other
non-memory operands are insufficient so to do.

3.5.3 Directives

Directives look like operation code names, but instead of being translated into
operation codes, they are used by the assembler itself to define the way in
which data that follows it is to be interpreted.

Sectioning
Programs running under Linux have their memory divided into four sections:

text

data

bas
stack

is the section of memory containing operation codes to be executed.
It is typically mapped as read only by the paging system.
is the section of memory containing initialised global variables, which
can be altered following the start of the program.
is the section containing uninitialsed global variables.
is the section in which dynamically allocated local variables of sub­
routines are located.

The section directive is used by assembler programmers to specify into
which section of memory they want subsequent lines of code to be assembled.
For example, in the listing shown in Alg. 10 we divide the program into three
sections: a text section containing my fun c, a bss section containing 64
undefined bytes and a data section containing a vector of four integers.

The label my fun c b a s e can be used with negative offsets to access locations
within the b s s, whereas the label my fun c g l o b a l can be used with positive
offsets to access elements of the vector in the data section.

Chapter 3 • SIMD Programming in Assembler and C

section .text
global myfunc

myfunc:enter 128,0
; body of function goes here

leave
ret 0

section .bss
alignb 16
resb 64 reserve 64 bytes

myfuncBase:
section .data
myfuncglobal: reserve 4 by 32-bit integers

dd 1
dd 2
dd 3
dd 5

Algorithm 10. Examples of the use of section and data reservation directives.

Data Reservation

33

Data must be reserved in distinct ways in the different sections. In the data
section, the data definition directives db, dw, dd and dq are used to define
bytes, words, doublewords and quadwords. The directive must be followed by
a constant expression. When defining bytes or words the constant must be an
integer. Doublewords and quadwords may be defined with floating point or
integer constants as shown previously.

In the bss section the directive res b is used to reserve a specified number of
bytes, but no value is associated with these bytes.

Data can be allocated in the stack section by use of the enter operation
code name. This takes the form

enter space, level

It should be used as the first operation code name of a function. The level
parameter is only of relevance in block structured languages and should be set
to 0 for assembler programming. The space parameter specifies the number of
bytes to be reserved for the private use of the function. Once the en t e r
instruction has executed, the data can be accessed at negative offsets from the
e b p register.

The last two instructions in a function should, as shown in Alg. 11, be

leave
ret 0

The combined effect of these is to free the space reserved on the stack by enter,
and pop the return address from the stack. The parameter to the operation
code name ret is used to specify how many bytes of function parameters
should be discarded from the stack. If one is interfacing to C this should
always be set to 0.

34 SIMD Programming Manual for Linux and Windows

Label Qualification

The default scope of a label is the assembler source file containing the line it
prefixes. However, labels can be used to mark the start of functions that are to
be called from C or other high-level languages. To indicate that they have
scope beyond the current assembler file, the g l o b a l directive should be used
as shown in Alg. 10.

The converse case, where an assembler file calls a function exported by a C
program, is handled by the e tern directive:

extern printreal
call printreal

In the above example we assume that p r i n t rea l is a C function called from
assembler.

3.5.4 Linking and Object File Formats

There are four object file formats that are commonly used on Linux and
Windows systems, as shown in Table 3.3. This lists the name of the format, its
file extension - which is often ambiguous and the combination of operating
system and compiler that makes use of it. A flag provided to Nasm specifies
which format it should use. We will only go into the use of the gee compiler,
since this is portable between Windows and Linux.

Assume we have a C program called c 2 as m . c and an assembler file
asmfromc. a sm. Suppose we wish to combine these into a single executable
module c2asm. We issue the following commands at the console:

nasm- tel f- o asmfromc. o asmfromc. asm
gee -oc2asm c2asm. c asmfromc. o

This assumes that we are working either under Linux or under Cygwin. If we
are using djgpp, we type

nasm-fcoff-oasmfromc.oasmfromc.asm
gee- oc2asm c2asm. c asmfromc. o

Leading Underbars

If working with djgpp, then all external labels in your program, whether
imported with extern or imported using g l o b a l , must have a leading
underbar character. Thus to call the C procedure p r i n t rea l , one would write

Table 3.3. Object file formats and compilers that use them

Format Extension Operating system C++ compiler

win32 .obj Windows Microsoft C++
obj .obj Windows Borland C++
coff .0 Windows Djgpp gee
.elf .0 Windows Cygwin gee
.elf .0 Linux gee

Chapter 3 • SIMD Programming in Assembler and C

extern _pri ntrea l
call _p r i n t real

whereas to export myfunc one would write

global _myfunc
_myfunc: enter 128,0

3.5.5 Summing a Vector

35

We will now put all this together with a simple example of calling a SIMD
assembler routine from C. As an example, we take the problem of summing the
elements of an integer array. If we use 32-bit integers, an MMX routine is in
principle capable of doing this two words at a time, and so should outperform
C code for the same purpose. Timing indicates that this is the case. Algorithm
11 runs between three and four times faster than an equivalent C function. 2

The example illustrates a problem which has to be addressed in many
vectorised algorithms. We have to add up vectors of arbitrary length, but if we
are to vectorise this we need to use vector registers of fixed size. If we divide
through the vector length by the size of the vector registers, 2 in this case, we
may be left with a remainder that cannot be vectorised. This imposes a
standard structure on vectorised MMX algorithms:

1. A parallel section that operates on the start of the array using the MMX
registers.

2. A conditionally executed section that, in the presence of an odd number of
elements in the array, does the rest.

The C function prototype to our array totalising routine is

intpmyfunc(int*v. intlen);

The C prototype is important because it defines the configuration of
parameters on the stack. Given this prototype, the C compiler will push two
32-bit words on to the stack when pmy fun c is called. The C convention is to
push parameters on to the stack from right to left. As a result, after executing
the enter instruction at the start of the function the local stack environment
is as represented in Figure 3.1.

The e p b register can be used to access the parameters to the function.
Positive offsets from the register address parameters whereas negative offsets
address local variables.

We are going to remap the one-dimensional array of integers as a two­
dimensional array, whose second dimension has the range 0 ... 1. Each row of
the vector will fit into an MMX register. This is illustrated by Figure 3.2. The
algorithm starts by using the l en parameter to calculate the upper bound of

20n arrays of length 100, it takes 35% and 25% of the time taken for C code on Crusoe and
Athlon processors, respectively. The Crusoe implements the MMX architecture only by
emulation and so does not show the full gains.

36 SIMD Programming Manual for linux and Windows

section .text
global pmyfunc

pmyfunc: enter 8,0
tvec equ -8

mov edi ,DWORD[ebp+12J
shr edi , 1
lea ecx,[edi-1]

movq MM4,[dnull]
xor edi ,edi
mov esi ,DWORD[ebp+8]

looptop: cmp edi ,ecx
jg near loopstop
paddd MM4,[esi+edi*8]
lea edi, [edi+1J
jmp looptop

1oopstop: movq [ebp+tvec],MM4
mov ebx,DWORD[ebp+12]
mov edi ,DWORD[ebp+tvec+4J
mov eax,DWORD[ebp+8J
mov esi ,ebx
and DWORD esi ,1
imul esi, [eax+ebx*4-4]

lea edx,[edi+esi]
mov edi ,DWORD[ebp+tvec]
lea eax,[edi+edx]
leave
emms
ret 0
section .data

dnull : dd 0
dd 0

a temporary location
on stack to hold a 2
element vector
edi=len

ecx=(l en/2 -1)

ecx holds number of vector
adds to perform
clear MM4
clear edi as induction variable
set esi -> the array

add two elements at a time

save the result
ebx=len

esi=1 if len odd
esi holds last element
if len odd
add to tvec[l]
get Oth of tvec
form total

vector of two zeros

Algorithm 11. Use of MMX instructions to sum a vector of integers.

this two-dimensional array:

mov edi, DWORD [ebp+ 12]; edi=l en
shredi,1
lea ecx, [edi -1]

The result is stored in the ecx register. Suppose that the vector length was 7;
if we shift this right, we lose the least significant bit, giving 3 in ed i. Since the
vector is assumed to be zero-based, we want to iterate from 0 ... 2 so we
subtract 1 to get 2 in the ecx register. The subtraction is done by using the

Chapter 3 • SIMD Programming in Assembler and C 37

len

v

return address

ebp dynamic link

tvecl

esp tvecO

Figure 3.1. Stackframe on entry to pmyfunc.

Two-dimensional map of the vector

Originall-dimensional vector v

0

Odd final element

Figure 3.2. Mapping a one-dimensional array to a two-dimensional array suitable for vectorisation.

l e a instruction. This stands for Load Effective Address; it loads the address of
memory location [edi -1] into ecx, which in practice means ecx=edi -1.
Intel recomend using lea rather than increment and decrement operations on
the P3 and P4 processors, since l ea is executed in fewer micro-ops. Next, we
set up the other registers that will be used to go through the loop. We clear
MM4 by loading it with the null vector:

movq MM4, [dnu ll J

This could have been done by xoring MM4 with itself using the P X 0 R instruc­
tion, but we have chosen to load a constant vector to illustrate how this is
done. The constant vector itself is allocated store and initial values in the data
segment. We then clear the ed i register which will be used as the induction
variable for our loop. In this case we do use an x or instruction to clear it:

xoredi ,ed i

Finally, we set the e s i register to point to the base address of the array, by
fetching the address parameter from the stack:

mov es i , OW ORO [ebp+ 8]

The algorithm then loops round adding two elements at a time to the pairs of
totals in the MM4 register. It uses base plus scaled index addressing to do this,

38 SIMD Programming Manual for linux and Windows

#include <stdio.h>
int pmyfunc(int *v,int len);
main(int argc, char **argv)
{inta[lOJ;

i nt i;
for(i=O;i<lO;i++) a[i]=i;
for(i=l;i<lO;i++) printf("%d %d\n",i,pmyfunc(a,i));

Algorithm 12. Illustration of calling pmyfunc from C.

multiplying the loop induction registered i by eight to get the relative starting
position of each row of our mapped two-dimensional array:

1ooptop:empedi ,eex
jg near 1 oopstop
padddMM4,[esi+edi*8J; addtwoe1ementsatatime
1eaedi,[edi+1]
jmp 1 ooptop

1 oops top :movq [ebp+ tvee] ,MM4; save the resu1 t

At the end of the loop we have the total of the even words in MM4 [0] and the
total of the odd words in MM4 [1]. We want to add these together along with any
possible remainder word. This will be handled by scalar arithmetic, so we save
the two totals in the two-element vector tv e e. If the original array was of odd
length, we want to form the sum t vee [0]+t vee [1]+v [1 en -1], otherwise we
want simply to add the two elements oft vee together. This could be done by
testing len and branching, but it is more efficient to multiply the last element of
the array by the least significant bit of the length. If the length is even, the least
significant bit will be zero so that the last element is not included in the total.

mov ebx,DWORD [ebp+12]; ebx=1en
mov edi ,DWORD [ebp+tvee+4]; edi=tvee[1]
mov eax, DWORD [ebp+8]; eax= array base
MOVesi,ebx
and DWORD esi ,1
imu1 esi, [eax+ebx*4-4J
1 e a e d x , [e d i +e s i J ; add to tv e e [1 J
mov edi, DWORD[ebp+tvee] ; get Oth of tvee
1eaeax,[edi+edx] ; formtota1

The total is returned in the eax register, since this is the C convention for
integer-returning functions.

3.6 Coordinate Transformations Using 3DNow!

For a second example we will look at some basic 3D graphics operations. As its
name implies, one of the main aims of the AMD SIMD extensions is to accelerate
3D graphics operations. To understand the rationale for these instructions, a
little background information about 3D graphics operations is necessary.

Chapter 3 • SIMD Programming in Assembler and C 39

3

2

2 3 4

Figure 3.3. Translation. The triangle a,b,c with coordinates [1, 1],[1,2],[2,2] is translated to the
triangle d,e,f with coordinates [3,0.5],[3, 1.5],[4, 1.5] by adding [2,-0.5] to each vertex.

Points in three-dimensional space can be represented as triples of real
numbers [x,y,z] encoding position with respect to three orthogonal axes.
Surfaces in three-space are typically represented as a set triangles, each of
whose vertices is such a triple [x,y,z]. Manipulations of simulated solid objects
break down into the primitive operations:

Translate move all of the points in an object some common distance in
three-space.

Scale make the object larger or smaller.
Rotate around one or other of the axes, an arbitrary rotation being

decomposable into rotations about the axes.

Let us consider each of these in turn as abstract operations before going to
look at how they can be implemented in the 3DNow instructions.

Translate
We can see in Figure 3.3 how we can translate a triangle by adding a constant
vector to each vertex. For ease of illustration we use 2D drawings, but the
principle extends to higher dimensions. The basic data-type used by 3DNow is
a two-element vector of reals. Translation in two dimensions would obviously
be very efficient; three-dimensional operations would at first sight seem less
efficient, given that only the first two elements can use vector arithmetic, with
the last requiring scalar instructions. However, when we look at the other
object manipulation primitives, we shall see that this is not the case.

Scale
As Figure 3.4 shows, an object can be scaled by simply multiplying each vertex
by a scalar. Thus a= [1,1] --+ d = [2,2] and b = [1,2] --+ e = [2,4], etc. Again
for two dimensions, this is relatively easy to achieve, one duplicates the scalar to
a two-element vector and performs parallel element by element multiplication.

40 SIMD Programming Manual for linux and Windows

Rotate
Figure 3.5 illustrates the effect of rotating unit vectors aligned with the x- and
y-axes by 45°. Any point in the plane P = [x,y] can be treated as the sum
of two vectors, [x,O]+[O,y] with one aligned with the x-axis and the other with
they-axis. These in turn are scalar multiples of the unit vectors [1,0], [0,1]
aligned the axes. These unit vectors provide the basis of the 2D vector space.
We can thus decompose P into x[1, 0] + y[O, 1]. The numbers x,y specify
the amplitude of the point P with respect to these basis vectors.

We know what the effect of the rotation of these unit vectors by 45° will be,
namely [1,0]----; R = [)z,_LJ whereas [0,1] ____, S = [Jk6l· We can therefore
achieve the effect of rofa~g P by first rotating the unft vectors, multiplying
them by their original amplitudes in P and summing the result: P ____, xR + yS.
So it follows that a rotation by 45° will map a point P = [x,y] ____, Q =
[X + -y X + Y l
Vi Vi' Vi Vi .

3

2

e f
~---------------~7

' ' ' ,'
' '

bpi
a

2 3 4

Figure 3.4. Scaling. Triangle d,e,f is obtained by multiplying the vertices of a,b,c by 2.

y

b
----------- -----------

-a

:\
\

\
\
\

a

\
\
\

X

Figure 3.5. Illustration of the effect of rotations by~ on the unit vectors x = [1,0], y = [0, 1]. The
result is that x--+ [a,b] = [)2-,)2-J andy--+ [-a,b] = [~,)2-J.

Chapter 3 • SIMD Programming in Assembler and C

We can express this as a matrix calculation T P = Q with

[1 -1]
T= 1 1

v'2 v'2

41

(3.1)

More generally, we can express any 2D rotation of a point P in terms of
operating on P with an appropriate transformation matrix T. This generalises
to 3D points and higher.

Note that the above describes the matrix multiplication using the conven­
tions of paper mathematics which distinguishes between row and column
vectors. Computer memory is basically a one-dimensional array of words.
Groups of words can be viewed as two-dimensional arrays, but the distinction
between a row vector and a column vector does not make sense. Figure 3.6
shows how T, P and Q would be represented in memory. Once loaded into
3DNow registers, their rows of individual row vectors of T have the same
representation as the column vector P. This means that the matrix multiplica­
tion can be performed by doing parallel vector multiplications between the
rows ofT and the register form of P, followed by a summation along the rows.

Generalised Transformations

We have used two-dimensional pictures in our examples, and in consequence
our rotation matrix T has been 2 x 2. Rotations in three dimensions would
require a 3 x 3 matrix.

Suppose we want both to rotate and to scale a series of points in three­
dimensional space, for example the vertices of a set of triangles. One approach
is to mutliply each vertex by a rotation matrix and then multiply each vertex
by a scalar. This would require 12 multiplications per vertex. If instead we
premultiplied our rotation matrix by the scalar and then simply performed the
matrix to vector multiplications, we would achieve the same result at a cost of
nine multiplications per vertex.

T[O,O] T[O,O] T[O,l] I
T[O,l] T[l,O] T[1,1] I
T[l,O]

T[l, 1]

P[O] or P[O,O] I P[O] I P[1]

P[l] or P[l ,0]

Q[O] or Q[O,O] IQ[O] I Q[l]

Q[l] or Q[l ,0]

Memory layout Register layout

Figure 3.6. Contrast between the linear layout of the matrix and vectors in memory and the layout
once loaded into 3DNow registers.

42 SIMD Programming Manual for Linux and Windows

Can this technique be extended to handle translations also?
Yes, it can, but for it to do so we have to move to vectors of length 4.

Consider a four-dimensional point P of the form [x,y,z,l]. Multiply this by a
matrix T of the form

(3.2)

The result is a vector [x + a,y + b, z + c,l]. The effect has been to translate P
br:dtheevefolr [a,b,c,O]. More generally, given a 3 x 3 rotation and scale matrix

g h i and a translation vector [a, b, c], then we can form a combined
j k 1

rotation, scaling and translation matrix M of the form

M~ [1 ~ ~ ~] (3.3)

All of our 3D graphics transforms can be expressed in terms of the same
basic operation, multiplication of a four-element vector by a 4 x 4 matrix. In
this light, the purpose of the 3DNow instructions becomes clear. They allow
pairs of reals to be multiplied or added with a single instruction. A row of the
transformation matrix M can be multiplied by a vector of four reals in just two
steps. Alg. 13 gives an AMD assembler routine to perform multiplication of a
four-element vector by a 4 x 4 matrix.

The C template of the function is

void mvmul (float *m, float *v)

where m is the start address of a 4 x 4 matrix of floats and v is the start address
of a four-element vector of floats. This implies that the matrix address will be
found at an offset of 8 from the e b p register and the vector address at an offset
of 12 on entry to mvmul. The routine caches these addresses in the esi and
ebx registers, respectively. The routine has a single loop that steps through the
four rows of the matrix, using edx as the loop induction variable. On each
iteration the inner product between the edxth row of the matrix and the
vector v is computed. Register MM3 is used as a parallel accumulator, allowing
the sum of the odd and even products to be formed with two multiplications
and one add instruction. Prefetching is used on the matrix but not the vector
fetches, since there is no next row for the vector. The 64-bit result is stored in
in a local two-element vector vtmp, and the elements are added using scalar
arithmetic instructions.

Between the vector arithmetic instructions and the scalar ones, it is
necessary to plant an emms instruction to clear the MMX registers. Were this
not done, a floating point exception would be reported. The floating point

Chapter 3 • SIMD Programming in Assembler and C 43

stack, which is aliased to the same state bits as the MMX registers, would be
found to have been corrupted.

As the elements of the transformed vector are computed, they are stored in
a temporary local four-element result vector, rtmp, to prevent the source
vector being corrupted. At the end, rtmp is copied into v using MMX movq
instructions.

GLOBAL mvmul
section .text
mvmul:enter 100,0
vtmp:equ -80
ttmp:equ -32

xor edx,edx
mov esi ,DWORD[ebp+8]
mov ebx,DWORD[ebp+l2J

mvlooptop:cmp DWORD edx,3
jg near mvloopend
imul eax,DWORD edx,l6
lea eax. [eax+8]
prefetch [esi+eax+8J
movq MM3,[esi+eaxJ
PFmul MM3,[ebx+8]
imul eax,DWORD edx,l6
prefetch [esi+eax+8]
movq MM2,[esi+eax]
PFmul MM2,[ebx]
PFadd MM3,MM2

esi gets addr of matrix
ebx gets addr of vector

movq [ebp+vtmp],MM3 store pair in vtmp
emms
fld dword[ebp+vtmp]
fadd DWORD[ebp+vtmp+4]
fstp dword[ebp+edx*4+rtmp] ; dot product to rtmp[edx]
lea edx,[edx+l] ; inc edx

jmp mvlooptop
mvloopend:

mov edi ,DWORD[ebp+l2J
movq MM2,[ebp+rtmp]
movq [edi],MM2
movq MM2,[ebp+8+rtmpJ
movq [edi+8],MM2
leave
emms
ret 0

copy rtmp
to v

Algorithm 13. 30Now routine to multiply a vector by a matrix.

44 SIMD Programming Manual for Linux and Windows

3.7 Coordinate Transformations Using SSE
Instructions

The SSE instructions were Intel's equivalent of 3DNow. Because new state bits
were introduced to the CPU architecture, the 64-bit limit on vector registers
was relaxed. SSE supports 128-bit long vector registers, sufficient to contain a
four-element vector of floats. By way of contrast, let us look at how these
instructions might be applied to the task of coordinate transformation per­
formed by 3DNow code in Alg. 13.

The SSE variant closely parallels the 3DNow version. It is shown in Alg. 14.
Since the assembly language uses the same mnemonic for a 128-bit vector
register and for the 32-bit floating point scalar register, the listing distinguishes
them by giving vector registers in capitals, XMM3, and scalar variants in lower

global mvmul
section .text
mvmul :enter 72,0
vtmp equ -64
rtmp equ -32

mov ecx,O
mov edi ,DWORD[ebp+l2]
movups XMM4,[edi]

mvll: cmp ecx, 3
jg near mvl2

mov edi ,DWORD[ebp+BJ
imul esi ,ecx,l6
movups XMM2,[edi+esi]
mulps XMM2,XMM4
movups [ebp+vtmp],XMM2
movss xmmO,[ebp+vtmpJ
movss xmml,[ebp+vtmp+4J
movss xmm2,[ebp+vtmp+BJ
addss xmm2,[ebp+vtmp+l2]
addss xmml,xmm2

sum the vector using
scalar SSE instructions

addss xmmO,xmml dot product in xmmO
movss [ebp+ecx*4+rtmp],xmm0
inc ecx

jmp mvll
mvl2: mov edi ,DWORD[ebp+l2]

movups XMM3,[ebp+rtmpJ
movups [edi],XMM3
leave
ret 0

Algorithm 14. Matrix-vector multiplication using SSE code.

Chapter 3 • SIMD Programming in Assembler and C 45

case, xmm3. The significant differences between the AMD and Intel variants are
that in the Intel case:

1. The entire vector v can be cached in a register.
2. Only one multiply instruction is needed per row of the vector.
3. The scalar summation of the vector takes more instructions because of the

vector register length.
4. No emms instructions have to be planted.

One might have expected that the SSE variant of the algorithm, using as it
does a higher level of parallelism, would be faster. In fact, it is considerably
slower than the AMD version. This is illustrated in Table 3.4, which shows
their comparative performance. Despite the Intel code being run on a faster
processor, it runs at only about half the speed of the AMD code. The difference
is even more marked when we normalise for the effect of differences in clock
speed. The AMD processor achieves three times as many floating point
operations per cycle.

Another comparison is provided by the C version ofmvmu l, given in Alg. 15.
This was compiled using gee version 3.2 and the code produced uses no vector
instructions. It can be seen that the Athlon is again markedly faster than the P4
when running the C code. Running C code, the Athlon achieved twice as many

Table 3.4. Comparative performance of the 3DNow and SSE versions of coordinate transformation

CPU

Athlon
P4

Clock (GHz)

1.0
1.7

C time

4.23
5.06

Assembler time

1.9
3.81

Relative gain

2.2x
1.32x

FOPs per cycle

0.16
0.05

Measurements for 10 million matrix to vector multiples. This amounts to 320 million floating point operations.

mvmulc(float *m, float *v)
{ float vtmp[4];

int i,j;
float t;
for(i=O;i<4;i++)
{

t=O;
for(j=O;j<4;j++) t=t+m[i*4+j]*v[j];
vtmp[i]=t;

for(i=O;i<4;i++) v[i]=vtmp[i];

Algorithm 1 S. C variant of the matrix to vector multiply.

46 SIMD Programming Manual for Linux and Windows

floating point operations per clock cycle. This probably indicates an inherently
superior floating point unit on the Athlon.

However, the superiority of the 3D Now instruction architecture is brought
out by comparing the relative speeds of C and assembler on each CPU. This
comparison compensates for differences in clock speed and FPU speed, but we
again see that gains from vectorisation are much more marked for the Athlon.

MMX

Intel SIMD Instructions

In the following sections we give a semi-formal definition of the multi-media
instruction-sets used on Intel and AMD processors. For each instruction we
provide a specification of its semantics and indicate the assembler syntax used.
For all instructions we provide NASM syntax. The types used by the instructions
and their semantics are defined in Pascal.

4.1 Types

The underlying types used by the architecture are defined first. These are
comprised of :

1. a collection of base types
2. a collection of short vector types
3. types used to represent registers
4. types used in the store and recovery of machine state.

Base Types

We first define the underlying base types used by the multi-media instructions.
The definitions of all types are given in Pascal syntax.

type
intB = -128 .. 127;
uintB = 0 .. 255;
int16 = - 32768 .. 32767;
uint16 = 0 .. 65535;
int32 = integer;
int64 = - 9223372036854775807 .. 9223372036854775807;
ieee32 = real;
ieee64 =double;

Aggregates

We now define the short vector types used by the MMX, 3DNOW and SSE
instructions.

int32vec2 = array [0 .. 1] of int32;
int 76vec4 = array [0 . .3] of int 76;

47

48

3DNOW
SSE
SSE2

byte
word
dword
qword
dqword

Only AMD

SIMD Programming Manual for Linux and Windows

uint76vec4 == array [0 .. 3] of uint16;
intBvecB == array [0 . .7] of intB;

uintBvecB == array [0 .. 7] of uintB;
ieee32vec2 == array [0 .. 1] of ieee32;
ieee32vec4 == array [0 .. 3] of ieee32;
ieee64vec2 == array [0 .. 1] of ieee64;
int64vec2 == array [0 .. 1] of int64;
int32vec4 == array [0 . .3] of int32;
int76vec8 == array [0 .. 8] of int76;

uint76vec8 == array [0 .. 8] of uint16;
int8vec16 == array [0 .. 15] of intB;

uintBvec 7 6 == array [0 .. 15] of uintB;

Mnemonics for Lengths and Shifts

formats= (b,
W,

d,
q,
dq);

We encode mnemonics for the three kinds of shifts, logical left and right,
and arithmetic right.

shifts= (1/,ra,rl);

MMX Register Types

We define the MMX registers as variant records with multiple possible internal
representations.

MMX=record
case char of

'a': (a:int64);
'b': (b:int32vec2);
'c': (c:int16vec4);
'd': (d:uint76vec4);
'e': (e:intBvecB);
'f: (f:uintBvecB);
'g': (g:ieee32vec2);

end;
regid=0 . .7;

SSE Register Types

We define the types of the SSE registers as a variant record allowing any of the
formats supported in either SSEl or SSE2 instruction-sets.

XMM=record
case char of

49

Chapter 4 • Intel SIMD Instructions

SEE
SEE2

80 bit state

fpu exponents

fpu control word
fpu status word

fpu tag word
fpu opcode
fpu instruction addr
code segment
reserved
fpu data addr
data segment
reserved
MMX control reg
reserved

'a': (a:ieee32vec4);
'b': (b:ieee64vec2);
'c': (c:int32vec4);
'd': (d:int16vec8);
'e': (e:uint16vec8);
'f: (f.intBvec 16);
'g': (g:uint8vec16);
'h': (h:int64vec2);

end;

XMM and MMX Save State

This defines the type of data used when a save or restore is perform
the' entire SIMD state (see Sections 4.4.19 and 4.4.20). This block is 512
long.

fpuJeg...save =record
mmr:MMX;
exponent:int 16;

end;
MMXpad =array [1 0 .. 15] of intB;
MMXsave =record

data:fpuJeg...save;
pad:MMXpad;

end;
tMMXsaved =array [regid] of MMXsave;
tMMXreg =array [regid] of MMX;
texponents =array [regid] of int16;
tXMMreg =array [regid] of XMM;
tpadS=array [1..14] of XMM;
XMMstatus =record

fcw:int16;
fsw:int16;
pad1:int8;
ftw:intB;
fop:intB;
fpuip:int32;
cs:int16;
pad2:int16;
fpudp:int32;
ds:int16;
pad3:int16;
mxcsr:int32;
pad4:int32;
MMXr:tMMXsaved;
XMMr:tXMMrea;

50

arbitrary

cache bank select

general registers
EFLAGS

tag word
control word
status word
opcode
instruction addr
code segment
data addr
data segment
MMx control reg

SIMD Programming Manual for Linux and Windows

Define Memory

We define the memory both as an array of bytes and as an array of 16-byte
vectors, because the SSE instructions have distinct aligned and unaligned
memory load instructions. We also define the level1 cache, (see Section 2.4.1).

const
memsize= 16777216;

type
alignment= (IA32,SSE);
tbytemem =array [O .. memsize - 1] of uintB;
tvecmem =array [O .. memsize div 16 - 1] of XMM;

var
mem:record

case alignment of
IA32: (bytemem:tbytemem);
SSE: (vecmem:tvecmem);

end;
Ieveil :array [0 .. 3] of array [0 .. 31] of array [0 .. 63] of uintB;
level2 :array [0 .. 8] of array [0 . .511] of array [0 .. 63] of uintB;
bank:integer;

Define Register State

We give a partial description of the register state of the processor including all
of the status vector that can be altered by the SIMD instruction-set.

type
tgeneral =array [regid] of integer;

var
MMXreg:tMMXreg;
exponents:texponents;
XMMreg:tXMMreg;
genera/:tgeneral;
ZF:boolean;
PF:boo/ean;
CF:boolean;

Status and control registers:

ftw:intB;
fcw:int76;
fsw:int76;
fop:intB;
fpuip:int32;
cs:int76;
fpudp:int32;
ds:int76;
mxcsr:int32;

Chapter 4 • Intel SIMD Instructions 51

Register Names

At the machine code level, all registers are simply numbered, but for historical
reasons Intel associate names with the general registers. The mapping from
register names to register numbers is

const
eax=O;
ecx= 1;
edx=2;
ebx=3;
esp=4;
ebp=S;
esi =6;
edi=7;

4.2 shrl

Define shift right logical in arithmetic terms.

function shrl (x:integer;c,w:integer):integer;
begin

shrl :=if c = 0 then x else shrl((x + 2) and not(2w-l),c - 1 ,w)
end;

4.3 saturate

function saturate (x,low,high:integer) :integer;

This function is used to define the effects of saturated arithmetic; it forces
the output to be within the bounds low ... high.

begin

end;

if x > high then saturate+--- high
else

if x < low then saturate+--- low
else

saturate+--- x

4.4 Instructions

Each instruction is now presented as a procedure to give the semantics; along
with this the NASM syntax for the instruction and the machines which support
it are given. We also provide a star rating for how useful the instructions are:

*** indicates that the instruction is important, and is likely to be of general
use in SIMD programming.

52 SIMD Programming Manual for Linux and Windows

** indicates that the instruction is useful, either as a replacement for existing
FPU instructions or in some specific SIMD contexts.

* indicates that the instruction is unlikely to be of use to the average SIMD
programmer.

4.4.1 ADDPS

Instruction ADDPS (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM ADDPSXMMreg,r/ml28

Add packed single-precision floating point. The source can be register or
16-byte aligned memory vector.

XMMregd.a +--- src.a + XMMregd.a

4.4.2 ADDSS

Instruction ADDSS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM ADDSSXMMreg,XMMreg/mem32

Scalar single floating point add. The source can be memory or XMM register.
This instruction is useful if one wants to do floating-point scalar arithmetic
without corrupting the MMX registers.

XMMregd.ao +--- src.ao + XMMregd.ao

4.4.3 ANDNPS

Instruction ANDNPS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM ANDNPSXMMreg,r/m128

And negated, src is register or 16-byte aligned memory vector.

XMMregd.g +--- src.g 1\ not XMMregd.g

4.4.4 ANDPS

Instruction ANDPS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM ANDPSXMMreg,r/m128

16-byte bitwise logical and.

XMMregd.g +--- src.g 1\ XMMregd.g;

Chapter 4 • Intel SIMD Instructions 53

We define an enumerated type for comparison operations that can be done
in parallel on packed floating-point values. These are passed as an 8-bit
immediate field to the comparison opcode.

type
fcomp = (feq,
fit
fie
funord
fneq
fnlt
fnle
ford);

4.4.5 CMPPS

Instruction CMPPS (d:regid;src:XMM;immB:fcomp);

** P3,P4,ATHLONXP
NASM CMPPS XMMreg, r /ml28, i mm8

Parallel single-precision floating-point comparison. Compares four pairs of
floats and creates a Boolean mask as a result. Such masks can then be used to
select results from other vectors. The src is either a register or a 16-byte aligned
vector. When writing assembler pass in the ordinal value of fcomp typed field
as a parameter.

var
i: 0 .. 3;

for;,_ 0 to 3 do
case immB of

{ -1
feq : XMMregd .c; +--- O

{ -1
fit : XMMregd .c; +--- O

{ -1
fie : XMMregd.c; +--- O

fneq: XMMregd.c; +--- { 0
-1

fnlt : XMMregd.c; +--- { O
-1

fnle : XMMregd.c; +--- { 0
-1

if XMMregd.a; = src.a;.
otherwise '

if XMMregd.a; < src.a;.
otherwise I

if XMMregd.a; :::; src.a;.
otherwise I

if XMMregd.a; = src.a;.
otherwise I

if XMMregd.a; < src.a;.
otherwise I

if XMMregd.a; :::; src.a;.
otherwise I

54 SIMD Programming Manual for linux and Windows

4.4.6 CMPSS

Instruction CMP55 (d:regid;src:XMM;immB:fcomp};

** P3,P4,ATHLONXP
NASM CMPSSXMMreg,r/m32,imm8

Scalar single-precision floating-point comparison. Compares a pair of floats
and creates a Boolean mask as a result.

The src is either a register or a memory location. There are no special
alignment requirements.

case immB of

{ -1 feq: XMMregd.co +-- 0

fit : XMMregd .co +-- { ~ 1

fie: XMMregd.co +-- { ~ 1

fneq: XMMregd.co +-- { 0
-1

fnlt: XMMregd.co +-- { 0
-1

fnle: XMMregd.co +-- { 0
-1

4.4.7 COMISS

Instruction COM/55 (d:regid;src:XMM};

** P3,P4,ATHLONXP
NASM COMISSXMMreg,r/m32

if XMMregd.ao = src.ao.
otherwise I

if XMMregd.ao < src.ao.
otherwise I

if XMMregd.ao ~ src.ao.
otherwise I

if XMMregd.ao = src.a0 •

otherwise I

if XMMregd.ao < src.ao.
otherwise I

if XMMregd.ao :::; src.ao.
otherwise I

SSE Scalar Compare and Set EFLAGS. Compares single-precision floating­
point numbers and set flags appropriately.

if XMMregd.ao = src.a0 then
begin

ZF+-true;
CF +---false;
PF+-false

end
else

if XMMregd.ao > src.a0 then
begin

ZF+-false;

Chapter 4 • Intel SIMD Instructions

CF<- false;
PF <--false

end
else
if XMMregd.a0 < src.a0 then

begin
ZF.-false;
CF<-true;
PF <--false

end
else

begin
ZF<-false;
CF <--false;
PF <--false

end;

4.4.8 CVTPI2PS

lnstrudion CVTPI2PS (d:regid;src:MMX);

* P3,P4,ATHLONXP
NASM CVTPI2PSXMMreg,r/m64

55

SSE Packed Integer to Floating-Point Conversion. Destination is lower two
words of XMM register; source is an MMX register or memory location.

XMMregd.ao <-- src.bo;
XMMregd.al <-- src.b1;

4.4.9 CVTPS2PI

Instruction CVTPS2PI (d:regid;src:XMM);

* P3,P4,ATHLONXP
NASM CVTPS2PIMMXreg,r/m64

SSE Packed Floating-point to Integer Conversion with rounding: source is
lower two words of XMM register or memory location; destination is an MMX
register.

MMXregd.bo <-- round (src.a0);
MMXregd.b1 <--round (src.al);

4.4.1 0 CVTIPS2PI

lnstrudion CVTTPS2PI (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM CVTTPS2PIMMXreg,r/m64

56 SIMD Programming Manual for Linux and Windows

SSE Packed Floating-point to Integer Conversion with truncation: source is
lower two words ofXMM register or memory location; destination is an MMX
register.

MMXregd.bo +- trunc (src.a0);

MMXregd.b1 +- trunc (src.a1);

4.4.11 CVTSI2SS

Instruction CVf51255 (d:regid;src:integer);

** P3,P4,ATHLONXP
NASM CVTSI2SSXMMreg,r/m32

SSE Scalar Integer to Floating-Point Conversion. Destination is lower word of
XMM register; source is a general register or memory location.

XMMregd.ao +- src;

4.4.12 CVTSS2SI

Instruction CVf5525/ (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM CVTSS2SI reg32.XMMreg/mem32

SSE Scalar Floating-Point to Integer Conversion. Destination is a general
register; source is lower word of XMM register or memory location.

generald +- round (src);

4.4.13 CVTTSS2SI

Instruction CVTT55251 (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM CVTTSS2SI reg32.XMMreg/mem32

SSE Scalar Floating-Point to Integer Conversion with truncation. Destination
is a general register; source is lower word of XMM register or memory
location.

general d +- trunc(src);

4.4.14 DIVPD

Instruction DIVPD (d:regid;src:XMM);

*** P4
NASM DIVPDXMMreg,r/m128

Packed Double-Precision FP Divide. Destination is an XMM register; source is
XMM register or memory location. Element by element division is performed.

Chapter 4 • Intel SIMD Instructions 57

var
i: 0 .. 1;

for i <-- 0 to 1 do
XMMreg b· <-- XMMregd.b;.

d· 1 src.bi '

4.4.15 DIVPS

Instruction 0/VPS (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM DIVPSXMMreg,r/m128

Packed Single-FP Divide. Destination is an XMM register; source is XMM
register or memory location. Element by element division is performed.

var
i: 0 . .3;

for i <-- 0 to 3 do
XMMreg a· <-- XMMregd.a;.

d· ' src.a; '

4.4.16 DIVSD

Instruction 0/VSO (d:regid;src:ieee64);

** P4
NASM DIVSSXMMreg,XMMreg/mem64

Scalar Double-FP Divide. Destination is low word of an XMM register; source
is XMM register low word or memory location. This is a useful alternative to
the use of the FPU stack for real arithmetic since it removes resource
contention between the FPU stack and the MMX registers.

XMMregd.bo <-- XMM;~;d·bo;

4.4.17 DIVSS

Instruction 0/VSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM DIVSSXMMreg,XMMreg/mem32

Scalar Single-FP Divide. Destination is low word of an XMM register; source is
XMM register low word or memory location.

XMMreg a <-- XMMregd.ao.
d·O src'

4.4.18 EMMS

Instruction EMMS;

*** K6,MMXPENTIUM,Athlon,P3,P4,ATHLONXP
NASM EMMS

58 SIMD Programming Manual for Linux and Windows

Empty MMX State. This sets the FPU tag word (marking which floating-point
registers are available) to all ones, meaning that all registers are available for
the FPU to use. All other MMX instructions clear the FPU TagW ord. This
clearing of the tag word invalidates any values currently on the FPU stack, so
that MMX instructions and FPU instructions cannot be mixed. EMMS should
be used after executing MMX instructions and before executing any
subsequent floating-point operations.

ftw+-$ff;

4.4.19 FXRSTOR

Instruction FXRSTOR (src:XMMstatus);

* P3,P4,ATHLONXP
NASM FXRSTORm512byte

Restore FP, MMX and SSE States. Loads the FP, MMX and XMM state from
a memory area. Area should previously have been saved by FXSA VE (see
Section 4.4.20).

var
i:regid;

few +- src.fcw;
fsw +- src.fsw;
ftw +- src.ftw;
fop+- src.fop;
fpuip +- src.fpuip;
cs +- src.cs;
fpudp +- src.fpudp;
ds +- src.ds;
mxcsr +- src.mxcsr;
fori+- Oto7do
begin

MMXreg; +- src.MMXr;.data.mmr;
exponents;+- src.MMXr;.data.exponent;
XMMreg; +- src.XMMr;;

end;

4.4.20 FXSAVE

Instruction FXSAVE (var dest'XMMstatus);

* P3,P4,ATHLONXP
NASM FXSAVEm512byte

Save FP, MMX and SSE States. This is mainly of use in context switching and
is unlikely to be used by applications coders. The processor retains the
contents of the FP and MMX state and Streaming SIMD Extension state in the
processor after the state has been saved. This instruction has been optimized to
maximize floating-point save performance.

Chapter 4 • Intel SIMD Instructions

var
i:regid;

dest.fcw <-- few;
dest.fsw <-- fsw;
dest.ftw <-- ftw;
dest.fop <-- fop;
dest.fpuip <-- fpuip;
dest.cs <-- cs;
dest.fpudp <-- fpudp;
dest.ds <-- ds;
dest.mxcsr <-- mxcsr;
for i <-- 0 to 7 do
begin

dest.MMXr;.data.mmr <-- MMXreg;;
dest.MMXr;.data.exponent <--exponents;;
dest.XMMr; <-- XMMreg;;

end;

4.4.21 MASKMOVQ

Instruction MASKMOVQ (r7,r2:regid);

* P4
NASM MASKMOVQ MMXreg ,MMXrege

59

Byte Mask Write. This is analogous to the the x86 string move instructions in
that it writes bytes in rl under the byte mask provided by r2 to a destination
specified by the (DS:) EDI register. This use of the EDI register as a destination
register is somewhat old-fashioned but was probably chosen because of the
need to provide a third operand to the instruction.

Note that this can be used in conjunction with comparison instructions that
set vector register elements to either -1 or 0. It will work after wordwise or
bytewise comparisons have been performed.

var
i:integer;

for i <-- 0 to 7 do
if MMXreg,2.e; < 0 then

mem.bytemem9eneraled1+i <-- MMXreg,,.e;;

4.4.22 MAXPD

Instruction MAXPD (d:regid;src:XMM);

** P4
NASM MAXPDXMMreg,r/m128

Packed Double-Precision FP Maximum. Destination is an XMM register;
source is XMM register or memory location. Element by element comparison
is performed.

60

var
i: 0 .. 1;

with XMMregd do
fori+- Oto 1 do

if src.b; > b; then
b; +--- src.b;;

4.4.23 MAXPS

SIMD Programming Manual for linux and Windows

Instruction MAXPS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM MAXPSXMMreg,r/ml28

Packed Single-FP Maximum. Destination is an XMM register; source is XMM
register or memory location. Element by element comparison is performed.

var
i: 0 .. 3;

with XMMregd do
for i +--- 0 to 3 do

if o; < src.o; then
o; +--- src.o;;

4.4.24 MAXSD

Instruction MAXSD (d:regid;src:ieee64);

** P4
NASM MAXSSXMMreg,XMMreg/mem64

Scalar Double-FP Maximum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

XMM b { src if (XMMregd.bo) < src.
regd. 0 +- XMMregd.bo otherwise I

4.4.25 MAXSS

Instruction MAXSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM MAXSSXMMreg,XMMreg/mem32

Scalar Single-FP Maximum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

XMM { src if XMMregd.ao < src.
regd.ao +- XMMregd.ao otherwise I

Chapter 4 • Intel SIMD Instructions

4.4.26 MINPD

Instruction MINPD (d:regid;src:XMM);

** P4
NASM MINPDXMMreg,r/m128

61

Packed Double-Precision FP Minimum. Destination is an XMM register;
source is XMM register or memory location. Element by element comparison
is performed.

var
i: 0 .. 1;

with XMMregd do
for i +- 0 to 1 do

if src.b; < b; then
b; +- src.b;;

4.4.27 MINPS

Instruction MINPS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM MINPSXMMreg,r/ml28

Packed Single-FP Minimum. Destination is an XMM register; source is XMM
register or memory location. Element by element comparison is performed.

var
i: 0 .. 3;

with XMMregd do
for i +- 0 to 3 do

if a; > src.a; then
a;<---- src.a;;

4.4.28 MINSD

Instruction MINSD (d:regid;src:ieee64);

** P4
NASM MINSSXMMreg,XMMreg/mem64

Scalar Double-FP Minimum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

{
src

XMMregd.bo +--- XMM b regd. o

4.4.29 MINSS

Instruction MINSS (d:regid;src:ieee32);

** P3,P4.ATHLONXP
NASM MINSSXMMreg,XMMreg/mem32

if (XMMregd.bo) > src .
otherwise '

62 SIMD Programming Manual for Linux and Windows

Scalar Single-FP Minimum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

{
src

XMMregd.ao +-- vMM
A1 regd.ao

4.4.30 MOVAPSJoad

Instruction MOVAPS_Ioad (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM MOVAPSXMMreg,r/ml28

if XMMregd.ao > src.
otherwise '

Packed Single-FP Aligned Load. Destination is an XMM register; source is
XMM register or a 16-byte aligned memory location. For unaligned moves,
use MOVUPS.

XMMregd <---- src;

4.4.31 MOVAPS_store

Instruction MOVAPS_store (d:regid;var dest:XMM);

** P3,P4,ATHLONXP
NASM MOVAPSr/ml28.XMMreg

Packed Single-FP Aligned Store. Source is an XMM register; destination is
XMM register or a 16-byte aligned memory location. This shares its assembler
mnemonic with MOVAPSJoad (see Section 4.4.30).

4.4.32 MOVDJoad

Instruction MOVD_Ioad (d:regid;src:int32);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM MOVD MMX reg, r /m32

32-Bit MMX Load. Destination is an MMX register, source is a general register
or a memory location. It cannot be used to move words between MMX
registers.

with MMXregd do
begin

b0 <----src;
bl f- 0;

Chapter 4 • Intel SIMD Instructions

4.4.33 MOVD_store

Instruction MOVD_store (d:regid;var dest:int32);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM MOVDr/m32,MMXreg

63

32-Bit MMX Store. Destination is a general register or a memory location;
Source is low 32-bit word of an MMX register. It cannot be used to move
words between MMX registers.

dest +-- MMXregd.b0;

4.4.34 MOVDJoad_sse

Instruction MOVD _load_sse (d:regid;src:int32);

** P4
NASM MOVDXMMreg,r/m32

32-Bit XMM Load. Destination is an XMM register; source is a general register
or a memory location. It cannot be used to move words between XMM
registers.

with XMMregd do
begin

Co+-- src;
c, +-- 0;
c2 +-- 0;
c3 +-- 0;

4.4.35 MOVD_store_sse

Instruction MOVD_store_sse (d:regid;var dest:int32);

** P4
NASM MOVDr/m32,XMMreg

32-Bit XMM Store. Destination is a general register or a memory location;
source is low 32-bit word of an XMM register.

dest +-- XMMregd.c0;

4.4.36 MOVHLPS

Instruction MOVHLPS (r7,r2:regid);

** P3,P4,ATHLONXP
NASM MOVHLPSXMMreg,XMMreg

SSE Move High to Low. Moves top 8 bytes in r2 to bottom 8 bytes in rl. Both
operands are XMM registers.

XMMreg,7.ao .. 1 +-- XMMreg,2.a2 .. 3;

64 SIMD Programming Manual for Linux and Windows

4.4.37 MOVHPSJoad

Instruction MOVHPS_Ioad (r7:regid;src:MMX);

** P3.P4,ATHLONXP
NASM MMOVHPSXMMreg,mem64

SSE Move High Packed Single Precision. Moves two single-precision floats to
the high pair of words in an XMM register. The lower two floats in the register
do not change. Source is in memory.

XMMreg,1.a2 .• 3 +-- src.go .. ,;

4.4.38 MOVHPS...store

Instruction MOVHPS_store (r1:regid;var destMMX);

* P3,P4,ATHLONXP
NASM MOVHPSmem64,XMMreg

SSE Move High Packed Single Precision. Moves two single-precision floats
from the high pair of words in an XMM register. Destination is in memory.

dest.g0 .. 1 +-- XMMreg,1.a2 .. 3;

4.4.39 MOVLHPS

Instruction MOVLHPS (r7 ,r2:regid);

* P3,P4,ATHLONXP
NASM MOVLHPSXMMreg,XMMreg

SSE Move High to Low. Moves bottom 8 bytes in r2 to top 8 bytes in rl. Both
operands are XMM registers.

4.4.40 MOVLPSJoad

Instruction MOVLPS_Ioad (r1 :regid;src:MMX);

* P3,P4,ATHLONXP
NASM MMOVLPSXMMreg,mem64

SSE Move Low Packed Single Precision. Moves two single precision floats to
the low pair of words in an XMM register. The lower two floats in the register
do not change. Source is in memory.

4.4.41 MOVLPS...store

Instruction MOVLPS_store (r1:regid;var dest:MMX);

Chapter 4 • Intel SIMD Instructions 65

* P3,P4,ATHLONXP
NASM MOVLPSmem64,XMMreg

SSE Move Low Packed Single Precision. Moves two single-precision floats
from the low pair of words in an XMM register. Destination is in memory.

dest.g0 .. , ,__ XMMreg,l.ao .. ,;

4.4.42 MOVMSKPS

Instruction MOVMSKPS (dest,src:regid);

** P3,P4,ATHLONXP
NASM MOVMSKPSr,XMMreg

Move Packed Single-Precision Mask Bits to Integer. Source is an XMM
register; destination a general register. The bottom 4 bits of the general register
are set to the signbits of the 32-bit integers in the XMM register.

var
i: 0 . .3;

generaldest ,__ 0;
with XMMregsrc do

for i ,__ 3 downto 0 do
if C; < 0 then

generaldest ,__ generaldest + i;

4.4.43 MOVNTPS

Instruction MOVNTPS (d:regid;var dest:XMM);

** P3.P4.ATHLONXP
NASM MOVNTPSmemlZB,XMMreg

Packed Single-FP Aligned Store without cache pollution. Source is an XMM
register; destination is a 16-byte aligned memory location. The register is
stored in memory directly without going into the cache.

4.4.44 MOVNTQ

Instruction MOVNTQ (s:regid;var dest:MMX);

** P3,P4,ATHLONXP
NASM MOVNTQmem64,MMXreg

Quadword Store without cache pollution. Source is an MMX register; destina­
tion is a memory location. The register is stored in memory directly without
going into the cache. No alignment restrictions are imposed on this instruction.

66 SIMD Programming Manual for Linux and Windows

4.4.45 MOVQJoad

Instruction MOVQ_/oad (dest:regid;src:MMX);

*** Pent i urn with MMX, K6. P3. P4. ATH LONXP
NASM MOVQ MMX reg, r /rn64

Move Quadword to MMX Register. Destination is an MMX register; source is
either another MMX register or a memory location. This shares an assembler
mnemonic with MOVQ_store.

MMXregdest +-- src;

4.4.46 MOVQ_store

Instruction MOVQ_store (var dest:MMX;src:regid);

*** Pent i urn with MMX. K6. P3. P4. ATH LONXP
NASM MOVQr/rn64,MMXreg

Move Quadword to MMX Register. Source is an MMX register; destination is
either another MMX register or a memory location. This shares an assembler
mnemonic with MOVQJoad.

dest +-- MMXreg,,c;

4.4.47 MOVSSJoad

Instruction MOVSS_Ioad (dest:regid;src:ieee32);

** P3.P4,ATHLONXP
NASM MOVSSXMMreg,r/rn32

Move Quadword to MMX Register. Destination is the low 32-bit word of an
XMM register; source is either another XMM register or a memory location.
This shares an assembler mnemonic with MOVSS_store.

XMMregdest·ao +--src;

4.4.48 MOVSS...store

Instruction MOVSS_store (var dest:ieee32;src:regid);

** PentiurnwithMMX,K6,P3,P4,ATHLONXP
NASM MOVSSr/m32,XMMreg

Move Quadword to MMX Register. Source is a the low 32 bits of an XMM
register; the destination is either another XMM register or a memory location.
This shares an assembler mnemonic with MOVSSJoad.

Chapter 4 • Intel SIMD Instructions

4.4.49 MOVUPSJoad

Instruction MOVUPS_Ioad (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM MOVUPSXMMreg,r/m128

67

Packed Single-FP Unaligned Load. Destination is an XMM register; source is
XMM register or a 16-byte memory location. This is more generally useful
than MOVAPS 4.4.30 but runs significantly slower. However, for many image
processing applications it is impossible to ensure that the operands are 16-byte
aligned. In this case MOVUPS should be used.

The performance overhead is sufficiently great that it often pays to use the
MMX registers rather than the XMM registers if unaligned loads and stores
must be used, since there are no alignment restrictions on the MOVQ
instruction used to load the MMX registers.

XMMregd +--- src;

4.4.50 MOVUPS..store

Instruction MOVUPS_store (d:regid;var dest:XMM);

*** P3,P4,ATHLONXP
NASM MOVUPSr/m128,XMMreg

Packed Single-FP Unaligned Store. Source is an XMM register; destination is
XMM register or a 16-byte memory location. This shares its· assembler
mnemonic with MOVUPSJoad (see Section 4.4.49).

dest +--- XMMregd;

4.4.51 MULPD

Instruction MULPD (d:regid;src:XMM);

** P4
NASM MULPDXMMreg,r/m128

Packed Double-Precision FP Multiply. Destination is an XMM register; source
is XMM register or memory location. Element by element multiplication is
performed. If unaligned access is used, this instruction has no performance
advantage over the use of the FPU stack.

var
i: 0 .. 1;

for i +--- 0 to 1 do
XMMregd.b; +--- (XMMregd.b;) x src.b;;

4.4.52 MULPS

Instruction MULPS (d:regid;srcXMM);

*** P3,P4,ATHLONXP
NASM MULPSXMMreg,r/ml28

68 SIMD Programming Manual for Linux and Windows

Packed Single-FP Multiply. Destination is an XMM register; source is XMM
register or memory location. Element by element multiplication is performed.
It is faster than the use of the FPU stack even when unaligned accesses are used.

var
i: 0 . .3;

for i +- 0 to 3 do
XMMregd.a; +- (XMMregd.a;) x src.a;;

4.4.53 MULSD

Instruction MULSD (d:regid;src:ieee64);

** P4
NASM MULSSXMMreg,XMMreg/mem64

Scalar Double-FP Multiply. Destination is low word of an XMM register;
source is XMM register low word or memory location. This is a useful
alternative to the use of the FPU stack for real arithmetic since it removes
resource contention between the FPU stack and the MMX registers.

XMMregd.bo +- (XMMregd.bo) x src;

4.4.54 MULSS

Instruction MULSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM MULSSXMMreg,XMMreg/mem32

Scalar Single-FP Multiply. Destination is low word of an XMM register; source
is XMM register low word or memory location.

XMMregd.a0 +- (XMMregd.ao) x src;

4.4.55 ORPS

Instruction ORPS (d:regid;src:XMM);

** P4
NASM ORPSXMMreg,r/ml28

128-Bit Or. Destination is an XMM register; source is XMM register or
memory location. It is faster to use the MMX equivalent instruction POR
when unaligned accesses are used.

var
i: 0 . .3;

for i +- 0 to 3 do
XMMregd.c; +- (XMMregd.c;) V src.c;;

Chapter 4 • Intel SIMD Instructions

4.4.56 PACKSSDW

Instruction PACKSSDW (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PACKSSDW MMXreg, r /m64;

69

Pack double to word with saturation. This takes a pair of 64-bit operands and
packs the double words in the pair into the destination. It is useful for
converting a vector of integers to a vector of shorts.

var
c : array [0 .. 3) of int32;
i: 0 .. 3;

Co .. 1 +- MMXregdest·bo .. l;
c2.3 +- src.b0 .. 1;

for i +- 0 to 3 do
if ci > 32767 then MMXregdest.Ci +- 32767
else if ci < -32768 then MMXregdest·Ci+- -32768
else MMXregdest·Ci +- ci;

4.4.57 PACKSSWB

Instruction PACKSSWB (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PACKSSWBMMXreg,r/m64;

Pack word to byte with saturation. This takes a pair of 64-bit operands and
packs the words in the pair into the destination. It is useful for converting a
vector of shorts to a vector of signed bytes.

var
d :array [0 .. 7) of int76;
i: 0 .. 7;

do . .3 +- MMXregdest·C0 .. 3;
d4 .. 7 +- src.co . .3;

for i +- 0 to 7 do
if di > 127 then MMXregdest·ei+- 127
else if di < -128 then MMXregdest·ei +- -128
else MMXregdest·ei +- di;

4.4.58 PACKUSWB

Instruction PACKUSWB (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PACKUSWBMMXreg,r/m64;

Pack word to unsigned byte with saturation. This takes a pair of 64-bit
operands and packs the words in the pair into the destination. It is useful for
converting a vector of shorts to a vector of unsigned bytes.

70 SIMD Programming Manual for linux and Windows

var
d : array [0 . .7] of int76;
i: 0 . .7;

do .. 3 +--- MMXregdest·Co . .3;
d4 .. 7 +--- src.c0 .. 3;

for i +--- 0 to 7 do
if d; > 255 then MMXregdesr.f; +--- 255
else if d; < 0 then MMXregdest·f; +--- 0
else MMXregdesr.f; +--- d;;

4.4.59 PADDB

Instruction PADDB (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDBMMXreg,r/m64;

Packed byte addition in MMX registers. Performs parallel element by element
addition of all of the bytes in the source and destination. Source can be in
memory.

var
i: 0 . .7;

with MMXregdest do
for i +--- 0 to 7 do f; +--- f; + src.f;;

4.4.60 PADDB....sse

Instruction PADDB_sse (dest:regid;src:XMM);

** P4
NASM PADDBXMMreg,r/m128;

Packed byte addition in XMM registers. Performs parallel element by element
addition of all of the bytes in the source and destination. Extended version for
XMM registers. Memory operands must be 16-byte aligned. It is not competit­
ive in speed with the MMX version unless aligned memory operands are used,
since unaligned use requires two instructions an unaligned load followed by
the arithmetic operation.

var
i: 0 .. 15;

with XMMregdest do
for i +--- 0 to 15 do f; +--- f; + src.f;;

4.4.61 PADDW

Instruction PADDW (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDW MMXreg, r /m64;

Chapter 4 • Intel SIMD Instructions 71

Packed word addition in MMX registers. Performs parallel element by element
addition of all of the words in the source and destination.

var
i: 0 .. 3;

with MMXregdest do
for i +--- 0 to 3 do c; +--- c; + src.c;;

4.4.62 PADDW _sse

Instruction PADDW_ sse (dest:regid;src:XMM);

** P4
NASM PADDWXMMreg,r/ml28;

Packed word addition in XMM registers. Performs parallel element by element
addition of all of the words in the source and destination. Extended version for
XMM registers. Memory operands must be 16-byte aligned. It is not competit­
ive in speed with the MMX version unless aligned memory operands are used,
since unaligned use requires two instructions an unaligned load followed by
the arithmetic operation.

var
i: 0 .. 7;

with XMMregdest do
for i +--- 0 to 7 do d; +--- d; + src.d;;

4.4.63 PADDD

Instruction PADDD (dest:regid;src:MMX);

*** PentiumMMX,K6.P3.P4.ATHLONXP
NASM PADDDMMXreg,r/m64;

Packed doubleword addition in MMX registers. Performs parallel element by
element addition of all of the 32-bit integers in the source and destination.

var
i: 0 .. 3;

begin
with MMXregdest do

begin
bo +--- bo + src.bo;
b1 +--- b1 + src.b1;

end;

4.4.64 PADDD_sse

Instruction PADDD_sse (dest:regid;src:XMM);

** P4
NASM PADDDXMMreg,r/ml28;

72 SIMD Programming Manual for Linux and Windows

Packed double word addition in XMM registers. Performs parallel element by
element addition of all of the 32-bit integers in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i: 0 .. 3;

with XMMregdest do
for i +--- 0 to 15 do c; +--- c; + src.c;;

4.4.65 PADDQ

Instruction PADDQ (destregid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDQMMXreg,r/m64;

Quadword addition in MMX registers. Performs addition of the 64-bit
integers in the source and destination. The EFLAGS are not set on overflow.

var
i: 0 .. 3;

with MMXregdest do a+--- a+ src.a;

4.4.66 PADDQ_sse

Instruction PADDQ_sse (destregid;src:XMM};

** P4
NASM PADDQXMMreg,r/m128;

Packed quadword addition in XMM registers. Performs parallel element by
element addition of all of the 64-bit integers in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i: 0 .. 1;

with XMMregdest do
for i +--- 0 to 1 do h; +--- h; + src.h;;

4.4.67 PADDSB

Instruction PADDSB (destregid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDSBMMXreg,r/m64;

Chapter 4 • Intel SIMD Instructions 73

Packed byte addition in MMX registers with saturation. Performs parallel
element by element addition of all of the bytes in the source and destination.
Source can be in memory.

var
i: 0 .. 7;

with MMXregdest do
for i +-- 0 to 7 do

e; +--saturate ((e; + src.e;), -128, 127);

4.4.68 PADDSB__sse

Instruction PADDSB_sse (dest:regid;src:XMM);

** P4
NASM PADDSBXMMreg,r/ml28;

Packed saturated signed byte addition in XMM registers. Performs parallel
element by element addition of all of the bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i: 0 .. 15;

with XMMregdest do
for i +-- 0 to 15 do

f; +--saturate (f; + src.f;, -128, 127);

4.4.69 PADDUSB

Instruction PADDUSB (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDUSBMMXreg,r/m64;

Packed byte addition in MMX registers with unsigned saturation. Performs
parallel element by element addition of all of the bytes in the source and destina­
tion. Source can be in memory.

var
i: 0 .. 7;

with MMXregdest do
for i +-- 0 to 7 do

f; +-- saturate ((f; + src.f;), 0, 255);

74 SIMD Programming Manual for linux and Windows

4.4.70 PADDUSB....sse

Instruction PADDUSB_sse (dest:regid;src:XMM);

** P4
NASM PADDUSBXMMreg,r/ml28;

Packed saturated unsigned byte addition in XMM registers. Performs parallel
element by element addition of all of the bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i: 0 .. 15;

with XMMregdest do
fori+- 0 to 15 do

g; +---saturate (g; + src.g;, 0, 255);

4.4.71 PAND

Instruction PAND (destregid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PANDMMXreg,r/m64;

Quadword and in MMX registers. Performs and of the 64-bit integers in the
source and destination.

var
i: 0 . .3;

with MMXregdest do
for i +--- 0 to 3 do

d; +--- d; 1\ src.d;;

4.4.72 PAND....sse

Instruction PAND_sse (dest:regid;src:XMM);

** P4
NASM PANDXMMreg,r/ml28;

Packed quadword and in XMM registers. Performs parallel and of all of the
bits in the source and destination. Extended version for XMM registers.
Memory operands must be 16-byte aligned. It is not competitive in speed with
the MMX version unless aligned memory operands are used, since unaligned
use requires two instructions an unaligned load followed by the arithmetic
operation.

Chapter 4 • Intel SIMD Instructions

var
i: 0 . .3;

with XMMregdest do
fori+-Oto3do

C; +- c; 1\ src.c;;

4.4.73 PANDN

Instruction PANDN (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PANDNMMXreg,r/m64;

75

Quadword and in MMX registers. Performs and of the bits in the source and
the negated destination.

var
i: 0 .. 1;

for i +- 0 to 1 do
with MMXregdest do b +- (not b) and src.b;

4.4.74 PANDN..sse

Instruction PANDN_sse (dest:regid;src:XMM);

** P4
NASM PANDNXMMreg,r/m128;

Packed quadword and in XMM registers. Performs parallel element by element
and of all of the bits in the source and the negated destination. Extended
version for XMM registers. Memory operands must be 16-byte aligned. It is
not competitive in speed with the MMX version unless aligned memory
operands are used, since unaligned use requires two instructions an unaligned
load followed by the arithmetic operation.

var
i: 0 .. 3;

with XMMregdest do

for i +- 0 to 3 do c; +- (not c;) and src.e;;

4.4.75 PAVGB

Instruction PAVGB (dest:regid;src:MMX);

*** PentiumMMX.K6,P3,P4,ATHLONXP
NASM PAVGBMMXreg,r/m64;

Packed byte unsigned average. Performs parallel element by element average of
all of the pairs of bytes in the source and destination. Source can be in
memory.

76

var
i: 0 . .7;

with MMXregdest do
for i +-- 0 to 7 do

f; +-- (f; + src.f;);

4.4.76 PAVGB_sse

SIMD Programming Manual for Linux and Windows

Instruction PAVGB_sse (destregid;src:XMM);

** P4
NASM PAVGBXMMreg,r/m128;

Packed unsigned byte average in XMM registers. Performs parallel element by
element average of all of the pairs of bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned.

var
i: 0 .. 15;

with XMMregdest do
for i +-- 0 to 15 do

g. g1+src.g1•
I t- 2 I

4.4.77 PAVGW

Instruction PAVGW (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PAVGW MMX reg, r /m64;

Packed word unsigned average. Performs parallel element by element average of
all of the pairs of words in the source and destination. Source can be in memory.

var
i: 0 . .3;

with MMXregdest do
for i +-- 0 to 3 do

d. +-- d1 + src.d1•
I 2 '

4.4.78 PAVGW_sse

Instruction PAVGW_sse (dest:regid;src:XMM);

** P4
NASM PAVGbXMMreg,r/m128;

Packed unsigned word average in XMM registers. Performs parallel element by
element addition of all of the pairs of words in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned.

Chapter 4 • Intel SIMD Instructions

var
i: 0 . .7;

with XMMregdest do
for i <--- 0 to 1 5 do

e; +-- e, +~rc.e,;

4.4.79 PCMPEQB

Instruction PCMPEQB (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPEQBMMXreg,r/m64;

77

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with Off indicating true. Source can be in memory.

var
i: 0 . .7;

with MMXregdest do
for i <--- 0 to 7 do

(; { 255 if (f; = src.f;).
1 +- 0 otherwise '

4.4.80 PCMPEQB_sse

Instruction PCMPEQB_sse (dest:regid;src:XMM);

** P4
NASM PCMPEQBXMMreg,r/ml28;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with 0 f f indicating true. Source can be in memory, but if so must
be 16-byte aligned.

var
i: 0 .. 15;

with XMMregdest do
fori<--- 0 to 15 do

g. { 255 if (gi = src.gi).
If- I

0 otherwise

4.4.81 PCMPEQW

Instruction PCMPEQW (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMP EQW MMX reg, r /m64;

78 SIMD Programming Manual for linux and Windows

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of bytes in the source and destination. Generates a vector of
mask words with 0 f f f f indicating true. Source can be in memory.

var
i: 0 . .3;

with MMXregdest do
for i <--- 0 to 3 do

c- <--- { -1 if (ci = src.ci) .
1 0 otherwise '

4.4.82 PCMPEQW _sse
Instruction PCMPEQW_sse (dest:regid;src:XMM);

** P4
NASM PCMPEOWXMMreg,r/ml28;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of words in the source and destination. Generates a vector of
mask words with 0 f f f f indicating true. Source can be in memory, but if so
must be 16-byte aligned.

var
i: 0 .. 7;

with XMMregdest do
for i <--- 0 to 7 do

d· { -1 if (di = src.di).
' +-- 0 otherwise '

4.4.83 PCMPEQD

Instruction PCMPEQD (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPEODMMXreg,r/m64;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0 f f f f f f f f indicating true. Source can
be in memory.

var
i: 0 .. 1;

with MMXregdest do
for i <--- 0 to 1 do

b· <--- { -1 if (bi = src.bi)
1 0 otherwise;

Chapter 4 • Intel SIMD Instructions 79

4.4.84 PCMPEQD_sse

Instruction PCMPEQD_sse (destregid;src:XMM);

** P4
NASM PCMPEQDXMMreg,r/m128;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0 f f f f f f f f indicating true. Source can
be in memory, but if so must be 16-byte aligned.

var
i: 0 .. 3;

with XMMregdest do
fori+-Oto3do

C. { -1 if (c; = src.c;).
I+--- ' 0 otherwise

4.4.85 PCMPGTB

Instruction PCMPGTB (dest:regid;src:MMX);

*** PentiumMMX.K6,P3.P4,ATHLONXP
NASM PCMPGTBMMXreg,r/m64;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with Off indicating true. Source can be in memory.

var
i: 0 .. 7;

with MMXregdest do
for i +--- 0 to 7 do

&. { 255 if (f; > src.f;). ,, +-- ,
0 otherwise

4.4.86 PCMPGTB_sse

Instruction PCMPGTB_sse (destregid;src:XMM);

** P4
NASM PCMPGTBXMMreg,r/m128;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with 0 f f indicating true. Source can be in memory, but if so must
be 16-byte aligned.

80 SIMD Programming Manual for linux and Windows

var
i: 0 .. 15;

with XMMregdest do
fori+- 0 to 15 do

g. { 255 if (gi > src.gi).
I+- ' 0 otherwise

4.4.87 PCMPGTW

Instruction PCMPGTW (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPGTWMMXreg,r/m64;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of bytes in the source and destination. Generates a vector of
mask words with 0 f f f f indicating true. Source can be in memory.

var
i: 0 . .3;

with MMXregdest do
for i +- 0 to 3 do

c· { -1 if (ci > src.ci).
1 +- 0 otherwise '

4.4.88 PCMPGTW __sse
Instruction PCMPGTW_sse (dest:regid;src:XMM);

** P4
NASM PCMPGTWXMMreg,r/ml28;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of words in the source and destination. Generates a vector of
mask words with 0 f f f f indicating true. Source can be in memory, but if so
must be 16-byte aligned.

var
i: 0 .. 7;

with XMMregdest do
for i +- 0 to 7 do

d. { -1 if (di > src.di).
I+- ' 0 otherwise

4.4.89 PCMPGTD

Instruction PCMPGTD (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPGTDMMXreg,r/m64;

Chapter 4 • Intel SIMD Instructions 81

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0 ff ff ff ff indicating true. Source can
be in memory.

var
i: 0 .. 1;

with MMXregdest do
for i +--- 0 to 1 do

b. { -1 if (b; > src.b;).
I+--- I

0 otherwise

4.4.90 PCMPGTD_sse

Instruction PCMPGTD_ sse (dest:regid;src:XMM);

** P4
NASM PCMPGTDXMMreg,r/ml28;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0 ff ff f ff f indicating true. Source can
be in memory, but if so must be 16-byte aligned.

var
i: 0 .. 3;

with XMMregdest do
for i +--- 0 to 3 do

c· { -1 if (c; = src.c;).
1 +--- 0 otherwise I

4.4.91 PEXTRW

Instruction PEXTRW (r,m:regid;wordno:0 . .3);

** P4
NASM PEXTRWreg32,MMXreg,imm8;

Extract word from MMX register. The word in the MMX register m selected
by wordno is copied to the general register r.

general,+--- MMXregm.dwordno;

4.4.92 PEXTRW _sse

Instruction PEXTRW_sse (r~x:regid;wordno:0 .. 7);

** P4
NASM PEXTRWreg32,XMMreg,imm8;

Extract word from MMX register. The word in the XMM register x selected by
wordno is copied to the general register r.

general,+--- XMMregx.ewordno;

82 SIMD Programming Manual for Linux and Windows

4.4.93 PINSRW

Instruction P/NSRW (r,x:regid;wordno:uintB);

** P4
NASM PINSRWMMXreg,r/ml6,imm8;

Insert word in MMX register. Copies bottom 16 bits of a general register into
word of MMX register.

MMXregx.ewordno ,_general,;

4.4.94 PMADDWD

Instruction PMADDWD (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PMADDWDMMXreg,r/m64;

Packed Multiply accumulate. Used for computing inner product of two
vectors of int16s. An example is given in Alg. 16. On entry we assume that two
arrays x, y each contain 4n words, and that ecx is initialised to n. At exit the
inner product is held in the bottom 32 bits of mmO.

lea esi ,[x-8]
lea edi ,[y-8]
pxor mm2,mm2
ll:movq mm0,[esi+ecx*8]
pmaddwd mm0,[edi+ecx*8];
paddd mm2,mm0
loop 11
movq mmO,mm2
psrlq mm0,32
padd mmO,mm2

clear register
get first 4 ints from array x

loop for all sub vectors
copy subtotal
shift down high word
add high and low words

Algorithm 16. Inner product in assembler

var
temp:mmx;
i;

for i ,_ 0 to 1 do
begin

j f- 2 Xi;
temp.bi ,_ MMXregdest·Cj x SfC.Cj + MMXregdest·Cj+l x src.ci+l;

end;
MMXregdest ,_ temp;

4.4.95 PMAXSW

Instruction PMAXSW (d:regid;src:MMX);

Chapter 4 • Intel SIMD Instructions 83

*** P4
NASM PMAXSWMMXreg,r/m64

Packed 16-bit signed integer Maximum. Destination is an MMX register;
source is MMX register or memory location. Element by element comparison
is performed.

var
i: 0 .. 3;

with MMXregd do
for i +-- 0 to 3 do
if c; < src.c; then
C; +-- src.c;;

4.4.96 PMAXUB

Instruction PMAXUB (d:regid;src:MMX);

*** P4
NASM PMAXUBMMXreg,r/m64

Packed Unsigned Byte Maximum. Destination is an MMX register; source is
MMX register or memory location. Element by element comparison is
performed.

var
i: 0 . .7;

with MMXregd do
fori+-Oto7do

if f; < src.f; then
f; +-- src.f;;

4.4.97 PMINSW

Instruction PMINSW (d:regid;src:MMX);

*** P4
NASM PMINSWMMXreg,r/m64

Packed 16-bit signed integer Minimum. Destination is an MMX register;
source is MMX register or memory location. Element by element comparison
is performed.

var
i: 0 . .3;

with MMXregd do
for i +-- 0 to 3 do

if C; > src.c; then
c; +-- src.c;;

84 SIMD Programming Manual for Linux and Windows

4.4.98 PMINUB

Instruction PM/NUB (d:regid;src:MMX);

*** P4
NASM PMINUBMMXreg,r/m64

Packed Unsigned Byte Minimum. Destination is an MMX register; source is
MMX register or memory location. Element by element comparison is
performed.

var
i: 0 . .7;

with MMXregd do
for i +--- 0 to 7 do

if f; > src.f; then
f; +--- src.f;;

4.4.99 PMOVMSKB

Instruction PMOVMSKB (d,m:regid);

* P4
NASM PMOVMSKBreg32,MMXreg

Move Byte Mask to Integer Register. Source is an MMX register; destination a
general register.

The sign bits of the bytes are put into a mask byte stored in a general register.

var
i: 0 . .7;
t:integer;

t+- 0;
with MMXregm do

for i +--- 7 downto 0 do
begin

if e;< 0 then
t+-t+1;

t +--- t X 2;
end;
generald +--- t;

4.4.100 PMULHUW

Instruction PMULHUW (dest:regid;src:MMX);

** P4
NASM PMULHUW MMXreg, r/m64

Packed Multiply High Unsigned Word. Destination is an MMX register;
source is MMX register or memory location. Element by element multi­
plication is performed and the top 16 bits of the results are retained.

Chapter 4 • Intel SIMD Instructions

var
i: 0 .. 3;
t:integer;

with MMXregdesr do
for i +--- 0 to 3 do
begin

t +--- d; x src.d;;
d;+- t 16;

end;

4.4.101 PMULHW

lnstrudion PMULHW (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PMULHWMMXreg,r/m64

85

Packed Multiply High Signed Word. Destination is an MMX register; source is
MMX register or memory location. Element by element multiplication is
performed and the top 16 bits of the results are retained. This is ideal for
multiplying together vectors of signed binary fractions or fixed point numbers
represented as 16-bit integers.

var
i: 0 .. 3;
t:integer;

with MMXregdest do
fori+-Oto3do
begin

t +--- d; x src.d;;
d;+- t 16;

end;

4.4.102 PMULLW

lnstrudion PMULLW (dest:regid;src:MMX);

** PentiumMMX.K6,P3,P4,ATHLONXP
NASM PMULLWMMXreg,r/m64

Packed Multiply High Signed Word. Destination is an MMX register; source is
MMX register or memory location. Element by element multiplication is
performed and the bottom 16 bits of the results are retained.

var
i: 0 .. 3;
t:integer;

with MMXregdest do
for i +--- 0 to 3 do
begin

86

t +--- d1 x src.d1;

d; +--- t 1\ 65535;
end;

4.4.103 POR

SIMD Programming Manual for Linux and Windows

Instruction POR (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PORMMXreg,r/m64;

Quadword OR in MMX registers. Performs OR of the 64-bit integers in the
source and destination.

var
i: 0 .. 3;

with MMXregdest do
for i +--- 0 to 3 do

d1 +--- d1 V src.d1;

4.4.104 PREFETCHNTA

Instruction PREFETCHNTA (loc:integer);

** P3,P4,ATHLONXP
NASM PREFETCHNTAmem

Loads a cache line into the level 1 data cache. This is equivalent to the
PREFETCH instruction used by AMD.

leve/1 bank, (foe 6)/\31,0 .. 61 +--- mem.bytememloc..loc+63;
bank+--- (bank+ 1)mod 4;

4.4.1 OS PREFETCHT1

Instruction PREFETCHT7 (loc:integer);

** P3,P4,ATHLONXP
NASM PREFETCHTl mem

Loads a cache line into the level 2 data cache. It leaves level 1 unchanged.

leve/2bank, (loc.;-64)/\51 1, o .. 61 +--- mem.bytememtoc..loc+63;
bank+--- (bank+ 1)mod 4;

4.4.1 06 PREFETCHTO

Instruction PREFETCHTO (loc:integer);

** P3,P4,ATHLONXP
NASM PREFETCHTO mem

Chapter 4 • Intel SIMD Instructions

Loads a cache line into the level 1 and level 2 data cache.

/eve/7 bank, (lac +64) A 31, o,61 <-- mem. bytemem toc .. toc+63;

fevef2bank, (/oc+64)A511, 0 .. 61 <-- mem.bytemem/oc../oc+63;
bank<-- (bank+ 1)mod 4;

4.4.1 07 PSADBW

Instruction PSADBW (dest:regid;src:MMX);

** P4
NASM PSADBWMMXreg,r/m64;

87

Computes the sum of the absolute differences of the signed bytes in the
destination register and those in the source operand. It then places this sum in
the lowest word of the destination register and sets the three other words to
zero.

begin
with MMXregdest do

begin

end;

co <-- I: abs(f"' - src.f"');
C1 . .3 <-- 0;

end;

4.4.1 08 PSHUFD

Instruction PSHUFD (dest:regid;src:XMM;immB:uintB);

** P4
NASM PSHUFDXMMreg,r/ml28,imm8;

Performs a permutation of the 32-bit source words using the four 2-bit integer
fields in the 8-bit immediate operand.

var
p: array [0 .. 3] of 0 .. 3;
i: 0 .. 3;

Po <-- immB mod 4;
P1 <-- em:;s) mod 4;

P2 <-- e~~8) mod 4;
P3 <-- (i";,~8) mod 4;

with XMMregdest do
for i <-- 0 to 3 do

4.4.109 PSHUFW

Instruction PSHUFW (dest:regid;src:MMX;immB:uintB);

** P4
NASM PSHUFWMMXreg,r/m64,imm8;

88 SIMD Programming Manual for Linux and Windows

Performs a Permutation of the 16-bit source words using the four 2-bit integer
fields in the 8-bit immediate operand.

var
p: array [0 .. 3] of 0 .. 3;
i: 0 .. 3;

Po +- immB mod 4;
PI +- em:a) mod 4;
P2 +- e~~8) mod 4;
P3 +- emt;8) mod 4;
with MMXregdest do

fori+-0to3do

4.4.11 0 PSxxf

lnstrudion PSxxf (dest:regid;count:uintB;xx-shifts;f:formats);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PSLLWMMXreg,r/m64;

PSLLW MMXreg, i mm8;
PSLLDMMXreg,r/m64;
PSLLDMMXreg,imm8;
PSLLQ MMXreg, r/m64;
PS LLQ MMX reg, i mm8;
PSRAW MMXreg, r/m64;
PS RAW MMX reg, i mm8;
PSRADMMXreg,r/m64;
PSRAD MMXreg, i mm8;
PSRLWMMXreg,r/m64;
PSRLW MMX reg, i mm8;
PSRLDMMXreg,r/m64;
PSRLDMMXreg,imm8;
PSRLQ MMX reg, r /m64;

Packed shift instructions. The LL instructions shift left logically, the RL right
logically shifting in 0. The RA shift right arithmetically, propagating the sign
bit. The count can either be in an MMX register, in memory or in an
immediate field.

var
i:integer;

if f=q then
with MMXregdest
do

case xx of
LL: a+- a X 2count;

RA: a +- 2C~n,;
RL: a+- shrl(a, count, 64);

Chapter 4 • Intel SIMD Instructions

end
else

if f=d then
with MMXregdesr do
for i +--- 0 to 1 do

case xx of
LL: b;+- b; X 2count;

R'"· b +--- ...EL_. n. i 2countf

RL: b; +--- shr/ (b;, count, 32);
end
else

with MMXregdest do
for i +--- 0 to 3 do

4.4.111 PSUBx

case xx of
LL: C; +--- C; X 2count;

RA : C; +--- -Fok;
RL: C; +--- shrl (c;, count, 16);

end;

Instruction PSUBx (destregid;src:MMX;x:formats);

*** PentiumMMX.K6,P3,P4,ATHLONXP
NASM PSUBW MMX reg, r /m64:

PSUBDMMXreg,r/m64;
PSUBWMMXreg,r/m64;

89

Perform signed unsaturated subtraction on two MMX register sized vectors.

var
i:integer;

case x of
b: fori+--- 0

MMXregdesr·e; +--- MMXregresr.e; - src.e;;
w: fori+- 0

MMXregdest·Ci +--- MMXregdesr.C; - src.c;;
d: fori+--- 0

MMXregdest·b; +--- MMXregdest·bi - src.b;;
end;

4.4.112 PSUBSx

Instruction PSUBSx (dest:regid;src:MMX;x:formats);

** PentiumMMX,K6,P3,P4,ATHLONXP
Nasm Syntax PSUBSB MMX reg, r /m64;

PSUBSW MMX reg, r /m64;

Perform signed saturated subtraction on two MMX register sized vectors.

90

var
i:integer;

case x of
b: fori+--- 0

SIMD Programming Manual for Linux and Windows

MMXregdesr.e; +-Saturate (MMXregdest·e;- src.e;, -128, 127);
w: fori +--- 0

MMXregdest·C; +--- saturate(MMXregdest·C; - src.c;, - 32768, 32767);
end;

4.4.113 PSUBUSx

Instruction PSUBUSx (dest:regid;src:MMX;x:formats);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PSUBUSBMMXreg,r/m64;

PSUBUSWMMXreg,r/m64;

Perform unsigned saturated subtraction on two MMX register sized vectors.

var
i:integer;

case x of
b: fori+- 0

MMXregdest·f; +--- saturate(MMXregdest·f; - src.f;, 0, 255);
w: fori+- 0

MMXregdest·d; +--- saturate(MMXregdest·d; - src.d;, 0, 65535);
end;

4.4.114 PSWAPD

Instruction PSWAPD (destregid;src:MMX);

** PentiumMMX,K6,P3,P4.ATHLONXP
NASM PSWAPDMMXreg,r/m64;

Packed Swap Doubleword. Copies the source operand to the destination
register, swapping the upper and lower halves in the process.

MMXregdest·bo +--- src.b,;
MMXregdest·b, +--- src.bo;

4.4.115 PUNPCKHBW

Instruction PUNPCKHBW (destregid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKHBWMMXreg,r/m64;

Packed interleave high bytes. Top 4 bytes from each operand are interleaved. If
the first operand held Ox? A6A5A4A3A2A1AOA and the second held
Ox? B6B5B4B3B2Bl BOB, then PUN PC KHBW would return Ox?B 7 A6B6A5-
B5A4B4A.

Chapter 4 • Intel SIMD Instructions

var
t:MMX;
i:integer;

fori+-Oto3do
begin

t.e;x2 +- src.e;+4;
t.e;x2+1 +- MMXregdest·ei+4;

end;
MMXregdest +- t;

4.4.116 PUNPCKLBW

Instruction PUNPCKLBW (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLBWMMXreg,r/m64;

91

Packed interleave low bytes. Bottom 4 bytes of each operand are interleaved.

var
t:MMX;
i:integer;

fori+-Oto3do
begin

t.e;x2 +- src.e;;
t.e;x2+1 +- MMXregdest·e;;

end;
MMXregdest +- t;

4.4.117 PUNPCKHWD

Instruction PUNPCKHWD (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKHWDMMXreg,r/m64;

Packed interleave high words. Top 2 words from each operand are interleaved.

var
t:MMX;
i:integer;

for i +- 0 to 1 do
begin

t.C;x2 +- src.c;+2;
t.C;x2+1 +- MMXregdest·Ci+2;
MMXregdest +- t;

4.4.118 PUNPCKLWD

Instruction PUNPCKLWD (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLWDMMXreg,r/m64;

92 SIMD Programming Manual for Linux and Windows

Packed interleave low words. Bottom 2 words of each operand are interleaved.

var
tMMX;
i:integer;

for i +- 0 to 1 do
begin

t.C;x2 +- src.c;;
t.C;x2+1 +- MMXregdest·C;;
MMXregdest +- t;

4.4.119 PUNPCKHDQ

Instruction PUNPCKHDQ (destregid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKHDOMMXreg,r/m64;

Packed interleave high double words. Top double words from each operand
are interleaved.

var
tMMX;
i:integer;

t.bo +- src.b,;
t.b1 +- MMXregdest·b,;
MMXregdest +- t;

4.4.120 PUNPCKLDQ

Instruction PUNPCKLDQ (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLDOMMXreg,r/m64;

Packed interleave low double words. Bottom double words from each operand
are interleaved.

var
tMMX;
i:integer;

t.bo +- src.bo;
t.b1 +- MMXregdest·bo;
MMXregdest +- t;

4.4.121 PXOR

Instruction PXOR (dest:regid;src:MMX);

*** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PXORMMXreg,r/m64;

Chapter 4 • Intel SIMD Instructions 93

Quadword XOR in MMX registers. Performs XOR of the 64-bit integers in the
source and destination.

var
i: 0 . .3;

with MMXregdest do
fori+-Oto3do

d; +--- (d; v src.d;)/\ not (d; 1\ src.d;);

4.4.122 RCPPS

Instruction RCPPS (dest:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM RCPPSXMMreg,r/m128;

SSE Packed Single-FP Reciprocal Approximation. For each of the four 32-bit
floating-point numbers in the source operand RCPPS calculates an approxi­
mation of the reciprocal and stores it in the corresponding quarter of the
destination register. The absolute value of the error for each of these
approximations is at most 3/8192. It use is illustrated in Alg. 17.

var
i: 0 .. 3;

for i +--- 0 to 3 do
XMMregdest·Oi +--- sr~.01;

; for i:=O to 3 do x[i]:=y[i]/z[i]
movdqu xmmO,[ebp+lOOJ
movdqu xmml,[ebp+ll6]
rcpps xmml,xmml
mulps xmmO.xmml
movdqu [ebp+32],xmm0

Algorithm 17. Use of RCPPS.

4.4.123 RCPSS

Instruction RCPSS (dest:regid;src:ieee32);

*** P3,P4,ATHLONXP
NASM RCPSSXMMreg,XMMreg/mem32;

SSE Scalar Single-FP Reciprocal. This is a scalar equivalent to RCPPS.

XMMregdest·Oo +--- 5k;

4.4.124 RSQRTPS

Instruction RSQRTPS (dest:regid;src:XMM);

** P3,P4,ATHLONXP
NASM RSQRTPSXMMreg,r/m128;

94 SIMD Programming Manual for linux and Windows

SSE Packed Single-FP Square Root Reciprocal Approximation. For each of the
four 32-bit floating-point numbers X; in the source operand RCPPS calculates
an approximation of 1/ jXi and stores it in the corresponding quarter of the
destination register. The absolute value of the error for each of these
approximations is at most 3/8192.

var
i: 0 . .3;

for i +--- 0 to 3 do
XMMregdest·Gi +--- J,c.a;;

4.4.125 RSQRTSS

Instruction RSQRTSS (dest:regid;src:ieee32);

*** P3,P4,ATHLONXP
NASM RSORTSSXMMreg,XMMreg/mem32;

SSE Scalar Single-FP Reciprocal Square Root. This is a scalar equivalent to
RSQRTPS. It use is illustrated in Alg. 18. This normalises a four element
single-precision vector, i.e. it takes an arbitrary vector in 4-space and projects
it on to the unit hyper-sphere.

XMMregdest·Go +--- Jrc;

movdqu xmmO.[ebp+lOOJ load vector
movdqu xmml.xmmO copy it
mulps xmml,xmml square it
pshufd xmm2 ,xmml, OOOOlllOb; move high words to low
addps xmml,xmm2 add top and bottom halves
pshufd xmm2. xmml, OOOOOOOlb ; word[OJ<-word[l]
addss xmml,xmml form sum of squares
rsqrtss xmml,xmml form sqrt
pshufd xmm2 ,xmml, OOOOOOOOb; replicate to vector
mulps xmmO.xmm2 normalise
movdqu [ebp+32J,xmm0 store

Algorithm 18. Use of RSQRTSS to normalise a vector.

4.4.126 SFENCE

Instruction SFENCE;

** P3,P4
NASM SFENCE

SFENCE guarantees that all store instructions which precede it in the program
order are globally visible before any store instructions which follow it. This
relates to the use of the MOVNTPS instruction. The non-temporal store instruc­
tion minimizes cache pollution while writing data. The main difference between

Chapter 4 • Intel SIMD Instructions 95

a non-temporal store and a regular cacheable store is in the write-allocation
behaviour. With a normal store the processor will fetch the corresponding cache
line into the cache hierarchy prior to performing the store. For a non-temporal
store, if the data are not present in the cache hierarchy, the transaction will be
weakly ordered; consequently, you are responsible for maintaining coherency.
Non-temporal stores will not write allocate cache lines. Different implementa­
tions may choose to collapse and combine these stores inside the processor.

Since the cache may not have been updated, a subsequent fetch may obtain
outdated copies of the data. Within well-defined assembler loops one may be
able to guarantee that the data written with MOVNTPS will not be accessed
again within your loop. When the assembler loop exits, however, then code
outside the assembler loop may access the data so written. To ensure
coherence, the SPENCE instruction should be issued after any sequence or
loop that uses non-temporal stores.

4.4.127 SQRTPS

Instruction SQRTPS (dest:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM SQRTPSXMMreg,r/m128;

SSE Packed Single-FP Square Root. For each of the four 32-bit floating-point
numbers Xi in the source operand RCPPS calculates y'Xi and stores it in the
corresponding quarter of the destination register.

var
i: 0 . .3;

for i +- 0 to 3 do
XMMregdest·Gi +- y'src.a;;

4.4.128 SQRTSS

Instruction SQRTSS (dest:regid;src:ieee32);

*** P3,P4,ATHLONXP
NASM SQRTSSXMMreg,XMMreg/mem32;

SSE Scalar Single-FP Square Root. This is a scalar equivalent to SQRTPS.

XMMregdest·Go +- v'sfC;

4.4.129 SUBPS

Instruction SUBPS (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM SUBPSXMMreg,r/m128

Subtract packed single-precsion floating point. Source can be register or 16-
byte aligned memory vector.

XMMregd.a +- src.a- XMMregd.a

96 SIMD Programming Manual for Linux and Windows

4.4.130 SUBSS

Instruction SUBSS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM SUBSSXMMreg,XMMreg/mem32

Scalar single floating-point subtract. Source memory or XMM register. This
instruction is useful if one wants to do floating-point scalar arithmetic without
corrupting the MMX registers.

XMMregd.ao +-- src.ao- XMMregd.ao

4.4.131 UNPCKHPS

Instruction UNPCKHPS (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM UNPCKHPSXMMreg,r/m128

Unpack High Packed Single-FP Data. Source can be register or 16-byte aligned
memory vector.

begin
with XMMregd do
begin

ao +-- a2;
a1 +-- src.a2;
a2 +-- a3;
a3 +-- src.a3;

end;
end;

4.4.132 UNPCLPS

Instruction UNPCLPS (d:regid;src:XMM);

*** P3,P4,ATHLONXP
NASM UNPCKLPSXMMreg,r/m128

Unpack Low Packed Single-FP Data. Source can be register or 16-byte aligned
memory vector.

begin
with XMMregd do

begin
ao +-- ao;
a1 +-- src.ao;
a2 +-a1;
a3 +-- src.a1;

end;
end;

Chapter 4 • Intel SIMD Instructions

4.4.133 XORPS

Instruction XORPS (dest:regid;src:XMM);

** P4
NASM XORPSXMMreg,r/m128;

97

Quadword XOR in MMX registers. Performs XOR of the 128-bit integers in
the source and destination. Because the memory operand must be 16-byte
aligned, use PXOR in preference to this. For most uses it will be faster.

var
i: 0 .. 7;

with XMMregdest do
for i +-- 0 to 7 do

d; +-- (d; v src.d;)l\ not(d; A src.d;);

3DNOW Instructions

These instructions assume the data structures declared in the previous chapter.

5.0.1 FEMMS

Instruction FEMMS;

* K6, At hlon
NASM FEMMS

Fast Empty MMX State. This is a faster AMD version of EMMS.

ftw +-Sff;

5.0.2 PF21D

Instruction PF2/D (destregid;src:MMX);

*** K6, Ath l on
NASM PF2IDMMXreg,r/m64;

3DNOW Packed floating point to integer. Converts two floating-point values
to a pair of integers using truncation. Source can be in memory or a register.

with MMXregdest do
begin

b0 +--- trunc(src.g0);

b1 +--- trunc(src.g1);

end;

5.0.3 PFACC

Instruction PFACC (dest:regid;src:MMX);

** K6,At hlon
NASM PFACCM MXr eg , r / m64;

3DNOW Packed floating-point accumulate. This is useful in multiply accumu­
late sequences such as those involved in inner product operations, or in
summing a vector.

99

100

with MMXre9dest do
begin

9o +-- 9o + 91;
91 +-- src.91 + src.9o;

end;

5.0.4 PFADD

SIMD Programming Manual for linux and Windows

lnstrudion PFADD (dest:re9id;src:MMX);

*** K6,Athlon
NASM PFADDMMXreg,r/m64:

3DNOW Packed floating-point add. Parallel add of two floating-point values.
Source can be in memory or a register.

with MMXre9dest do
begin

9o +-- 9o + src.9o;
91 +-- 91 + src.91;

end;

5.0.5 PFCMPEQ

lnstrudion PFCMPEQ (destre9id;src:MMX);

*** K6,Athlon
NASM PFCMPEOMMXreg,r/m64;

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Offffffff, otherwise set to 0. Source can be in memory or a register.

with MMXre9dest do
begin

bo +-- { ~ 1

b1 +-- { ~ 1

end;

if 9o = src.9o.
otherwise '

if 91 = src.91.
otherwise '

5.0.6 PFCMPGT

lnstrudion PFCMPGT (destre9id;src:MMX);

*** K6,Athlon
NASM PFCMPGTMMXreg,r/m64:

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Offffffff, otherwise set to 0. Source can be in memory or a register.

Chapter 5 • 3DNOW Instructions

with MMXregdest do
begin

bo +-- {~ 1

b, +-- { ~1
end;

if go > src.go.
otherwise '
if g1 > src.g,.
otherwise '

5.0.7 PFCMPGE

Instruction PFCMPGE (dest:regid;src:MMX);

*** K6,Athlon
NASM PFCMPGEMMXreg,r/m64;

101

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Offffffff, otherwise set to 0. Source can be in memory or a register.

with MMXregdest do
begin

bo +-- {~ 1

b, +-- { ~1
end;

if 9o ~ src.go.
otherwise '
if g1 ~ src.g,.
otherwise '

5.0.8 PFMAX

Instruction PFMAX (destregid;src:MMX);

*** K6,Athlon
NASM PFMAXMMXreg,r/m64;

3DNOW Packed floating-point maximum. Finds the greater of each of two
pairs of floating-point values. Source can be in memory or a register.

with MMXregdest do
begin

+--{go
9o src.go

+-- {g, g, src.g1

end;

5.0.9 PFMIN

if go > src.go.
otherwise '

if g1 > src.g1•

otherwise '

Instruction PFMIN (destregid;src:MMX);

*** K6,Athlon
NASM PFMINMMXreg,r/m64;

102 SIMD Programming Manual for Linux and Windows

3DNOW Packed floating-point minimum. Finds the minimum of each of two
pairs of floating-point values. Source can be in memory or a register.

with MMXregdest do
begin

<--- { 9o 90 src.go

{ g,
g, <--- src.g1

end;

5.0.1 0 PFMUL

if 9o < src.go,
otherwise '
if g1 < src.g1•

otherwise '

Instruction PFMUL (dest:regid;src:MMX);

*** K6,Athlon
NASM PFMULMMXreg,r/m64;

3DNOW Packed floating-point multiply. Parallel mutiply of two floating­
point values. Source can be in memory or a register.

with MMXregdest do
begin

9o <--- 9o x src.go;
g1 <--- g1 x src.g1;

end;

5.0.11 PFNACC

Instruction PFNACC (dest:regid;src:MMX);

* Athlon
NASM PFNACCMMXreg,r/m64;

3DNOW Packed floating-point negative accumulate. This is the subtraction
equivalent of PFACC; it is of little use.

with MMXregdest do
begin

9o <--- 9o- g,;
g1 <--- src.g1 - src.go;

end;

5.0.12 PFPNACC

Instruction PFPNACC (dest:regid;src:MMX);

* Athlon
NASM PFPNACCMMXreg,r/m64;

3DNOW Packed floating-point negative accumulate. This is an odd mix of
PFNACC and PFACC; it is of little use.

Chapter 5 • 3DNOW Instructions

with MMXregdest do
begin

9o +--- 9o- g,;
g, +--- src.g, + src.g0;

end;

5.0.13 PFRCP

Instruction PFRCP (destregid;src:ieee32);

** K6,Athlon
NASM PFRCPMMXreg,r/m32;

103

3DNOW Floating point Reciprocal. The divide operation takes longer on com­
puter hardware than other mathematical operators. Some high-performance
machines avoid using a divide and substitute a reciprocal operation. The
PFRCP operation computes a reciprocal approximation accurate to 14 bits.
Note that unlike other 3DNOW instructions, this instruction takes a scalar
argument. This is either a 32-bit memory operand or the lower 32 bits of an
MMX register. The approximate reciprocal is stored in both halves of the
result register.

This instruction has two deficiencies:

1. the fact that it operates on scalars rather than on vectors
2. its limited accuracy.

In combination, these make it difficult for a parallelising compiler to make use
of it. It remains possible for hand coded instructions to use it, for instance in
normalising a vector.

with MMXregdest do
begin

9o +--- sk;
g, f- sk;

end;

5.0.14 PFRCPIT

Instruction PFRCPIT (destregid;src:ieee32);

**
Syntax

K6,Athlon
PFRCPIT1MMXreg,r/m32;
PFRCPIT2MMXreg,r/m32;

3DNOW Floating-point Reciprocal Iteration step 1. This applies Newton­
Raphson iteration to converge on the result of the floating-point reciprocal.
Both PFRCPITl and PFRCPIT2 must be executed in succession. The iteration
relation is

Xi+I = x;(l - b x Xi)

104

Newton-Raphson

SIMD Programming Manual for Linux and Windows

to compute 1/ b. It can be used in conjunction with PFRCP to perform division
as shown in Alg. 19 will perform the assignment z -t ~- The first argument of the
instruction must have been the source of a PFRCP instruction and the second
argument must have been the output of the same PFRCP instruction.

movd mmO, [x]
pfrcp mml,mmO
punpckldq mmO,mmO
pfrcpitl mmO,mml
pfrcpit2 mmO,mml
movd mmO, [y]

pfmul mmO,mm2
movd [z],mmO

var

Algorithm 19. Use of PFRCP.

x: array [0 .. 1] ofieee32;
b: ieee32;

begin
b +--- MMXregdest·go;
xo +--- src;
X1 +--- Xo X (2 - b X Xo);

with MMXregdest do
begin

go+--- x1;
g1 +-X1;

end;

5.0.15 PFSUB

Instruction PFSUB (destregid;src:MMX);

*** K6,Athlon
NASM PFSUBMMXreg,r/m64;

3DNOW Packed floating-point subtract. Parallel subtraction of two floating­
point values. Source can be in memory or a register.

with MMXregdest do
begin

go +---go- src.go;
g1 +--- g1 - src.g1;

end;

5.0.16 PFSUBR

Instruction PFSUBR (destregid;src:MMX);

*** K6,Athlon
NASM PFSUBRMMXreg,r/m64;

Chapter 5 • 3DNOW Instructions 105

3DNOW Packed floating-point reverse-order subtract. Parallel subtraction of
two floating-point values. Source can be in memory or a register.

with MMXregdesr do
begin

9o <---- src.go - 9o;
91 <---- src.g1 - 91;

end;

5.0.17 PI2FD

Instruction P/2FD (dest:regid;src:MMX);

*** K6,Athlon
NASM PI2FDMMXreg,r/m64;

3DNOW Packed integer to floating-point conversion. Converts two integers
to floating-point values. There may be a loss of precision. Source can be in
memory or a register.

with MMXregdesr do
begin

9o <---- src.bo;
91 <---- src.b1;

end;

5.0.18 PI2FW

Instruction P/2FW (dest:regid;src:MMX);

*** Athlon
NASM PI2FWMMXreg,r/m64;

3DNOW Packed int16 to floating-point conversion. Converts two 16-bit
integers to floating-point values. Source can be in memory or a register.

with MMXregdest do
begin

9o <---- src.co;
91 <---- src.c2;

end;

5.0.19 PREFETCH

Instruction PREFETCH (loc:integer);

*** K6, Athlon
NASM PRE FETCH mem

Loads a cache line into the level 1 data cache. PREFETCHW does the same,
but also marks the cache line as modified.

leve/7 bank,(loc 6)/\31,0 .. 61 <---- mem.bytememloc..loc+63;
bank <---- (bank+ 1) mod 4;

Part II

SIMD Programming Languages
Paul Cockshott

Another Approach:
Data Parallel Languages

There has been sustained research within the parallel programming community
into the exploitation of SIMD parallelism on multi-processor architectures.
Most work in this field has been driven by the needs of high-performance
scientific processing, from finite element analysis to meteorology. In particular,
there has been considerable interest in exploiting data parallelism in Fortran
array processing, culminating in High Performance Fortran, Fortran 90 and F
(Metcalf and Reid, 1996). Typically this involves two approaches. First, operators
may be overloaded to allow array-valued expressions, similar to APL. Second,
loops may be analysed to establish where it is possible to unroll loop bodies
for parallel evaluation. Compilers embodying these techniques tend to be archi­
tecture specific to maximise performance and they have been aimed primarily
at specialised super-computer architectures, even though contemporary general
purpose microprocessors provide similar features, albeit on a far smaller scale.

In the period since SIMD programming was pioneered on super-computers,
a set of well-defined programming abstractions has been developed to enable
coders to take advantage of the parallelism offered by SIMD processors (Ewing
et al., 1999):

• operations on whole arrays
• array slicing
• conditional operations
• reduction operations
• data reorganisation.

We will next consider these abstractions in more detail and look at their
support in existing languages, in particular J, Fortran 90 (Ewing et al., 1999) and
NESL (Blelloch, 1995). These languages are not currently available as tools to the
MMX programmer, but it is instructive to see how they deal with array
abstraction. J is an interpretive data parallel language which runs on PCs. Being
interpretive, it is of interest not so much for its speed as for its conceptual
model. Fortran 90 is a compiled language typically targeted at super-computers.
NESL is a compiled functional language targeted at highly parallel machines.

6.1 Operations on Whole Arrays

The basic conceptual mechanism for whole array operations is the map, which
takes an operator and one or more source arrays, and produces a result array

109

110 SIMD Programming Manual for Linux and Windows

by mapping the source(s) under the operator. Thus, if x,y are arrays of integers
k = x + y is the array of integers where lq = x; + yi:

Similarly, if we have a unary operator J.L:(T ~ T) then we automatically
have an operator J.L:(T[] ~ T[]). Thus, z = sqr(x) is the array where Zi = ;xf:

l4l9l2sl = sqr(12 13 Is I)

Map replaces the bounded iteration or for loop abstraction of classical imperat­
ive languages. The map concept is simple, and maps over lists are widely used in
functional programming. For array-based languages there are complications to
do with the semantics of operations between arrays of different lengths and
different dimensions. Iverson (1980) provided a consistent treatment of these.
Recent languages built round this model are J, an interpretive language (Iverson,
1991, 2000; Burke, 1995), High Performance Fortran (Ewing et al., 1999), F
(Metcalf and Reid, 1996) a modem Fortran subset and NESL an applicative data
parallel language and ZPL (Snyder, 1999). In principle any language with array
types can be extended in a similar way.

The map approach to data parallelism is machine independent. Depending
on the target machine, a compiler can output sequential, SIMD or MIMD
code for it. In particular map may be exploited through implementation­
independent algorithmic skeletons (Cole, 1989) based on parallel templates for
process farms which are instantiated with appropriate sequential arguments
from the original source program (Michaelson et al., 2001).

Recent implementations of Fortran, such as Fortran 90, F and High Perfor­
mance Fortran, provide direct support for whole array operations. Given that
A,B are arrays with the same rank and same extents, the statements

1. REAL,DIMENSIONC64): :A,B
2. A=3.0
3. B=B+SQ RTC A) *0. 5

would be legal, and would operate in a pointwise fashion on the whole arrays.
Thus, line 1 initialises every element of array A to 3 . 0 and line 2 sets each
element of array B to 0 . 5 times the corresponding element of A.

Intrinsic functions, such as SQRT, are defined to operate either on scalars or
arrays, but are part of the language rather than part of a subroutine library. User­
defined functions over scalars do not automatically extend to array arguments.

J1 similarly allows direct implementation of array operations, although here
the array dimensions are deduced at run time:

l.>a=.1235
2. >a

1 We will give examples from J rather than APL here for ease of representation in ASCII.

Chapter 6 • Another Approach: Data Parallel Languages 111

3. 1 2 3 5
4. > b=.1 2 4 8
5. > a+b
6. 2 4 7 13

The pair = • is the assignment operator in J so line 1 initialises a new array a of
length 4 and line 4 initialises a new array b of length 4. Line 2 displays the
value of a and line 5 calculates and displays the array formed by summing
corresponding elements of a and b.

Unlike Fortran, J automatically overloads user defined functions over arrays:

7. > sqr=:&2
8. > c=.1 2 4 8
9. > c+(sqr a)*0.5

10. 1. 5 4 8. 5 20. 5

Here, line 7 defines a new monadic function s q r by partially applying the
binary power function " to the exponent 2. Line 8 then initialises array c and
line 9 calculates and displays the array formed by adding each element of c to
half the square of the corresponding element of a.

The functional language NESL provides similar generality. The first J example
above could be expressed as

1. a+b: a in [1 , 2, 3, 5 J ; b in [1 , 2, 4, 8 J ;
2. ==*' [2 , 4 , 7 , 13 J : [i n t J

and the second example as

3. b+sqr(a)*0.5: a in [1,2,3,5]; bin [1,2,4,8];
4. ==*' [1. 5 , 4 , 8 . 5 , 2 0 . 5 J : [flo a t J

The Apply-to-Each construct, also known as comprehensions, are descended
from the ZF notations used in SETL (Schwartz et al., 1986) and MIRANDA
(Turner, 1986). Thus line 1 finds the sum of the successive elements of the
sequences [1 , 2, 3, 5 J bound to a and [1 , 2 , 4, 8 J bound to b. Similarly, line
3 finds the sum of successive elements of b and half the square of the
successive elements of a.

Again, user-defined functions can be applied element-wise to sequences.

6.1.1 Array Slicing

It is advantageous for many applications to be able to specify sections of arrays
as values in expression. The sections may be rows or columns in a matrix or
a rectangular sub-range of the elements of an array, as shown in Figure 6.1.
In image processing, such rectangular sub-regions of pixel arrays are called
regions of interest. It may also be desirable to provide matrix diagonals
(van der Meulen, 1977).

112 SIMD Programming Manual for Linux and Windows

1 1 1 1
1 2 4 8
1 2 4 16
1 2 8 512

1 1 1 1
1 2 4 8
1 2 4 16
1 2 8 512

1 1 1
1 2 4 1 8
lL_____!j 16

2 8 512

Figure 6.1. Different ways of slicing the same array.

The notion of array slicing was introduced to imperative languages by
ALGOL 68 (Tannenbaum, 1976). In ALGOL 68 if x has been declared as
[1 : 10] I NT x, then x [2: 6] would be a slice consisting of the second through
the sixth elements inclusive that could be used on the right of an assignment or
as an actual parameter.

Fortran 90 extends this notion to allow what it calls triplet subscripts, giving
the start position end position and step at which elements are to be taken from
arrays. For example:

REAL. 0 I MENS I 0 N (1 0 , 10) : :A, B
A(2:9,1:8:2)=B(3:10,2:9:2)

would be equivalent to the loop nest

DOl,J=l,8,2
DO 2, J=2. 9

A(l,J)=B(l+1,J+1)
2 CONTINUE
1 CONTINUE

J allows a similar operation to select subsequences. For example:

1. >a=. 2*i .10
2. >a
3. 0 2 4 6 8 10 12 14 16 18
4. >3 {a
5. 6

Here, i . n is a function which produces a list of the first n elements of an array
starting with element 0. Line 1 constructs an array where each element is
double its subscript. The symbol { is the sequence subscription operator so
line 4 selects the element at index 3.

Chapter 6 • Another Approach: Data Parallel Languages 113

Selection of a subsequence is performed by forming a sequence of indices.
For example:

6. > (2+i . 3){a
7. 4 6 8

In line 6, the expression 2+i . 3 forms the sequence 2 3 4 which then
subscripts the array a.

NESL does not offer a direct equivalent to slicing.

6.1.2 Conditional Operations

Much data parallel programming is based on the application of some
operation to a subset of the data selected through a mask. This can be thought
of as providing a finer grain of selection than sub-slicing, allowing arbitrary
combinations of array elements to be acted on. For example, one might want
to replace all elements of an array A less than the corresponding element in
array B with that element of B:

1 2 4 8 A
2 3 4 5 B
1 1 0 0 A<B
2 3 4 8

Fortran 90 provides the WHERE statement to update selectively a section of
an array under a logical mask:

REAL, DIMENSION (64):: A
REAL, DIMENSION (64):: B
WHERE CA>=B)

A=A
ELSE WHERE

A=B
END WHERE

The WHERE statement is analogous to ALGOL 68 and C conditional expressions,
but extended to operate on arrays. It can be performed in parallel on all
elements of an array and lends itself to evaluation under a mask on SIMD
architectures.

NESL provides a generalised form of Apply-to-Each in which a sieve can be
applied to the arguments. For example:

1. a+b: a in [1,2,3]; bin [4,3,2] I a<b
2. => [5 , 5 J : [i n t J

In line 1, a and b are constrained by the requirement that each element of a
must be less than the corresponding element of b.

Notice that in NESL, as in J, values are allocated dynamically from a heap so
that the length of the sequence returned from a sieved Apply-to-Each can be

114 SIMD Programming Manual for linux and Windows

less than that of the argument sequences in its expression part. In Fortran 90,
the W H ERE statement applies to an array whose size is known on entry to the
statement.

6.1.3 Reduction Operations

In a reduction operation, a dyadic operator is injected between the elements of
a vector or the rows or columns of a matrix to produces a result of lower rank.
Examples include forming the sum or finding the maximum or minimum of a
table. For example, + would reduce:

to 1 + 2 + 4 + 8 = 15
The first systematic treatment of reduction operations in programming

languages is due to Iverson (1962). His it reduction functional takes a dyadic
operator and, by currying, generates a tailored reduction function. In APL and
J the reduction functional is denoted by I. Thus +I is the function which
forms the sum of an array:

l.>a
2. 1 2 3 5
3. >+I a
4. 11

In line 3, the reduction +I a expands to (1 + (2 + (3 + (4 + 0)))).
The interpretation of reduction for non commutative operators is slightly

less obvious. Consider:

5. > -I a
6. 3

In line 6, _3 is the J notation for -3, derived from the expansion of (1 - (2-
(3 - 4(-0)))) from - I a in line 5. In J as in APL, reduction applies uniformly
to all binary operators.

Fortran 90, despite its debt to APL, is less general, providing a limited set
of built-in reduction operators on commutative operators: SUM, PRODUCT,
MAX VAL, MIN VAL. NESL likewise provides a limited set of reduction functions
s u m, m i n v a l , max v a l , any, a l l . where a n y and a l l are Boolean reductions:
a n y returns t rue if at least one element of a sequence is true, i.e. disjunctive
reduction; a l l returns true if they are all true, i.e. conjunctive reduction.

6.1.4 Data Reorganisation

In both linear algebra and image processing applications, it is often desirable
to be able to perform bulk reorganisation of data arrays, for example to
transpose a vector or matrix or to shift the elements of a vector.

For example, one can express the convolution of a vector with a three-element
kernel in terms of multiplications, shifts and adds. Let a = II 1214181 be a

Chapter 6 • Another Approach: Data Parallel Languages 115

vector to be convolved with the kernel k = I 0.25 I 0.51 0.251. This can be

expressed by defining two temporary vectors:

b = 0.25a = I 0.25 I 0.5 II 12 I
c = 0.5a = I 0.511 12141

and then defining the result to the sum under shifts of b,c:

II 12141 8 I convolve I 0.251 0.5j 0.25 I =

0.5 1 2 2 b << 1
0.5 1 2 4 c
0.25 0.25 0.5 1 + b >> 1

1.25 2.25 4.5 7

This example replicates the trailing value when shifting. In other circum­
stances, for example when dealing with cellular automata, it is convenient to
be able to define circular shifts on data arrays.

~8
transposes to 2 16

4 32

Figure 6.2. Reorganising by transposition.

Fortran 90 provides a rich set of functions to reshape, transpose and circu­
larly shift arrays. For example, given a nine-element vector v, we can reshape it
as a 3 by 3 matrix:

V= (I 1. 2. 3. 4, 5. 6, 7, 8, 9 /)
M=RESHAPECV.C/3,3/))

to give the array

1 2 3
4 5 6
7 8 9

We can then cyclically shift this along a dimension

M2=CSHIFTCM,SHIFT=2,DIM=2)

to give

3 1 2
6 4 5
9 7 8

116 SIMD Programming Manual for linux and Windows

NESL provides similar operations on sequences to those provided on arrays
by Fortran 90. For example, if

v=[l,2,3,4,5,6,7,8,9J
s=[3,3,3]

then

partition(v,s) * [[1,2,3][4,5,6][7 ,8,9]]
rotate(v,3)
=} [7,8,9,1,2,3,4,5,6]

is equivalent to the Fortran above.

6.2 Design Goals

In seeking to exploit new programming concepts, one may either design a new
language or adapt an existing language. Designing a new language is high risk
in terms of the effort to be expended in developing new tools and promoting a
core community before any wider take-up is likely. There seems to be a strong
case for the extension of popular programming languages to operate on vector
data in a fashion that is processor independent. The constructs which make
use of SIMD parallelism should appear as natural and simple extensions to the
underlying language so that programmers who are already familiar with the
language can immediately understand what is being computed.

Occam represents a salutary object lesson. This language was intended for a
novel architecture, the Transputer, and had its own formal logic, CSP. How­
ever, Occam was never made adequately available on non-Transputer architec­
tures, and the Transputer was overpriced and complex compared with the
Intel!Motorola hegemony. Now only CSP survives, having found a niche as a
language- and architecture-independent formal notation.

For data parallelism, APL (Iverson, 1962) and J (Iverson, 1991) represented
radical breaks from their contemporaries, introducing novel notations. We
think that this was an important factor in limiting their wider use. Overall,
experience suggests that new concepts gain provenance if they are presented in
a familiar guise and if their use involves low additional cost for the benefits
they bring.

An existing language may be adapted through the introduction of new nota­
tion or through the overloading of existing notation. Both approaches involve
modifications to existing language processors or the development of new ones.
Furthermore, both approaches may lose backwards compatibility with the
original. Finding a principled basis for adding a new notation to an extant
language is problematic.

For example, the late 1980s and 1990s saw a variety of attempts to extend C
and C++ with parallel programming concepts. Johnston (1995) lists

• CC++ with par and par for constructs
• C** with aggregate classes and concurrent element nomination
• Mentat with aggregate classes and explicit parallel methods
• pC++ with concepts from High Performance Fortran.

Chapter 6 • Another Approach: Data Parallel Languages 117

In the same period. Lattice Logic Limited (3L) developed their Parallel C based
on Occam-like constructs (3L Limited, 1995). All of these represent well­
thought through extensions but none of these languages has gained wide­
spread acceptance. We speculate that, in part, this was because the extensions
did not build naturally on existing constructs.

NESL (Blelloch, 1995) was strongly grounded in the functional language
tradition. For example, its sequences and Apply-to-Each are effectively over­
loadings of lists and list comprehensions. NESL has influenced recent research
into extending Standard ML for data parallelism. However, because overall the
functional paradigm is far less familiar than the imperative paradigm, func­
tional languages in general have still to gain wider currency beyond their
academic constituencies.

High Performance Fortran (HPF) (Ewing et al., 1999) and Fortran 90 are
based on a a combination of overloading standard Fortran notation for arrays
and operators, and the introduction of new notation, for example for condi­
tional operations and slicing. HPF provides a relatively transparent extension
to the widely used Fortran and represents the most successful SIMD language
to date, enjoying wide use in the scientific and technical communities.

The language Vector Pascal has been designed to meet similar needs for
high-performance computing on PCs. It takes as its base a well-known pro­
gramming language, Pascal, for which many excellent implementations exist
on PCs, and with which many programmers are already familiar. It extends the
language through a few simple extensions of the type rules to allow the concise
expression of data parallel operations. The data parallel operations can then be
compiled either to scalar code on machines without SIMD instructions, or to
parallel code on newer machines. Whether scalar or parallel code is generated,
the source program itself is unchanged.

Alg. 20 shows the example program coded in Vector Pascal. Compared with
the C++ code in Alg. 9:

• No non-standard types are used.
• No explicit iteration is used for the vector addition. Instead, it is simply

written as v3: =v 1 +v 2.
• It is much faster, at about 770 million operations per second (see Table 6.1).

Vector Pascal extends the array-type mechanism of Pascal to provide
support for data parallel programming in general, and SIMD processing in
particular.

PROGRAM vecadd;
VAR vl,v2,v3:ARRAY[0 .. 6399] OF byte;

i :integer;
BEGIN

FOR i:=l to 100000 DO v3:=vl+v2;
END.

Algorithm 20. Example program in Vector Pascal.

118 SIMD Programming Manual for Linux and Windows

Table 6.1. Speeds of different implementations

Implementation

c
C++ with SIMD classes
Vector Pascal
Assembler

Elapsed time

72
4.56
0.83
0.77

Basic operations per second

8.9 million
140 million
771 million
831 million

Wherever possible, rather than introducing new constructs, we have sought
to increase orthogonality in Strachey's sense (Strachey, 1967) by overloading
extant notation. As most MMX extensions support arithmetic and
logical operations over byte sequences, a central concern in choosing a host
language was the degree to which the corresponding operators were already
overloaded.

Pascal (Jensen and Wirth, 1978) was chosen as a base language over the
alternatives C and Java. C overloads arithmetic operators to include address
manipulation, often with implicit type coercions. Hence these operators could
not also be used to express data parallelism over structures. Java overloads +
both for string concatenation and to coerce other base types to string when
they are +ed with strings. This precludes the use of+ as a data parallel opera­
tion for combining, as opposed to joining, arrays.

Pascal has other advantages in providing additional notations which can be
overloaded consistently for data parallelism. For example, the sub-range
notation is a natural basis for slicing.

6.2.1 Target Machines

The aim was to produce a language and associated compiler technology that
would target the machines that most programmers have on their desks. This
essentially means PCs and Apples using the Intel and Motorola families of
CPUs. This aim is different from that of the developers of HPF, who were
targeting super-computers and highly parallel machines. Although it should be
possible to develop Vector Pascal compilers for such machines, the main aim
has been to provide a tool that would run on affordable, widely used, single­
processor computers.

The initial development work was done with Intel and AMD processors in
mind, because these are by far the most commonly used machines. Although
these machines were the first target, Vector Pascal does not depend upon any
machine-specific features. A processor does not need to have a SIMD
instruction-set to run it. A Vector Pascal program can run correctly and
efficiently on a classical SISD instruction-set such as the Intel 486 (see
Table 13.1).

Processor technology develops fast, and software support for them typically
lags well behind. A major design goal has been to develop a compiler tech­
nology that enables Vector Pascal to be re-targeted at new machines with

Chapter 6 • Another Approach: Data Parallel Languages 119

minimal effort. Apple machines using the G4 processor were immediately
identified as possible targets, as were the Alpha and SPARC chips. The aim was
to provide along with Vector Pascal, a notation ILCG (see Appendix A) by
which the instruction-sets of future machines, including their SIMD capa­
bilities, could be described. Given a machine description in ILCG, the Vector
Pascal compiler could automatically generate code for the new processor
which made use of its data-parallel facilities.

Operating System Portability

Another aim of the language was that it should be readily portable between
operating systems. Initially this meant portable between Microsoft operating
systems and Linux. This has been achieved by implementing the compiler in
Java, so that the Java environment allows a machine- and operating system­
independent binary implementation of the compiler. Dynamic loading of code
generator classes at run time then allows the code produced to be targeted at
particular machines.

6.2.2 Backward Compatibility

There exists a large body of legacy code in Pascal. Some of this is in Standard
Pascal, but a larger body of it is in Turbo Pascal. The Borland compilers for the
PC probably did more to popularise Pascal than any prior implementation.
Other compilers, such as TMT Pascal and Free-Pascal, have also supported the
Turbo Pascal syntactic extensions, in particular the provision of Units for
modular programming.

It was a design aim of Vector Pascal to allow such code to be compiled and
run by the Vector Pascal compiler except in so far as it depends upon machine­
specific MS-DOS calls.

Linkage Model

Turbo Pascal provides a very good model for type-safe linking together of
Pascal units, but this is not enough. A language is much easier to use if it
allows one to call out to other languages. This is particularly true if one is
going to make use of graphics libraries. These are typically designed to be
called from C with all that implies. Vector Pascal has thus chosen to make use
of standard C linkers and C calling conventions. The syntactic notations used
to import C procedures into Pascal code are those used in Turbo Pascal.

To reduce dependence on proprietary code, on current implementations the
g c c linker is used to produce the final binaries.

6.2.3 Expressive Power

Compilers are there to make things easier for coders. Where possible they
should allow the coder to say what they want done rather than how it should
be done. It is the task of the compiler writer to automate the low-level details

120 SIMD Programming Manual for Linux and Windows

of programming, leaving the coder to concentrate on algorithm strategy. It has
long been the claim of array programing language advocates that they improve
programmer productivity by raising the expressive power of the language.
Programmers using them learn to think differently. By thinking in a data­
parallel way they hit upon strategies that might not occur to a coder used to
the word at a time approach of C.

One way that the expressive power of a language can be raised is by the
removal of restrictions. If the context-free grammar of the language seems to
suggest that something should be allowed, but the type rules forbid it, then the
lack of orthogonality reduces the power of the language. It forces the coder
to use work-arounds to achieve their intention. For instance, Standard Pascal
allows the expression a+b provided that the variables are scalars but not if they
are arrays. For arrays a FOR loop has to be written.

Vector Pascal goes some way towards orthogonalising Standard Pascal.2

Another source of expressive power is the provision of type-complete
operations. The only type-complete operations supported by Standard Pascal
are assignment, parameter passing and array access. Vector Pascal provides a
small number of additional type-complete syntactic forms, mostly associated
with array manipulation. A concern at all times has been that orthogonalisa­
tions should be compatible with efficient implementation.

6.2.4 Run-time Efficiency

Syntactic extensions and orthogonalisations in Vector Pascal have been
allowed, provided either that

• they can be provided at compile time with no run time cost, or
• they actually speed up run time code by making it easier to optimise, or
• their run time cost is no more than the equivalent hand -coded Pascal.

2There remain several non-orthogonal features, most obviously those associated with array index
types. Pascal only allows finite sub-ranges types to be used as indices for arrays. This is both an
implementation issue - allowing array access by address arithmetic - and a semantic issue. If
infinite types were allowed as indices, then arrays would become partial maps rather than total
maps, giving rise to the possibility of undefined values.

150-7185

150-10206

TURBO

VECTOR

Basics of Vector Pascal

In this and following chapters we will present an introduction to the Vector
Pascal programming language. The introduction will assume that the reader is
familiar with imperative programming but not necessarily with Standard
Pascal. Some space is therefore given to explaining Standard Pascal features.
Marginal notes indicate the origin of features.

A paragraph marked thus describes a feature retained in Vector Pascal from
Standard Pascal (Jensen and Wirth, 1978; ISO, 1991b).

A paragraph marked thus describes a feature introduced by Extended Pascal
(ISO, 1991a) and retained in Vector Pascal.

A paragraph marked thus describes a feature Vector Pascal inherits from the
popular Turbo Pascal compiler.

A paragraph marked thus describes a feature introduced in Vector Pascal,
but not used in Standard, Extended or Turbo Pascal. Some of these features
are also implemented by yet other Pascal compilers.

7.1 Formating Rules

A Pascal program is made up of lexemes, spaces and and comments. Lexemes
are either words, literal values, operators or punctuation characters.

7 .1.1 Alphabet

Pascal is a comparatively old programming language, having been under
development since the end of the 1960s (Jensen and Wirth, 1978). It was
originally implemented on CDC mainframe computers that had a 60-bit word
and that used a 6-bit character set which supported upper-case characters only.

ISO Pascal extended this to use an alphabet of symbols, all of which can be
represented with ASCII. The most significant extension was to allow the use of
lower-case letters and the bracket symbols { and } . Vector Pascal extends this
further to use Unicode, which permits a far wider range of symbols to be used
in programs.

Programs should be submitted to the compiler in UTF-8 encoded Unicode.
Since the 7-bit ASCII is a subset of UTF-8, all valid ASCII-encoded Vector
Pascal programs are also valid UTF-8 programs.

121

122 SIMD Programming Manual for Linux and Windows

150-7185

TURBO

VEGOR

VEGOR

7 .1.2 Reserved Words and Identifiers

A word is either a reserved word or an identifier. In ISO Pascal all words have the
same lexical form. They are sequences of characters, the first of which must be a
letter; subsequent characters can be either letters or digits.

Thus the lexemes begin, end, wh i 1 e, hope, x, a 1, b 1 ue, b 1 i ste ring,
b a rna c 1 e s are all valid formats for reserved words or identifiers. On the
other hand, ==toys, 9b, ?**! ! ! are not.

In Vector Pascal, the rule for the formation of words is extended by

1. Allowing the under-bar character to be used as a letter. Thus b 1 ue_
b a rna c 1 e s is a valid identifier in Vector Pascal. An under-bar may even
be used in the leading position of an identifier, as with _END LIN E. This
feature is provided only to allow compatibility with external libraries in C.
Its use in Pascal is deprecated.

2. Allowing the use of several other Unicode alphabetic scripts: Greek, Cyrillic,
Katakana or Hiagana characters in words.

3. Allowing the use of the Unicode unified Chinese, Japanese and Korean
ideographs as characters in words.

A reserved word in the language has a pre-defined meaning which cannot be
altered in a Pascal program. A list of the reserved words in Vector Pascal is
provided in Table 7.1. An identifier is a word that, although it may be pre­
defined in the language, can have its meaning defined or redefined within a
program. Identifiers are typically used to name types, variables and procedures.

Table 7 .1. Vector Pascal reserved words

English Chinese Unicode

ABS ~x-j"{il 7EDD,5BF9,503C
ADDR :lt!!.:!ll: 5730,5740
AND 2227
ARRAY J&m 6570,7EC4
BEGIN tf!lft 5F00,59CB
BOOLEAN ;{fj${il 5E03, 5(14, 503(
BYTE2PIXEL ~$#-It 5857, 8F6C, 50CF
CASE 1'~ 4E2A,6848
CHR ~N 5861,7826
CONST 'if; :I: 5E38,91CF
cos ~~ 4F59,5F26
DIA !IJWi 5224,65AD
DIV + OOF7
DO tf!lft 5FAA,73AF
DOWNTO r~ 4EOB,81F3
END ~* 7ED3,675F
ELSE ~vw 5426,5219
EXIT l/!:±1 9000,S1FA
EXTERNAL j~$a<J 5916, 90E8, 7684
FALSE m~ 9534,8BEF
FILE)Cflj: 6587,4EF6
FOR ~ 4ECE
FUNCTION Pl!i!& 51FD,6570
GOTO Wt$# 8DF3,8F6C
IF ~* 5982,679(

Chapter 7 • Basics of Vector Pascal

English

IMPLEMENTATION
IN
INTERFACE
LABEL
LIBRARY
LN
MAX
MIN
MOO
NAME
NEW
NOT
OF
OPERATOR
OR
ORO
OTHERWISE
PACKED
PERM
PIXEL2BYTE
POINTER
POW
PREO
PROCEDURE
PROGRAM
PROTECTED
READ
REAOLN
REAL
RECORD
REPEAT
ROUND
SET
SHL
SHR
SIN
SIZEOF
STRING
SQRT
succ
TAN
THEN
TO
TRANS
TRUE
TYPE
VAR
WITH
WHILE
WRITE
WRITELN
UNIT
UNTIL
USES

Table 7.1. (Continued)

Chinese
:!);fJII.
3

jj(Q
;fjj;~

w
I~H't.X>J"iij:
:lil:kffi
:lil!J\{1.[
%
1'1~
JE/i}t

I¥J
JE:.~

'f'#!ij:
'i'l'Y!U
M~
tHU
~#'¥
mtt
'IJ
§u'f$
ttf§!
;f§!(i'
fJiHP
ill;
i!l;ff
:!);!ij:
hl:ill:
:1:][
lm*EA
~1::­
le{IL'¥$
;tJ{I'[f$
IE5t
tE:J:t

* .[
!~'if$
l[t)J

jj~~

iU
R!!ll$-'it~

• ~ll'i
-'it ::I:
~
~
1:3
E31T
.ljij[;
1l.3:'U
f!ffl

Unicode

5B9E,73BO

63A5,53E3
6807,7B7E
5E93
81 EA, 7136, 5BF9, 6570
6700,5927,503C
6700, 5COF, 503C
0025
5400,79FO
65B0,5EFA
OOAC
7684
8F00,7B97,7B26
2228
5B57, 8F6C, 6570
5426,6570
5C01,88C5
6392,5217
50CF, 8F6C,SB57
6307,9488
5E42
5240,79FB
8FOB,7AOB
7AOB,5E8F
4F00,62A4
8BFB
8BFB,884C
5B9E,6570
8BB0,5F55
91C0,5900
560B, 8200, 4E94, 5165
96C6,5408
50E6,4F40,79FB
53F3,4F40,79FB
6B63,5F26
957F,5EA6
4E32
221A
540E, 79FB
6B63,5207
90A3,4E48
5230
8000,9635,5308,6362
771F
7C7B,578B
5308,91CF
4EOE
5F53
5199
5199,884C
5355,5143
76F4,5230
4F7F, 7528

Both the English and Chinese variants are shown. The canonical Unicode
representation of the Chinese variant is also shown.

123

124 SIMD Programming Manual for Linux and Windows

150-7185

VEGOR

150-7185

VEGOR

150-7185

7 .1.3 Character Case

Because of its original 6-bit character code, Pascal has the rule that case is not
significant in variables or reserved words. Thus beg i n, BEG I N and Beg i n are
equivalent forms for the one reserved word. Vector Pascal retains this
convention and extends it to the Greek and Cyrillic alphabets, where character
case is again disregarded, so that ~ is equivalent to 8, etc. In the example
programs in this book, the reserved words are sometimes capitalised, but this
is purely conventional and not necessary.

When writing identifiers in Pascal, it is a common convention to use the
under-bar and/or capitalisation to mark any component words imported from
natural languages, thus Capt a i n_Haddock, Pi nkCrabs.

7 .1.4 Spaces and Comments

In Pascal, space characters are not significant between lexemes. The space
characters are space, carriage return, newline and tab. This means that space
characters can be freely inserted between word operators or literal values.
Spaces cannot be inserted into words or into numbers.

It is conventional in Pascal to make judicious use of space characters to
indent programs to improve their legibility.

Comments may be placed at will between lexemes. They take two forms:

{this is the first form of comment}
(*this is the other form of comment*)

A comment that starts with { includes all characters up to the next } . A
comment that starts with (* includes all characters up to the next *). Thus a
comment starting with { can be used to bracket out both text and comments
starting with (* and vice versa. It is advantageous to stick to the use of one of
these comment forms, allowing the other to be reserved for commenting out
large blocks of code whilst developing programs.

It should be noted that this use of comments it not portable to Standard
Pascal, where a comment starting with { can end with*) and vice versa.

A comment starting with(*! and ending with*) is treated as a TEX comment,
that is, the body of the comment is passed through unmodified when the
VPTEX literate programming tool is used (see Section 7.7).

7 .1.5 Semicolons

Since carriage returns are not significant in Pascal, statements are separated by
semicolons. This is not the same as having semicolons terminate statements. A
semicolon need not occur after the last statement in a block. However, placing
a semicolon after the last statement has no ill effect, amounting to the
insertion of a null or do nothing statement at the end of the block. No run
time code is executed for the null statement. For example:

BEGIN
x:=a+c;

Chapter 7 • Basics of Vector Pascal 125

VECTOR

150-7185

150-10206

TURBO

150-7185

y:=x*pi {nosemicolonneededherel
END

whereas

BEGIN
x:=a+c:
y:=x*pi: {null statement after: here}

END

In the last example the second semicolon is not needed since there is no
following statement before the END.

7.2 Base Types

7 .2.1 Booleans

The Boolean type is the set {true. false}. The words true and false are
reserved in Pascal. In Vector Pascal but not Standard Pascal the relation
true< fa l s e holds. Internally in Vector Pascal true is held as the value -1,
which in two's complement is a string of binary ls.

7.2.2 Integer Numbers

The normal way to denote an integer constant in Pascal is to use a decimal
integer. Thus 12, 012, -9, 999 are valid integer constants. For certain
purposes it is convenient to work with other number bases, in particular
binary, octal and hexadecimal. Vector Pascal allows the use of the based
number format introduced in Extended Pascal (ISO, 1991a). In this a number
base is given first, followed by a # sign, and then a number in that base. Thus,
the decimal number 33 could be written in binary as 2#100001, in octal as
8#41 and in hexadecimal16#21.

Less obviously, one could write 32#11, 20#1D or 17#1G.
The use of letters in based numbers is a generalisation of their use in

hexadecimal numbers. 'A' stands for 10, 'B' for 11, ... 'Z' for 35. Lower-case
letters can be substituted for upper-case letters. For backwards compatibility
with Turbo Pascal it is also possible to write hexadecimal numbers preceded by
a $ sign, e.g. 3 3 = $ 21. Integers written as hexadecimals must be within the
range $00000000 ... $FFFFFFFF. The sign of an integer written in hexa­
decimal notation is determined by the leftmost (most significant) bit of its
binary representation.

The largest integer supported on an implementation is given by the integer
constant maxi n t. The smallest integer will be -maxi n t - 1.

7 .2.3 Real Numbers

Real numbers are denoted in standard floating point formats. Thus 12. 0, 0. 12,
- 9 . 9 are valid floating-point numbers. Exponent notation is allowed: 2 506 000

126

150-7185

150-10206

150-7185

150-7185

VECTOR

SJMD Programming Manual for Linux and Windows

can be written as 2. 506E6, meaning 2.506 x 106, or 0.12 can be denoted by
1 . 2 E- 1. The exponent character can be either a lower- or an upper-case E, and
the exponent can be signed, thus 2. 506E6 = 25. 06e5 = 250. 6e+4.

The largest real number supported on an implementation is given by the
constant max rea l . The smallest real number greater than 0 that can be
represented on an implementation is given by the constant m i n rea l .

Since real numbers are stored in floating-point format with an exponent
and a mantissa, they can span a huge range of numbers. However, when
representing very large numbers the limited length of the mantissa means that
whole ranges of large integers are mapped to the same real number. This can
pose a problem in algorithms which are designed to converge numerically.
Such algorithms typically define some small E such that iteration continues
until successive approximations differ by less than E. The value of E that is
meaningful in such an algorithm depends upon the numerical accuracy with
which real numbers are held. The constant e p s rea l can be used to determine
this. If r is a real number then the smallest E which when added to r will result
in a value distinguishable from r is r * e p s real .

Complex Numbers

Complex numbers are supported by Vector Pascal; they are formed by
invoking a constructor function cmp l x. Thus cmp l x (1. 0, 0. 5) returns the
complex number whose real part is 1.0 and imaginary part is 0.5.

7 .2.4 Characters and Strings

Characters and strings in Pascal are enclosed in single quotes, thus the
following are strings or characters: 'A', 'B', 'Book'. If the single quote character
is to be included in a character literal or string it is indicated by two successive
single quotes. Thus the character ' is written ' ' '', and the string 'Joe' 's'
would print out as:

Joe's

Discrete characters which have no printable denotation can be produced
using the c h r operator. Thus c h r (13) is the ASCII newline character. How­
ever, unlike C, Standard Pascal does not allow such unprintable characters to be
embedded in string literals.

The current Vector Pascal implementation uses 16-bit Unicode as its
internal character set and allows any Unicode character to be embedded in a
character string. Thus a newline is embedded in a string simply by running it
over two lines (see Alg. 21). Hence Chinese and other characters can be
embedded in Vector Pascal strings.

The ord operator returns the integer value of a character, thus ord('A')
will return the integer value of the letter A in the current character set.

The lowest value character in the character set supported on an imple­
mentation is given by the constant m i n c h a r. The highest valued character in
the character set supported on an implementation is given by the constant
maxcha r.

Chapter 7 • Basics of Vector Pascal 127

150-7185

150-7185

150-10206

PROGRAM newlnstr;
CONST sl='a
new line';
BEGIN

WRITELN(sl);
END.

outputs

a
new line

Algorithm 21. Illustrating the embedding of a newline in a string.

7.3 Variables and Constants

7.3.1 Declaration Order

Pascal was designed to be parsed by a single-pass compiler. Since the language
is also strongly typed, this means that the compiler can only type check
statements if all identifiers are declared before they are used. This contrasts
with more recent languages such as Java, where the declaration of identifiers
can follow their use. Although the Vector Pascal compiler has distinct syntax
analysis and code generation passes, it retains the requirement that declaration
of identifiers must precede use. Further, it is a requirement that all identifiers
used in a program context must be declared before the first executable state­
ment of that context.

Consider the example given in Alg. 22. Everything between the line starting
CONST to the line finishing with END. makes up what is termed in Pascal a
block. The block is made up of a declaration part, which goes from the line
starting CONST to just before the BEGIN, and an execution part which goes
from BEGIN to END.

Three user-defined identifiers, a, v, t, are used within the execution part.
They are introduced in the declaration part. The declaration part is divided
into two portions, one preceded by the word C 0 N S T, which introduces cons­
tants, a in this case, and the other preceded by the word VA R, which introduces
variables, t, v in this case.

In Standard Pascal, the constant declaration must precede the variable
declarations. The motivation for this is that the variable section may include
arrays whose sizes are defined by constant identifiers. Hence the constant
identifiers had to be introduced prior to the variable identifiers.

In Extended Pascal, this restriction was relaxed, allowing constant and
variable declarations to be optionally interleaved in any order, so long as this
does not cause any identifier to be used prior to its introduction. It remains
good practice, however, to follow the standard ordering of constants and
variables.

128

TURBO

SIMD Programming Manual for Linux and Windows

PROGRAM velocity;
CONST

a=9.8; {acceleration due to gravity}
VAR

t,v:real;
BEGIN

WRITE('How many seconds has the fall lasted');
READLN(t);
v:=0.5*a*t POW 2;
WRITELN('Velocity =' ,v, 'm/s');

END.

Algorithm 22. Program to compute the velocity of a falling body.

7.3.2 Constant Declarations
A constant is an identifier which denotes the same value throughout its existence.
The identifier a in Alg. 22 is an example. The declaration associates an identifier
with a value. The compiler deduces the type of the identifier from the type of the
value. Here are some examples of constant declarations:

CONST

Lo=O;
Hi=lOO;
Mean=(Lo+Hi) di v 2;
Zed=' Z';
Err=' Name too 1 ong ·;
SecsPerYear=pi*lE7;

{an integer constant}
{an integer constant}
{integer given by expression}
{a character constant}
{string constant}
{real defined by expression}

In Standard Pascal, the values associated with the identifiers have to be
literal constants. In Vector Pascal, this restriction is relaxed to allow numeric
expressions whose value can be calculated at compile time to occur in constant
declarations. Thus a constant expression in Vector Pascal can include arith­
metic operators, other previously declared constants and literal constants. In
the example above, Mean and Sees PerYea r are examples of constants intia­
lised by compile time expressions.

In order to keep code readable and to simplify maintenance, Pascal pro­
grammers are encouraged to make wide use of constant identifiers to replace
literal constants. If this is done, changing a single constant declaration will
change all places in the code where the relevant constant is used.

There exists a notation for the declaration of array constants (see
Section 7.5.1).

In addition to the predeclared constants associated with numeric preci­
sion, a floating-point approximation to 1r is available as the pre-declared
constant p i .

Chapter 7 • Basics of Vector Pascal 129

7.3.3 Variable Declarations
All variables must be declared before use. A variable declaration consists of a
comma-separated list of identifiers followed by a colon followed by a type and
terminated by a semicolon. All the identifiers in the list are defined as having
the same type. Additional variables of different types, or more of the same
type, can follow in the same way until all the required identifiers have been
declared. For example:

VAR
boxlen,boxwidth,boxheight:real:
boxcount:integer:
isopen:boolean:

A variable when declared has an undefined value. The declaration merely
reserves space for the variable. A program error is likely to occur if a variable is
used before a value has been assigned to it.

7 .3.4 Assignment

A variable can have its value set by the assignment operator : = as shown in
Alg. 22. The assignment operator is generic to all types. Arrays and records
can be assigned to variables of the appropriate type by a single assignment
operator.

7 .3.5 Predefined Types

There exists in Pascal a system for declaring new types (see Chapter 9), but
there exists a set of predefined types available to all programs. Six of these have
already been introduced: boolean, integer, real, complex, char,
s t r i n g. Any of these can be used in a variable declaration.

In addition, there are a set of auxiliary types provided to allow the program­
mer to tailor the store used by variables to the arithmetic precision required by
the algorithm. The auxiliary types should be used sparingly as their use hinders
portability. The circumstances in which their use is advantageous are as
follows:

1. When the numeric precision of an algorithm requires less accuracy than
that provided by the standard types, and where economy in the use of
memory is important. Under these circumstances, variables may be defined
to be oftype byte, pixel or shortint.

2. Where the range of numbers is sufficiently small and the programmer
wants to take advantage of greater SIMD parallelism, types byte, pixel or
s h o r t i n t should be used.

3. Where the range of numbers being used is too great to represent as an
integer or a· real. Under these circumstances, a double-precision real
double, or a 64-bit integer i nt64, representation may be stipulated.

130 SIMD Programming Manual for Linux and Windows

150-7185

7.4 Expressions and Operators

An expression is a sequence of identifiers, constants or bracketed expressions
linked by operators. An expression is used to calculate new values from already
existing ones.

a+b
5*a
x+y*z
4/b+c

are expressions.

7 .4.1 Arithmetic
Pascal supports the basic arithmetic operations using the familiar operator
symbols:

+ addition
subtraction
multiplication

X Vector Pascal synonym for* Unicode 2715
I division with real or complex valued result

Expressions are evaluated such that multiplication and division are per­
formed left to right before addition and subtraction. To ensure that the evalua­
tion is as intended parentheses can be used.

a/b+x/y*z

is evaluated as

which must be distinguished from

a x -+-­
b yxz

to achieve which one would have had to write

a/b+x/(y*z)

Arithmetic is not allowed on characters. The + operator is allowed on strings
where it is interpreted as string concatenation. Since single-character strings and
individual characters have the same representation, + between characters is
also interpreted as string concatenation. As a generalisation of multiplication
being repeated addition, * is allowed between integers and strings, thus

expression value
'abc'+'case' 'abccase'

Chapter 7 • Basics of Vector Pascal 131

IS0-7185

IS0-10206

'a'+' b'
'abc'*3

'ab'
'abcabcabc'

Pascal also supplies two further operators that operate exclusively on integer
arithmetic:

MOD remainder after division of integers
D I V truncated division of integers

Vector Pascal synonym for DIV Unicode 00f7

The effects of the various division operators are summarised below:

a/b+xdivy*z

is evaluated as

expression value
16/5 3.2
16div5 3
16 mod 5 1
8div3*3 6
13-5mod3 11

which must be distinguished from

-+ --a lxxzj
b y

for which one would have to write

a/b+(x*z) divy

since the effect of truncation will cause loss of precision in the first case.
Vector Pascal provides other dyadic operators on numbers which are not

provided in Standard Pascal but which were introduced in subsequent systems.
First there are the exponential operators:

a**b
a POW b

raises a to the fractional power b
raises a to an integral power b

16**0.5 4.0
4**1.5 8.0

16** -0.25 0.5
16 POW 2 256

The exponential operators have higher priority than any other dyadic
operators.

There are also a set of operators that allow integers to be treated as bit vectors:

a S H R b shift the integer a right by b bits
a S H L b shift the integer a left by b bits

132

TURBO

VECTOR

VECTOR

SIMD Programming Manual for linux and Windows

a AND b
a ORb

perform a bitwise and of a with b
perform a bitwise or of a with b

Expression
2#101 SHL 2
2#101 SHR 1
2#1100 AND 24
2#1100 OR 24

Value
20
2
8
28

The operators AND and 0 R are also defined on Boo leans. The shift operators
can be used as alternatives for multiplication and division by powers of2 so that:

a SHR n is equivalent to a DIV (2 POW n)

and

a SHL n is equivalent to a*(2 POW n)

It should not be assumed that the use of shift operators will necessarily be
faster than the equivalent divide and multiply operators.

Finally, there are selection operators allowing the larger or smaller of two
values to be chosen.

a M I N b returns the lesser of a, b
a MAX b returns the larger of a, b

7.4.2 Operations on Boolean Values

Boolean values can be manipulated using the operators AND, OR, NOT in
addition to the comparison operators. The AND operator produces a TRUE
result if and only if both operands are true. If a is T R U E and b is T R U E then (a
AND b) = T R U E. The 0 R operator produces a T R U E result if either of its
operands is T R U E. The N 0 T operators maps T R U E to FA L S E and vice versa.

These results are summarised in the composite truth table:

a b a AND b a ORb NOTa
true true true true false
true false false true false
false true false true true
false false false false true

Vector Pascal allows single Unicode characters to be used for the boolean
operators:

Synonym Unicode
NOT --, OOac
AND 1\ 2227
OR V 2228

Chapter 7 • Basics of Vector Pascal 133

7 .4.3 Equality Operators

The equality operator = takes two operands from a comparable type and
returns a Boolean T R U E if the operands are the same. Otherwise it returns
false. Equality is defined on integers, reals, Booleans, characters, strings,
ordinals, sets (see Section 9.6) and pointers (see Section 9.5).

The not-equals operator<> takes two operands of a comparable type and
returns T R U E if and only if the operands are not the same.

7.4.4 Ordered Comparison

Pascal provides the standard ordered comparison operators <, >, <=, >=,
which can be applied between pairs of elements drawn any ordered type. That
is, any pair of Boo leans, any pair of integers or reals, any pair of characters, any
pair of strings or a pair of elements drawn from the same ordinal type may be
compared.

program compare;
canst data:array[l .. 4] of string[4J=

(·abc'.· abed·,· Abc·,· aba ·);
begin
writeln('compare''abc'' to:');
write(· ·,data,

· <> ·. ·abc· <>data,
'abc'=data.

'< ', 'abc'<data,
'> ·, 'abc'>data,
'<=', 'abc'<=data.
'>=', 'abc'>=data); { l

end.

Output produced:

compare 'abc' to:
abc abed

<> false true
true false

< false true
> false false
<= true true
>= true false

Abc aba
true true
false false
false false
true true
false false
true true

Algorithm 23. Effect of string length and character values on string order.

When ordered comparisons are applied to strings both the character
values and the lengths of the strings have to be taken into account. A string

134

150-7185

VEGOR

SIMD Programming Manual for Linux and Windows

PROGRAM truthtab;
CONST a:ARRAY[l .. 4] OF boolean=

(true,true,false,false);
b:ARRAY[l .. 4] OF boolean=

(true,false,true,false);
BEGIN
WRITE('a', a,

'b'' b,
'a and b'' a AND b,
'a or b', a OR b,
'a<>b', a<>b,
'a=b', a=b,
· a<b', a<b,
'a>b', a>b.
'a<=b', a<=b,
'a>=b', a>=b);

END.

Output produced:

a true true
b true false

a and b true false
a or b true true

a<>b false true
a=b true false
a<b false true
a>b false false

a<=b true true
a>=b true false

false false
true false
false false
true false
true false
false true
false false
true false
false true
true true

Algorithm 24. t ruth t a b, a program to print the truth tables for all of the dyadic Boolean operators.

is equal to another if it is the same length and has identical characters in all
positions.

A string a is less than another string b if there exists a character in some
position i in string b such that aj = bj V j < i and either the length of a is less
than i or a; < b;.

The comparison operators when applied to Boolean types provide
additional dyadic Boolean operators. The most useful of these are < >, which
is the XOR operator when applied to Booleans and = which is equivalent to
NOT XOR.

The ordered comparison operators give results that are not portable between
Vector Pascal and ISO Pascal. The truth tables provided by all of the dyadic
operators over the Booleans are shown in Alg. 24.

Chapter 7 • Basics of Vector Pascal 135

150-7185

150-7185

7.5 Matrix and Vector Operations

The most significant difference between Vector Pascal and other implementa­
tions of Pascal are the extensions that Vector Pascal provides to allow operations
on simple variables to be transparently extended to work on arrays. Consider the
program in Alg. 25. Invoking the program produces the following result:

C:\book>add1

(*
Program to Add 1 to the first 4 primes and then print
this, followed by twice the first 4 primes+ 1
*)
PROGRAM Add1;
CONST c:ARRAY[1 .. 4] OF INTEGER=C1,2,3,5);
BEGIN

WRITE(c,c+1,1+2*c);
END.

1
2
3

2
3
5

3
4
7

5
6

11

Algorithm 25. Simple example of array operations.

Add 1 declares a constant array c to hold the first four primes. The program
then prints out c, followed by the effect of adding 1 to each element of c,
followed by the sum of the previous two lines.

7 .5.1 Array Declarations

Before any array is used, it must be declared. In Add 1 the array c is a constant
array. A similar variable array could be declared as

VAR v :ARRAY[1 .. 4] OF integer;

However, the values of the variable array, as with any variable, are undefined
when the program starts.

An array declaration specifies the range of the array, in this case 1 ... 4 and the
type of the array elements, in this case integer. The range specifies two things:

1. how many storage locations are to be allocated by the compiler for the array
2. the logical numbering of these storage elements.

It is possible to declare multi-dimensional arrays. Thus

VARmat:ARRAY[l. .3,1. .3] OF real;

136

TURBO

150-7185

VECTOR

SIMD Programming Manual for linux and Windows

declares a 3 by 3 matrix of locations to hold real numbers, whilst a constant
matrix could be declared as

C 0 N S T i dent : ARRAY[1. . 3 , 1 .. 3] 0 F real = ((1 . 0 • 0 . 0 • 0 . 0) •
(0.0,1.0,0.0).
(0.0,0.0,1.0));

which is the 3 by 3 identity matrix. Note that when declaring a constant
matrix, one must indicate the rows by brackets.

A two-dimensional array can conceptually be thought of as a single object
with two dimensions, or as a one-dimensional array whose elements are them­
selves one-dimensional arrays. Pascal allows one to declare arrays in either of
these formats but treats the two forms as synonymous. Hence the following
two array variables are of identical type:

VA R v 1 : ARRAY[1. . 2 • 1. . 3] 0 F i n t e g e r ;
v 2 : ARRAY[1 .. 2] 0 F ARRAY[1 .. 3] 0 F i n t e g e r ;

There will be an implementation-defined maximum number of array
dimensions supported by any given Vector Pascal compiler. This is provided
in the predefined constant max d i m s.

7 .5.2 Matrix and Vector Arithmetic
Basic Arithmetic

In the examples given in Algs 20, 25 and 30, arithmetic is performed on arrays
in a fairly obvious and intuitive way. In a programming language however,
simple intuition, although helpful, is not enough. One needs to know the
precise meaning of a construct. Array arithmetic follows a set of consistent
principles:

1. Vector Pascal allows any arithmetic operator that can be applied to a pair of
elements of a data type t to be used between arrays of type t.

2. Vector Pascal performs array arithmetic on an element by element basis.
Thus in Alg. 20, the zeroth element of v 1 is the sum of the zeroth elements
of vectors v 2, v 3. This is precisely what is required for the addition and
subtraction of vectors and matrics.

Note that for multiplication and division this will not be the same as
vector or matrix multiplication in linear algebra. Matrix multiplication is
dealt with in Section 7 .6.

3. When performing arithmetic on a pair of arrays, the bounds of the arrays
must exactly match. An attempt to add an array whose bounds are 1 ... 4 to
an array whose bounds are 0 ... 3 will give rise to either a compile time or a
run time error.

4. The result of performing element by element array arithmetic is another array
whose bounds will be the same as those of the arrays which gave rise to it.

5. A scalar x and an array y may be combined using dyadic operators. The
result is an array whose bounds are those of y. This means that the scalar is

Chapter 7 • Basics of Vector Pascal

PROGRAM Printident2;
CONST ident:ARRAY[l .. 3,1 .. 3] OF integer=((l,Q,O),

(0 ,1,0).
(0. 0 ,1));

factor:ARRAY[l .. 3] OF integer=(l00,200,400);
BEGIN

WRITE(factor*ident);
END.

this produces when invoked:

C:\book>printident2
100

0
0

0
200

0

0
0

400

Algorithm 26. Element by element multiplication of each row of a matrix by a vector.

137

combined under the operator with every element in y. This form of con­
struction is illustrated in Alg. 25. This implements the mathematical
operation of multiplying a vector by a scalar. The same rule allows multi­
plication of a matrix by a scalar.

6. An array x of dimension n, and an array y of dimension m, where n < m,
can be combined under a dyadic operator provided that the bounds of the
rightmost n dimensions of each array match. This is illustrated in Alg. 26.

7. Assignment to an array is allowed if the value on the right-hand side of the
assignment is an array of the same type.

8. Assignment to an array is allowed if the value on the right-hand side of the
assignment is a scalar of the same type as the elements of the array or is
castable to an element of the same type as the elements of an array [in some
array languages this is called flood fill (Snyder, 1999)]. This is illustrated in
Alg. 27, where 1 is cast to a real and used to filly.

9. An array x of dimension n may be assigned to an array y of dimension m,
where n < m provided that the bounds of the rightmost n dimensions of
each array match and that the elements of y are the same type as or
implicitly castable to the type of those of x.

Reduction Operations: Forming Generalised Totals

The total of the numbers (1, 2, 3, 5) is formed by injecting the + operator
between them, thus (1 + 2 + 3 + 5) = 11. Similarly, the product of these
numbers is formed by injecting the multiplication operator between them,
thus (1 X 2 X 3 X 5) = 30.

It is clear that this sort of operator injection is a general method by which a
vector of numbers can be reduced to a scalar, forming in the process 'totals'
that are parameterised by operators. In Vector Pascal and other array

138

VECTOR

SIMD Programming Manual for linux and Windows

PROGRAM flood;
VAR y:ARRAY[l. .2,1. .3] OF real;
BEGIN

END.

y:=1;
WRITE Cy);

which produces on invocation:

C:\book>flood
1.00000
1.00000

1.00000
1.00000

1.00000
1.00000

Algorithm 27. Flood filling an array with a scalar.

(*! Program to find the arithmetic and
geometric means of the first 4 primes *)

PROGRAM Mean1;
CONST c:ARRAY[1 .. 4] OF integer=(1,2,3,5);
BEGIN

WRITECC\+ cJ/4,(* c)**0.25);
END.

Algorithm 28. An example of operator reduction.

programming languages, this process is called a reduction operation.1 An
illustration is given in Alg. 28, which prints out 2 . 7 5 2 . 3 4 0 3 5 as the means.

The arithmetic mean is computed by the expression (\ + c) /4. The key to
this is the reserved word RDU or \, the reduction functional. This must be
followed by a dyadic operator and an array expression. The operator is then
injected between the elements of the rightmost dimension of the array
delivering a result of rank one less than that of the array.

In the program Me an 1 the + operator is injected forming a total which is
then divided by 4 to give the mean. Analogously, the geometric mean is found
by injecting the * operator between the elements of c and raising the result to
the power of 0.25.

Reduction by any of the commutative operators yields the obvious results.
For example, one can find the largest of four integers as shown in Alg. 29.

Care must be taken when performing reduction using non-commutative
operators and operators whose result is not of the same type as their arguments.
Consider what the expression RDU- c would mean in the program Mean 1. At
one level it obviously means 1 - 2 - 3 - 5 but, depending on the bracketing
convention used, this could either evaluate to -9 = ((1 - 2)- 3) - 5 or to
-3 = (1- (2- (3- 5))) = 1- 2 + 3- 5.

1The reduction functional was introduced in APL (Iverson, 1962), where it was written as I. For
those who are familiar with APL, a form with similar flavour has been retained in Vector Pascal.
Thus as an alternative to writing RDU+c one can write \+c.

Chapter 7 • Basics of Vector Pascal

(* Program to find the largest of 4 integers *)
PROGRAM Max1;
VAR x:ARRAY[1 .. 4] OF integer;
BEGIN

READ(x);
WRITE(RDU MAX x);

END.

Given the input:
3 100 -9 99
this produces the output:

100

Algorithm 29. Reduction using MAX.

139

The convention used for reduction in Vector Pascal is the second. This is
partly for compatibility with APL, but also because one of the few uses for
reduction by - is in the evaluation of power series, where one wants just the
alternation of positive and negative terms in the series, that evaluation of
reduction from right to left gives.

When reducing by a relational operator such as =, one has to beware of
generating type errors. If the array to which the reduction is applied is
numeric, like c in Mean1, then RDU=c would translate as 1 = (2 = (3 = 5)).
This fails at compile on type consistency grounds, since 3 = 5 generates a
Boolean, which is then to be compared with 2, an integer.

The relational operators can only be used to reduce Boolean arrays. Thus
RDU=b for b=(TRUE, TRUE, TRUE) will return TRUE.

7 .5.3 Array Input/Output

When arrays are passed to a write statement as a parameter, the arrays are
printed a row at a time, with newlines at the end of each dimension. Thus,
when printing a two-dimensional array, each row is on a distinct line, followed
by a blank line at the end of the array. This is illustrated by the code in Alg. 30,
which when run prints

C:\book>printpowers

1 2
2 4

2 4
4 8

3 9
9 81

9 81
81 6561

140

VECTOR

VECTOR

VECTOR

VECTOR

SIMD Programming Manual for linux and Windows

PROGRAM PrintPowers;
CONST powers:ARRAY[1 .. 2,1 .. 2,1 .. 2] OF integer=(((1,2),

(2,4)),

((2,4),

(4,8)));
VAR v:ARRAY[1 .. 2,1 .. 2,1 .. 2] OF integer;
BEGIN

END.

WRITE C powers l;
v:=3 POW powers;
WRITECvl;

Algorithm 30. Illustration of how a multi-dimensional array is printed.

When reading data into an array, the elements of the array should be separated
by spaces along the rows, and by newlines at the end of each dimension.

7.5.4 Array Slices
In many applications one wants to operate on parts of an array. For instance,
in image processing there is the concept of a region of interest or a window,
a rectangular sub-section of a two-dimensional array of pixels. Vector Pascal
supports this with a syntax to refer to slices of arrays.

For instance, given the two-dimensional array dataset declared in Alg. 31,
then WRITE (data set [2 .. 3] : 3) will print out the second and third rows in
fields three characters wide;

1113171923
1215202430

whereas WRITE (dataset [J [3 .. 5 J : 3) will output columns 3-5:

3 5 7
171923
20 24 30
37 43 53
57 6 7 83

and W R I TE (dataset [2 .. 3][3 .. 5 J : 3) will output

17 19 23
20 24 30

We can select out a column with the syntax data set [J [2 J, which prints
out as

2
13
15
28
43

Chapter 7 • Basics of Vector Pascal 141

150-7185

150-7185

VECTOR

(*Demonstrate array slicing*)
PROGRAM slice;
CONST dataset:ARRAY[1 .. 5,1 .. 5] OF integer=

((1, 2, 3, 5, 7),

(11,13,17,19,23),
(12,15,20,24,30),
(23,28,37,43,53),
(35,43,57,67,83));

BEGIN
WRITELN('dataset');
WRITE(dataset:3);
WRITELNC'dataset[2 .. 3]');
WRITE(dataset[2 .. 3]:3);
WRITELN('dataset[][3 .. 5]');
WRITECdataset[J[3 .. 5]:3);
WRITELN('dataset[2 .. 3][3 .. 5]');
WRITE (dataset [2 .. 3 J [3 .. 5 J : 3) ;
WRITELNC'dataset[J[2]');
WRITE(dataset[][2]:3);
WRITELNC'dataset[2]');
WRITE(dataset[2]:3);
WRITELNC'dataset[2,3]');
WRITE(dataset[2][3]:3);
WRITELNC'dataset[2,3]');
WRITE(dataset[2 .. 2][3 .. 3] :3);

END.

Algorithm 31. The use of array slices.

and a row using data set [2 J, which prints out as

1113171923

or a single-array element with dataset [2] [3] , which simply prints as

17

as does the more complex data set [2 .. 2] [3 .. 3].
Array selections can be used wherever entire variables can be used subject to

type restrictions. It is worth taking care to understand the types of each of the
selections above:

Selection
1 dataset
2 dataset[2 .. 3]
3 dataset[2 .. 3][3 .. 5]
4 dataset[][3 .. 5]
5 dataset[][2]
6 dataset[2]

Type
ARRAY[l..S] OF ARRAY[l..S] OF integer
ARRAY[O .. l] OF ARRAY[l..S] OF integer
ARRAY[O .. l] OF ARRAY[0 .. 2] OF integer
ARRAY[0 . .4] OF ARRAY[0 .. 2] OF integer
ARRAY[0 . .4] OF ARRAY[O .. O] OF integer
ARRAY[l..S] OF integer

142 SIMD Programming Manual for Linux and Windows

7 dataset[2] [3] integer
8 dataset[2 .. 2][3 .. 3] ARRAY[O .. O] OF ARRAY[O .. O] OF integer

Some of them select matrices, some vectors and one a scalar. In particular,
one should distinguish between selecting a row and selecting a column.
Row selection is like dataset [2] and column selection like dataset [] [2] .
A row is a one-dimensional array and a column is a two-dimensional array
whose second dimension consists of arrays of length 1.

One should also distinguish between dataset [2 J [3 J, an individual element
of the array, and data set [2 .. 2] [3 .. 3], a two-dimensional array each of
whose dimensions is singular. Consider the following example assignments:

1 dataset[2] [3] := 3
2 dataset[2 .. 2][3 .. 3] := 3

valid
valid, produces same effect
as example 1

3 dataset[2 .. 2][3 .. 3] := dataset[1][2] valid
4 dataset[2][3] := dataset[1..1][2 .. 2] invalid, rank on the right> left

In several cases the effect of selecting a singular array is identical with that of
selecting an array element, but when an assignment is made, the expression on
the right hand-side of the assignment must have rank lower than or equivalent
to that on the left.

7.6 Vector and Matrix Products

In addition to the element by element arithmetic operations on vectors and
matrices described above, Vector Pascal provides a vector and matrix product
operator. This allows vectors to be multiplied by vectors, vectors to be multi­
plied by matrices or matrices to be multiplied by matrices.

7 .6.1 Inner Product of Vectors

Given that v, w are one-dimensional arrays, then v . w is the scalar formed by
the equation

b

v.w= LVi x Wj

i=a

(7.1)

where a, b are the lower and upper bounds of the two arrays. This is referred to
as the dot product or inner product of vectors. The inner product has direct
geometric interpretations in computer graphics.

A first use of it is in computing the length of vectors. The length of a vector
v written as I vi is given by the generalisation of Pythagoras's equation:

Vtv1 ~ lvl (7.2)

Chapter 7 • Basics of Vector Pascal

v2
' '

' ' p
:tf

' y '

' ,' 2.12132
' ' ' --------~----~'----X

0

143

~
'

Figure 7 .1. Projection of one vector on to another. In the example, v2 = (1 ,2), vl = (1, 1).

but

(7.3)

so the dot product operator is a key step in the calculation of vector lengths.
Another use is in measuring the projection of one vector against another.

Consider Figure 7.1: suppose we want to measure how far v2 extends in the
direction of vl. Geometrically this can be done by constructing the right­
angled triangle 0, P, v2 shown, and then measuring its base 0, P. This is the
projection of v2 on to the extension of vl. The dot product operation is the
computational key to this.

Given the vector v2 = (1, 2), it is clear that its projections on to the x- and y­
axes, respectively, are 1 and 2. If we define the unit vectors2 x = (1, 0) and
y = (0, 1), then by using the dot product operator we can measure the length of
v2 in the direction of x or y. This is shown in Alg. 32. More generally, if we have
some vector v we can measure its length in the direction of some unit vector r
by r.v. If we have some vector of arbitrary length (vl in Figure 7.1), we can
measure the length of v2 in the direction of vl by using the equation

vl.v2 vl.v2 vl
____,===--=-v2
v'vl.vl lvll lvll'

This can be considered as first normalising vl to produce the unit vector 1 ;~ 1 ,
having the same direction as vl, and then projecting v2 on to that normalised
vector.

Note that in the Vector Pascal version of the equation:

dd:=(v2.vl)/sqrt(vl.vl);

2 A unit vector has length 1.

144 SIMD Programming Manual for Linux and Windows

program dotproduct;
type vec=array[O .. l] of real;
const

vl:vec=(1.0,1.0);
v2:vec=(1.0,2.0);
x:vec=(1.0,0.0);
y:vec=(0.0,1.0);

var dx,dy,dd,1:real ;norm45:vec;
begin

dx:=v2.x;
writeln('project' ,v2, 'against x =' ,dx);
dy:=v2.y;
writeln('project',v2,'against y =',dy);
dd:=(v2.v1)/sqrt(v1.v1);
writeln('length' ,v2, 'in direction' ,vl,' ',dd);

end.

when executed this produces

project 1.00000 2.00000
against x = 1.00000
project 1.00000 2.00000
against y = 2.00000

length 1.00000 2.00000
in direction 1.00000 1.00000

2.12132

Algorithm 32. The dot product of two vectors. See Figure 7.1 for explanation.

the bracketing ensures that the division is scalar. This is more efficient than
writing

v2.(vl/sqrt(vl.v2))

since in the latter case vector division has to be performed. For short vectors
like these, it is not important, but for longer vectors the distinction is signi­
ficant. For efficiency reasons one should rearrange equations to minimise the
amount of vector arithmetic performed.

When compiled for a CPU with suitable vector instructions (see Table C.l
in Appendix C), the compiler will attempt translate the dot product of two
vectors into vectorised code.

7 .6.2 Dot Produd of Non-real Typed Vedors

The example above describes the dot product operation in its classical
mathematical form, where vectors or real numbers are multiplied together.
The dot product operation can be decomposed into two components:

1. an element by element multiplication
2. a reduction step to form the total.

Chapter 7 • Basics of Vector Pascal 145

VECTOR

program overflow;
type bvec=array[O .. 7] of byte;

ivec=array[O .. ?J of integer;
const b1:bvec=(1,2,4,8,16,32,16,8);
var t1,t2:integer;i1:ivec;
begin

t1 :=bl. b1;
i 1 :=b1;
t2:=il.i1;
writeln('byte dot product ',t1);
writeln('int dot product ',t2);

end.

produces as output

byte dot product 149
int dot product 1685

note that 149 = (1685 mod 256)

Algorithm 33. The danger of overflow when computing dot products using limited precision.

As such, the expression v . w is equivalent to the Vector Pascal expression
\ + (v *w). It therefore has meaning for any types for which the operators +
and * are defined. The integer interpretation of this is direct, but care has to be
taken with the possibility of overflows occurring. The type of scalar result
returned by the dot product operator is the same as the type of the elements of
the arrays being multiplied. When working with integers, particularly integers
of limited precision, this gives rise to the risk of the result being greater than
can be represented in the available precision. Alg. 33 illustrates how a dot
product of a vector of bytes is computed to only 8-bit precision, in contrast to
the case where the same input values are represented as 32-bit integers.

It is also possible to perform the dot product operation between other types
of vectors:

1. Vectors of complex numbers. In this case, the interpretation is in terms of
complex addition and multiplication.

2. Vectors of sets (see Section 9.6). In this case, the interpretation is in terms
of set union and intersection.

3. A vector of strings may multiply a vector of integers. In this case, the
interpretation is in terms of concatenation and repetition. This is illustrated
in Alg. 34.

7 .6.3 Matrix to Vector Product

In Section 3.6, we discussed the use of matrix of the form given in Equation
3.3 to carry out generalised linear geometry transforms. We can do this in

146

VECTOR

SIMD Programming Manual for Linux and Windows

program roman;
canst rom:array[0 .. 4J of string[l]=('C','L' .·x· .·v· ,'I');

numb:array[O .. 4] of integer =(2. 1, 1, 0, 3);
var s:string;
begin

s:=numb.rom;
writel n(s);

end.

produces output

[wpc@localhost tests]$ roman
CCLXIII

Algorithm 34. Use of the dot product operator to output the number 263 as the roman number CCLXIII.

Vector Pascal if a two-dimensional array is used to multiply a one-dimensional
array, using the dot product operator. If M is a two-dimensional array and v a
vector, M • v produces the transformed vector.

The program matvmult, shown in Alg. 35, shows the repeated application of
a rotation and translation matrix to the unit x vector. When the matrix

I -I 0 0 .fi .fi
I I 0 0 .fi .fi
0 0 1 0.2
0 0 0 1

is applied to a vector of the form [x, y, z, 1], it rotates it by 45° and moves it up
by 0.2.

7 .6.4 Data-flow Hazards

Note that in Alg. 35, one cannot simply write v 1 : =M . v 1; instead, one has to
write

v2:=M.v1;
v1:=v2;

since the vector v 1 might be changing whilst it was being read. Had the
compiler encountered this statement, it would have generated the error
messages:

compilation failed
17: Error assignment invalid
17: Errorinprimaryexpressionstartedbym
17: Error attempting to reduce rank of variable
17: Error data hazard found. Destination v1 is used with

ani ndex permutation on right hands ide of :=which
can cause it to be corrupted.

Chapter 7 • Basics of Vector Pascal

You can get round this by assigning to a temporary
array instead and then assigning the temporary to
destination vl

147

A check for data-flow hazards is applied to all array assignment state­
ments. If array expressions could all be evaluated in parallel, then there would
be no hazards. The problem arises because only simple array expressions can
be evaluated entirely in parallel. In other cases the array assignment has to be

program matvmult;
type vec=array[0 .. 3] of real;

mat=array[O .. 3] of vee;
canst

{ 1/sqrt(2)} rr2=0. 7071067 ;
M:mat=((rr2,-rr2,0.0,0.0l,

(rr2,rr2,0.0,0.0l,
(0.0,0.0,1.0,0.2),
(0.0,0.0,0.0,1.0));

{45degree spiral matrix}

v:vec=(1.0,0.0,0.0,1.0l;
var v1,v2:vec;i :integer;
begin

write(M, vl;
v1:=v;
(* perform 8 45degree rotations *)
for i :=1 to 8 do begin

v2:=M.v1;
v1 :=v2;
write(v1);

end;
end.

produces as output

0.70711
0. 70711
0.00000
0.00000
1.00000
0. 70711
0.00000

-0.70711
-1.00000
-0.70711
-0.00000
0.70711
1.00000

-0.70711 0.00000
0.70711 0.00000
0.00000 1.00000
0.00000 0.00000
0.00000 0.00000
0.70711 0.20000
1.00000 0.40000
0.70711 0.60000

-0.00000 0.80000
-0.70711 1.00000
-1.00000 1.20000
-0.70711 1.40000
-0.00000 1.60000

0.00000
0.00000
0.20000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

Algorithm 3S. Using a spiral rotation matrix to operate on the unit x vector.

148

VECTOR

SIMD Programming Manual for linux and Windows

broken down by the compiler into a sequence of steps. This gives rise to the
danger that an array location may be altered by an early step prior to it being
used a source of data by a subsequent step.

In most cases there will be no problem even where the destination vector
appears on the right-hand side of an assignment. Thus:

M:=M+v;

for some matrix M and vector v is acceptable, since here each element of M
depends only on its own prior value. However, for v 1 : = M . v 1, we have the
equations

3

vlo = L MojVlj
j=O

3

vl1 = L M1jvlj
j=O

(7.4)

(7.5)

Whatever the order in which the code for these equations is evaluated, either
v10 or v1 1 will be altered before it is used in the other equation. Given that
such hazards can arise in any language that allows parallel array assignments,
there are two design approaches that can be taken to avoid them:

1. One can check for data-flow hazards at compile time and flag them as
programming errors.

2. One can define the semantics of the language so that each array expression
computes its full result before any assignment occurs.

Vector Pascal takes the first approach whereas APL NIAL and Fortran 90 take the
second. For an interpretive language in which arrays are dynamically generated
on the heap, such as APL and NIAL, this is the natural applicative semantics to
adopt. For imperative languages where arrays are in the main statically allocated,
there are advantages to each approach. The second approach gives rise to more
natural semantics, requiring less thought on the part of the programmer, but it is
less efficient. If each array expression generates a new array of values, then store
must be allocated for this purpose. On modern machines one is not likely to be
short of main memory, but frequent allocation of temporary buffers will have an
impact on cache occupancy which might not have occurred in the equivalent
sequential algorithm. In Vector Pascal, all array expressions are interpreted as
loops around derived scalar expressions. The temporary store required by the
scalar expressions can then be allocated in registers.

7 .6.5 Matrix to Matrix Multiplication

The dot operator can be used between matrices to perform matrix multiplica­
tion as illustrated in Alg. 36. This applies the standard equation for matrix

Chapter 7 • Basics of Vector Pascal

program matmmult;
canst

A:array[1 .. 2,1 .. 3] of integer=((3,1,2),
(2,1,3));

B:array[l..3,1..2] of integer=((l,2),
(3, 1)'

(2 '3)) ;

var C:array[1 .. 2,1 .. 2] of integer;
begin

C:=A.B;
writel n(C);

end.

Produces output

multiplication:

10
11

13
14

Algorithm 36. Matrix by matrix multiplication.

p

Cik = L a;sbsk
s=l

149

(7.6)

where A is of order (m x p) and B is of order (p x n) to give a resulting matrix
C of order (m x n).

7.7 Typography of Vector Pascal Programs

Vector Pascal makes use of a number of other publicly available software tools.
One of these is the TEX. typesetting sytem.

There exists a canonical TEX. representation of Vector Pascal programs,
VPT:EX. This representation can be obtained either by use of a compiler flag
(the -L flag), which causes the compiler to output a program listing as a . tex
file, or by using the VIPER Integrated Development Environment discussed in
Sections 16.1-16.6. The program shown in Alg. 28 would look like Figure 7.2
once formated through VPTEX and ID':EX.

program Mean 7;
const

c:array [1..4] of integer= (1 ,2,3,5);
begin

write(II.(Ilc)0·25);

end.

Figure 7.2. Illustration of VPTEX formating applied to the program shown in AI g. 28 to find the mean of
the first 4 primes.

150

initialise b
flood fill

SIMD Programming Manual for linux and Windows

program forms;
var a:array[l .. 4] of real;

b:integer;
begin

end.

b:=3; {initialise bl
a:=7/b;{flood fill}
a[b]:=sqrt(a[b]*b);
write(a);

program forms;
var

Let a E array[1 . .4] of real;
Let bE integer;

begin
b~3;

a~{;;
ab~ Jabx b;
write(a);

end.

Figure 7.3. The mapping from ASCII to ~X format.

In VPT£X the reserved words ofVector Pascal are rendered in bold sans-serif
font. User-defined identifiers are rendered in italic sans-serif font.

Comments that are preceeded by a special comment opening sequence (* !
are treated as IM£X source and passed directly to the . tex output file. By
default these will be printed in roman face. Comments at the end of a line are
printed by VPT£X as marginal notes. The example in Figure 7.3 of Vector
Pascal in ASCII format shows some of the conversions performed when going
to VPT£X format.

Note how array subscripting is printed using typographic subscripts and
standard mathematical notation is used for square root. The VPT£X format is
intended for both documentation and communication purposes, wherever the
mathematical meaning of an algorithm has to be concisely expressed. The
higher order operators in Vector Pascal lend themselves well to mathematical
notation. In subsequent chapters VPT£X format will be used where it helps
communicate algorithms and where the ASCII forms of the constructs used
have already been introduced.

Algorithmic Features
of Vector Pascal

Chapter 7 presented the key features of Vector Pascal's expression language.
These allow it to be used as, in essence, a sophisticated calculator working
on both scalars and arrays. In order to write general-purpose algorithms,
one needs to add facilities for conditional evaluation and either recursion or
unbounded iteration.

8.1 Conditional Evaluation

Vector Pascal reintroduces an old construct, the conditional expression. This
was present in Algol~60 but was deleted from Pascal by Wirth because he
considered that it could be bewildering (Wirth, 1996). It has been included in
Vector Pascal because it is useful as a means of expressing conditional
computation in a data-parallel way.

Suppose that we wish to grade some examination marks. All marks of 70
and above qualify for the first grade, all marks in the range 50 to 69 qualify for
the second and those below for the third. Figure 8.1 shows a program that will
grade an array of eight marks based on this rule. Invoking it produces the
following results:

C:\book >gra de
60 45 55 67 83 12 90 61

2 3 2 2 1 3 1 2

PROGRAM grade ;
VAR marks, grades:ARRAY [l .. 8] OF byte;
BEGIN

READ(marks) ;
grades:=IF ma rks>=70 THEN 1

ELSE IF marks>=50 THEN 2
ELSE 3;

{format i n 3 cha racter wide f ields)
WRITE(GRADES :3) ;

END.

Figure 8.1. An example of conditional evaluation.

151

152

VECTOR

150-7185

150-7185

150-10206

SIMD Programming Manual for Linux and Windows

The conditional evaluation IF ... THEN ... ELSE takes a Boolean argument
between I F and THEN and two arguments of matching type after the THEN and
ELSE keywords. As shown in the example, conditional evaluation is allowed
over array arguments provided that the normal rules for rank and dimen­
sionality are met.

The conditional expression lends itself well to parallel evaluation on SIMD
instruction -sets.

8.2 Functions

Functions are abstractions over expressions which allow certain terms of the
expressions- the parameters- to be substituted in when the function is invoked.
Vector Pascal provides a library of pre-given functions and prefix operators to
perform common mathematical tasks; here we discuss user-written functions.

8.2.1 User-defined Fundions

A Pascal function has a name whose format follows the rules for identifiers, an
optional parameter list and a return type. Within a context functions should
be declared after constants and variables. Figure 8.2 illustrates three functions,
one with no parameters, the second with one parameter and the third which
recurses on its one parameter.

Functions return their value by making an assignment to an implicit write­
only variable with the same name as the function. The function does not
return control to its calling environment on this assignment. This is different
from languages such as C and Java where returning a value and returning
control are done by the same construct.

Vector Pascal allows any type, including array types, to be returned from a
function. This contrasts with Standard Pascal, which limited function return
types to scalars.

FUNCTION Pi4:real;
BEGIN

Pi4:=pi/4
END;
(*Compute log_2(X)*)
FUNCTION Log2(x:real):real;
CONST Log2e=l.442695; {log_2 of e)
BEGIN

Log2:=ln(x)*log2e;
END;
FUNCTION Fact(i:integer):integer;
BEGIN

Fact:=IF i<=l THEN 1 ELSE Fact(i-l)*i
END;

Figure 8.2. Three functions.

Chapter 8 • Algorithmic Features of Vector Pascal 153

VECTOR

IS0-7185

IS0-7185

IS0-7185

Vector Pascal has an extension to allow C style returning of values. The
construct EXIT (x) would cause the current function to return with the value x.

Function declarations create a new scope within which new identifiers can be
declared. These can be variables or constants used for temporary calculation
within the function or other functions that perform a subtask within the func­
tion. Figure 8.3 illustrates this with a function that declares two local variables
and two local functions for its computation.

Name Hiding

If a function or procedure declares a local identifier, that local identifier has
the effect of hiding any lexically equivalent identifiers declared outside the
function.

Value Parameters

The default parameter passing mechanism in Pascal is call by value. This means
that when a parameter is passed into a function or procedure, a copy is made
of the parameter. The parameter passed in is termed an actual parameter and
the name declared in the parameter list is the formal parameter. Since the
formal parameter is a copy of the actual one, any assignment to the formal
parameter leaves the actual parameter unchanged.

Programmers should be aware of the efficiency considerations inherent in
making copies of arrays passed as value parameters.

Var Parameters

A parameter preceded by the keyword VA R is passed by reference. This means
that an assignment to the formal parameter will have exactly the same effect as
assigning to the corresponding actual parameter. An implication of this is that

CONST elems=lOO;
VAR dataset:ARRAY[l .. elems] OF real;
FUNCTION getrange:real;
{returns the range of values used in the dataset}
VAR top,bottom:real;

FUNCTION highest: real;
BEGIN highest:=RDU MAX dataset END;

FUNCTION lowest: real;
BEGIN lowest:=RDU MIN dataset END;

BEGIN

END:

top:=highest;
bottom:=lowest;
getrange:=top-bottom

Figure 8.3. Use of local identifiers within a function.

154

150-10206

SIMD Programming Manual for Linux and Windows

(* scanb returns the index of the largest item in a
and also updates big to hold the value of the largest
item in a *)

FUNCTION scanbCVAR big: real ;a:ARRAY[l .. lOJ OF real):integer;
FUNCTION findCi :integer);
BEGIN

find:=IF a[i]=big THEN ELSE i+l;
END;

BEGIN
big:=RDU MAX a;
scanb:=fi nd(l);

END;
(* return the least element of a *)
FUNCTION scanCVAR a:ARRAY[l .. 10] OF real):real;
BEGIN

scan:=RDU MIN a
END;

Figure 8.4. Two uses of var parameters.

the actual parameters must themselves be variables. It is an error to attempt to
pass a constant or an expression as a var parameter.

Var parameters should be used in the following circumstances:

1. When a procedure or function needs to update its actual parameters. This is
illustrated in function scan b in Figure 8.4, where two results are returned:
the largest value in an array and its index.

2. For efficiency considerations when passing large parameters, in particular
large arrays. Since only a reference to the array is passed in, this will typi­
cally be faster than copying the whole array. For example, see function
scan in Figure 8.4.

It should be noted that whereas in implementations of Standard Pascal, array
var parameters are typically passed as addresses, this is not necessarily true in
Vector Pascal, where additional information may in some cases be passed
concerning array bounds.

Protected Parameters
A parameter declaration may be prefixed by the word PROTECTED. A pro­
tected parameter may not be assigned to within the body of the function.
Protected parameters are useful for obtaining the semantic effect of a value
parameter where efficiency considerations lead an array to be passed as a var
parameter.

Parameter Types
Standard Pascal requires the types of parameters to be given by type names.
Where arrays are passed as parameters they must be of user-defined array types

Chapter 8 • Algorithmic Features of Vector Pascal 155

150-7185

150-7185

FUNCTION a(i:integer):real ;FORWARD;

FUNCTION b(z:real):real
BEGIN

b:=IF z>5 THEN a(trunc(z)) ELSE 2*z;
END;

FUNCTION a(i:integer):real;
BEGIN

a:=IF i>2 THEN 0.0 ELSE b(i/10);
END;

Figure 8.5. Mutual recursion requires forward declaration.

(see Chapter 9). Vector Pascal allows array types to be explicitly given in the
parameter declarations as in Figure 8.4.

Forward Declaration

Where two functions a and b are mutually recursive there is a potential clash
with the Pascal rule that an identifier must be declared before it is used. To
avoid a contradiction one of the functions must be declared as being FORWARD
(Figure 8.5). A forward function has only its header given followed by the
word FORWARD. Following this forward declaration, other functions can call
it. At some later point in the program text the function is redeclared with its
function body present this time.

8.2.2 Procedures

Functions provide a model of programming in which data are passed in through
the parameters and a result is returned. A function that returns no result, which
would be a void function in Java or C, is termed in Pascal a procedure.
Declarations of procedures are similar to those of functions except that

1. The reserved word PROCEDURE substitutes for the word FUNCTION.
2. No return type is specified.
3. No assignment is allowed to the procedure name within the procedure.

Procedures communicate their effects preferably by means of var parameters.
Alternatively, they may alter global variables, although this is regarded as a less
ideologically sound practice.

Example Program to Compute Entropy

Let us now illustrate the use of the features introduced so far in a complete
program.1 The aim of the program is to compute the entropy H or mean

1This program, with modifications for Vector Pascal, is derived from Cherry (1980).

156 SIMD Programming Manual for Linux and Windows

information per character of a source given p;, the probabilities of occurrence
of each character. The formula for information is given by Shannon (1948) as

where each term of the series is actually positive since we know that p; < 1
by the definition of a probability distribution, hence log(p;) < 0. If we use
log2 instead of natural logarithms, then the measure comes out in bits. Thus,
given a distribution defined over two possible measurement outcomes { 0,1}
each of which is equally probable, we obtain the equation -0.5log2 (0.5)-
0.Slog2(0.5) = -log2(0.5) = 1, hence the conclusion of Shannon that one
bit is the amount of information required to choose between two equally
probable outcomes.

Let us assume that our program has to read in a table of probabilities, one
for each character. The probabilities will be provided as real numbers in
lexicographic order, one for each character in the character set which we shall
assume to coincide with the Pascal type CHAR. The program outline,
proceeding in a top-down fashion, might look as follows:

program Shannon;
var

Let P E ARRAY [char] OF real;
Let valid E boolean;

function H (PROTEGED var P:array [char] of real):rea/; (see Section 8.2.4)
procedure ReadAndVa/idate (var P:array [char] of real); (see Section 8.2.3)
begin

ReadAndValidate (P);
if valid then WRITE(H (P));

end.

8.2.3 Procedure ReadAndValidate

Let us defer the refinement of H until later, and concentrate on the code to read
and validate. In Vector Pascal reading an array is trivial, but we need to check that

1. No p; > 1, as this would validate the axioms of probability theory.
2. No p; < 0, as this is again meaningless in probability theory.
3. No p; = 0; although 0 is defined as a probability, -p;log2(p;) is undefined

at 0.
4. The sum of the probabilities is 1. If the sum is significantly different from

1 then this is probably an error in the input data. If it is slightly different
then it is probably due to rounding errors and can be compensated for by
renormalising the data.

Here is the refinement of ReadAndValidate:

procedure ReadAndValidate (var P:ARRA Ychar of real);
const

tolerance= 0.005;

Chapter 8 • Algorithmic Features of Vector Pascal 157

normalise

var
Let low,high,sum E real;

begin
read (P);
low +--- \min P;
high +--- \max P;
sum+- L,P;
valid+--- (low > O) 1\ (high :S 1) 1\ (sum < 1 + tolerance) 1\ (sum > 1 -tolerance);
if NOT valid then WRITE('data invalid');
p +--- p.

sum'
end;

We compute the highest and lowest elements and the sum of the series. We
update the Boolean variable valid depending on whether these values are
within the valid ranges. We then renormalise the values to be within range
taking into account minor errors in the precision of the source data.

8.2.4 Function H

We now provide a refinement ofthe function H. This uses a nested function to
compute log2(x), shown in Section 8.2.5.

function H (PROTECTED var P:ARRA Ychar of real):real;
function Log2 (x:real):real;(see Section 8.2.5)
begin

H +--- 'L,(-PxLog2(P));
end;

8.2.5 Function Log2

We can convert from a logarithm to base e to a logarithm to base 2 by multi­
plying the natural logarithm of a number by the logarithm of 2 to the base e.

function Log2 (x:real):real;
const

Log2e = 1.442695;
begin

Log2 +-ln(x)xlog2e;
end;

8.3 Branching

8.3.1 Two-way Branches

We have already looked at the use of the I F . . . T H EN . . . E L S E . . .
construct in conditional expressions. In that case a Boolean variable is used to
determine which of two alternative expressions is to be returned as a result.
It can also be used in conditional statements to control whether a statement is

158

150-7185

150-7185

SIMD Programming Manual for linux and Windows

executed. We have given a simple example of the If statement in the program
Shannon, where it was used to guard Write statements. The general form with
an ELSE is illustrated in

IF val i d THEN WRITE (H (P))
ELSE WRITE(' No result computed·):

Dangling Else

It is important to realise that in Pascal the keyword ELSE binds with the
closest preceding THEN. This rule means that code has to be read with care to
determine its meaning. Consider the following:

IF b1 THEN
IFb2THEN

WRITE('both true')
ELSE write('b1 false'):

From the indentation and messages it is clear that the coder wanted the
message b 1 fa l s e to be printed out if b 1 was false. In fact nothing will be
printed, as the compiler interprets this as:

IF b1 THEN BEGIN
IF b2 THEN

WRITE('bothtrue')
ELSE write('b1 false'):

END;

To achieve the desired end, the coder should have written

IF b1 THEN BEGIN
IFb2THEN

WRITE('bothtrue')
END
ELSE write(' b1 false'):

8.3.2 Multi-way Branches

The following structure:

IF b1 THEN statementl
ELSE IF b2 THEN statement2
ELSE IF b3 THEN statement3

ELSE statementN

selects one of n alternatives based on n - 1 Boolean expressions. This is the
most general form of multi-way branch but it is composed of a sequence of
two way branches which use Booleans, a bivalent type, as the selector.

Chapter 8 • Algorithmic Features of Vector Pascal 159

150-10206

TURBO

VECTOR

150-7185

Pascal also allows multi-way branching on subrange and ordinal types using
the case statement

CASE errcode OF
1.7 :WRITEC'dividebyzero');
2 :WRITEC'Logofnegativenumber');
3 .. 6,8: WRITE('bounds error');
END;

The example above shows a classical Pascal case statement. There is a
selection expression, e r r code, and a series of statements, each of which is
preceded by a list of guards. The guards are either values or ranges of values. At
run time control is passed to that statement, if any, whose guards include the
value of the selection expression. After this statement has executed, control
passes to the statement following the EN D. C and Java programmers should
note that no b rea k is required following the cases, unlike the analogous
s w i t c h statement.

Vector Pascal supports the 0 THE RW I S E construct in case statements:

CASEcOF
'a' .. 'z' :WRITEC'lowercase');
'A' .. 'Z' :WRITEC'uppercase');
OTHERWISE WRITE ('not a letter');
END;

The statement guarded by OTHERWISE receives control for all selections other
than those for which an explicit guard is provided.

For compatibility with code written for Turbo Pascal, the word ELSE may
substitute for 0 T H E RW I S E.

As shown in the example above, the guards need not be integers, but they
must be scalars known at compile time. There will be an implementation­
defined limit to the range of the types that can be used in case selections in
Vector Pascal, which will be accessible to programmers using the predefined
constant maxcaseswi tch.

8.4 Unbounded Iteration

An unbounded iteration construct allows a statement to be iterated for a
number of times that is determined by the iteration process itself. The number
of iterations cannot in general be predicted at compile time. Pascal provides
two unbounded iteration constructs, W H I L E and REPEAT statements.

8.4.1 While

The while loop is probably the most frequently used structure for controlling
iteration. The general form of the while statement is

WHILEbDOs;

160

150-7185

SIMD Programming Manual for Linux and Windows

where b is a Boolean expression and s is a statement. It is evaluated as run
time as follows:

1. When the while statement is first encountered the processor evaluates b.
2. If it is false, execution continues with the first statement after the while

statement.
3. If b is true, the processor executes s.
4. After executing s the processor re-evaluates b and goes to step 2 above.

The while statement should be used when the number of repetitions to be
executed is not only unknown at compile time but also may be zero.

While statements can have compound statements for their bodies:

WHILEremainder>=divisorDO
BEGIN

remainder:= remainder-divisor;
quotient :=quotient+1

END;

8.4.2 Repeat

The second form of unbounded repetition, the REPEAT statement, should be
used when the number of iterations is a priori unknown but is known to be at
least one. Consider the example

{skip blanks}
REPEAT

read(ch)
UNTILch<>''

The repeat statement has the general form

REPEATs1; s2; ... UNTILb;

where s 1, s 2, ... are statements and b is a Boolean expression. It is evaluated
as follows:

1. Statements s 1, s 2, . . . are executed.
2. Expression b is evaluated.
3. If b is false, control passes to the first statement after the repeat statement.

Otherwise the processor goes back to step 1.

The unbounded repetition statements are particularly useful when dealing
with potentially infinite data types, for instance files and input streams. Whereas
in Vector Pascal the sum of an array a can be written RDU+a, to obtain the
sum of a file of numbers one needs unbounded iteration. Figures 8.6 and 8.7
show how repeat and while loops could be used to provide the total of all the
integers in a file up to and including the first zero value. The number of non­
zero values is not initially known.

Chapter 8 • Algorithmic Features of Vector Pascal 161

150-7185

program sum file (input,output);
var

Let total, x E integer;
begin

totalt- 0;
repeat

read(x);
total f- total + x;

untilx = 0;
end.

Figure 8.6. Use of unbounded iteration to sum the integers in a file up to the first 0 value.

program sumfile2 (input,output);
var

Let total, x E integer;
begin

read(tota/);
xt- total;
whilex=F Odo
begin

total f- total + x;
read(x);

end;
end.

Figure 8.7. Use of a while loop to achieve the same result as in Figure 8.6.

Note that these programs include parameters i n p u t and o u t put for the
standard i/o streams in the program header. The use of these is now relatively
obsolete, since in most Pascal implementations predeclare these files, allowing
them to be elided as in previous examples. This form is shown for compati­
bility with the usage in older Standard Pascal implementations.

8.5 Bounded Iteration

Bounded iteration involves a number of repetitions of an action that is
predetermined before the action starts. It can either be determined at compile
time or determined by calculations performed by the program before the
iteration commences.

8.5.1 For to

The most commonly used bounded iteration construct m Pascal 1s the
FOR ... TO loop. It has the general form

FORi :=x TOy DO s

162

150-7185

SIMD Programming Manual for Linux and Windows

const
maximum = 1 0;

var
Let a E ARRAY[1 .. maximum] OF real;
{typical Vector Pascal}
function newsum:real;
begin

newsumf- I.a
end;
{typical Pascal J
function oldsum:real;
var

Let i E integer;
Lett E real;

begin
tf- 0;
fori f- 1 to maximum do

tf- t+ a;;
oldsumf- t;

end;

Figure 8.8. The use of a for loop to perform operations on an array contrasted with the use of explicit
array arithmetic.

where i is a variable drawn from some integer or other scalar type t; x and y
are expressions of type t, and sis a statement. When a FOR ••• TO statement
is encountered the processor performs the following actions:

1. The expression x is evaluated and assigned to i .
2. The value of i is compared with that of y and if it is greater control passes

to the first statement after the FOR statement.
3. The statement s is evaluated.
4. x is assigned the value s u c c (x) .
5. The processor goes back to step 2.

In Standard Pascal the most common use of for loops is to iterate over arrays
whose size is known. In Vector Pascal the provision of array arithmetic makes
this less necessary. Figure 8.8 contrasts the preferred Vector Pascal construct
for summing the elements of an array with the preferred Standard Pascal
construct which uses a FOR ... TO loop.

8.5.2 For Downto

A second form of the FOR statement iterates down through a range. It has the
same general form as the FOR ••• TO statement except that the word DOWNTO
is substituted for the word To. In this case the iteration variable is
decremented as it steps through the range. In this case the starting value

Chapter 8 • Algorithmic Features of Vector Pascal

const

var
maximum = 1 0;

let a E ARRAY[1 .. maximum] OF real;
{find number with biggest integer absolute reciprocal}
function recipmax:integer;
label99;
var

Let i, r E integer;
Let ok E boolean;

begin
r+- 0;
ok+- false;
fori+-- 1 to maximum do
begin

if A; = 0 then goto 99;
r +-- r MAX ROUND (ab~(a);

end;
recipmax +-- r;
ok+- true;
99: if NOT ok then recipmax +-- maxint

end;

Figure 8.9. The use of GOTO to escape from an error condition.

163

must be greater than or equal to the finishing value if the statement s is to be
executed one or more times.

8.6 Goto

Pascal allows unconditional transfers between points in a program. A goto
statement has the form GOTO n; where n is a decimal integer termed a label.
Individual statements can be labeled by prefixing them by a label. Although
labels take the format of decimal integers, there is no need for the order in
which labels occur in the source to be ascending.

Labels must be declared at the head of the program or procedure in which
they occur.

The most common use of goto statements is to escape from a an error
condition to the end of a procedure, bypassing any intervening statements.
GOTOs should only be used to perform jumps within a procedure. 2

Figure 8.9 illustrates this by using a goto to escape from a potential divide
by zero error. The presence of a zero in the input data causes the function to
escape to a line which returns the largest supported integer as a proxy for
infinity.

2In Vector Pascal, a goto that jumps to an enclosing scope will transfer control but will not
unwind the stack. This can lead to unpredictable error conditions.

150-7185

User-defined Types

Thus far we have seen that data in Pascal can be of types integer, real, Boolean,
character or string. In addition, Pascal provides a rich set of type constructors
that allow user-defined types to be declared. A user-defined type is given a
name which follows the normal scope rules of the language. It associates an
identifier with the set of possible values that a variable of that type may take on
at run time.

The general syntactic form of a type declaration is

TYPE i = t;

where i is a well-formed identifier and t is a type expression. These type
expressions are built up using several organising principles:

1. A type may be drawn from a range of values.
2. A type may be a specialisation of the real numbers.
3. It may be formed as some form of array.
4. Several types can be joined to form a composite type.
5. A type can be defined as a power-set of some range.
6. A type may be a pointer or reference to another type.

9.1 Scalar Types

A scalar type in Pascal is a set that is homomorphic to a subrange of the natural
numbers. The types Boolean and char are predefined scalar types.

A value of a scalar type can range over this set. A scalar type is defined in
terms of an ordered list of identifiers. The identifiers introduced in the ordered
list must be unique within the scope of definition. For example:

TYPEday=(sunday,monday ,tuesday,wedne sday ,
th urs day , f rid ay , sa turd ay) ;

co l our=(red, green, bl ue) ;

This introduces eight identifiers: day, a type identifier, and seven constants,
s unday ... sa t urd ay, all of type day. Given the type definition for day,
variables of this type can now be declared:

VARt oda y :day ;

165

166

VECTOR

150-7185

SIMD Programming Manual for linux and Windows

Assignments can be made to these variables provided that the value being
assigned is drawn from the appropriate set of identifiers. Thus,

today:=monday;

is valid but

today:=l;

is not.
The complete set of comparison operators are implicitly defined over all

scalar types, as are the operators MIN and MAX.

9.1.1 SUCC and PRED

There is a pair ofbuilt-in operators, SUCC and PRED, defined over every scalar
type t such that x = SUCC PREDxVx E t andy= PRED SUCCyVy E t.

This definition of the successor and predecessor functions differs from that
given in the Pascal standard, which defines S U C C as follows:

succ(x)

The function shall yield a value whose ordinal number is one greater
than that of the expression x, if such a value exists. It shall be an error if
such a value does not exist (ISO, 199lb, p. 45).

The implication of these definitions is that in Vector Pascal the successor
function operates in a modulo fashion. As one steps through a scalar type with
the successor function, one eventually gets back to the starting point. This is
illustrated in Figure 9.1.

The intention of the ISO definition is to ensure that the result of performing
the successor or predecessor functions is always a member of the type of its

program ordinals;
type

var

day = (sunday,monday,tuesday,wednesday,
thursday,friday,saturday);

Let today,tomorrow,day2 E day;
begin

today f- friday MAX saturday;
tomorrow f- SUCC today;
day2 f- SUCC(sunday,2);
writeln(today,tomorrow,today < friday,day2 < friday);

end.

output generated:

saturday sunday false true

Figure 9.1. A program illustrating both the comparability of user-defined scalar types and their cyclical
nature.

Chapter 9 • User-defined Types 167

IS0-10206

argument. The Vector Pascal approach of using modulo arithmetic achieves
the same result in a different way. It has certain advantages:

• For certain data types, for example the days of the week, it leads to a more
natural approach.

• It is congruous with the general restrictions of finite length computer
integer arithmetic, which is inherently modular. In this way scalar types
which typically have small ranges are brought into conformity with the
semantics of the integer data type. For example, the program

program wrap;
var

Let i E integer;
begin

i+-maxint;
write(i,j + 1);

end.

will on most Pascal systems print out the largest and smallest integers
handled by the processor. This is permitted under the Pascal standard,
which states (ISO, 199lb, p. 49):

Any dyadic operation on two integers in the same interval shall be
correctly performed according the mathematical rules for integer
arithmetic provided that the result is also in this interval.

Since maxi n t+ 1 is outside the defined interval for integer arithmetic, the
default modular arithmetic performed by most computer hardware is
allowed by the standard.

• The rule that an error will arise if S U C C is applied to the top element of the
type forces the compiler to plant range checking code. This is typically
slower than performing a modulus operation.

Conformity with the Standard

Where backward compatibility demands it, the Vector Pascal compiler can
perform the successor and predecessor functions in the way required by the
standard. To do this the compiler directive { $ m - } is inserted into the body of
the program. This switches off modular arithmetic until the obverse directive
{ $ m+ } is inserted.

When modular arithmetic is switched off, then range checks will be placed
after each invocation of SUCCor PRED.

The placement of range checks can itself be controlled by the compiler
directives { $ r-} and { $ r+} as shown in Table 9.1. The default state of the
range checking switches is on.

Extended Syntax for S U C C

Extended Pascal allows a second parameter to be supplied to SUCC and PRED.
The second parameter is an integer which specifies the size of the increment or

168

150-7185

VECTOR

$m

+
+

$r

+

+

SIMD Programming Manual for linux and Windows

Table 9.1. Effect of the compiler directives Sm and Sr

Means

Default status, use modular arithmetic and array bounds checks
Use modular arithmetic, but no array bounds checks
Bounds checks on arrays, succ and pred
Neither range checks nor modular arithmetic

FUNCTION tolower(c:char):char;
BEGIN

tolower:=CHRCORD(c)-ORDC'Z')+ORDC 'z'));
end;

Figure 9.2. Illustrating how the 0 R D function can be used to allow arithmetic on a scalar type, in this
case char.

decrement to be performed. Thus given the definition of day above, the line

WRITE(SUCC(sunday, 2));

will produce the output tuesday. This extended syntax is supported in Vector
Pascal. As with the single-parameter format, the default in Vector Pascal is for
the increment or decrement to be performed by modular arithmetic.

9.1.2 ORO

There is an operator 0 RD which returns the integer corresponding to a
member of a scalar type. Figure 9.2 illustrates how the ORO operator can be
used in calculations to convert letters to lower case.

9.1.3 Input/Output of Scalars

Standard Pascal does not support the reading and writing of scalars to and
from text files. Vector Pascal does. A scalar type is printed out as the
equivalent string of characters. A read operation whose target is a variable of
scalar type will:

1. read in the next identifier in the text file
2. check it against the valid members of the scalar type
3. generate an error condition if the identifier is not or the right type
4. convert the textual form of the identifier into the appropriate binary code.

9.1.4 Representation

Scalar types in Vector Pascal will be stored using either octets, halfwords or
words, depending on the range of the type.

Chapter 9 • User-defined Types

PROGRAM increment;
{Program to read in a string of decimal digits
convert it to an integer, increment it
and print the result.

}

TYPE
decimalchar='0' .. '9';
decimalint = 0 .. 9;

VAR line:string;

FUNCTION s2int(s:string):integer;
LABEL 99;
VAR c:char; i ,t:integer;

FUNCTION toint(d:decimalchar):decimalint;
BEGIN
toint:=ORD(d)-ORD('O')

END;
BEGIN

i :=1; t:=O;
WHILE i<length(s) DO
BEGIN

END;

c:=s[i];
IF (c<'O') OR (c>'9') THEN GOTO 99;
t:=lO*t+toint(c);
i :=i+l;

99: s2int:=t
END;

BEGIN
READLN (line);
WRITELN(s2int(line)+l);

END.

Figure 9.3. The use of sub-range types.

9.2 Sub-range Types

169

A type can be defined to be a sub-range of another integer or scalar type:

TYPEweekday=rnonday .. friday;
decirnalchar='O' .. '9';
decirnalint = 0 .. 9;

A sub-range type inherits its signature of operators from the type of which it is
a sub-range. Thus, the type deci rna l char in the example above can have
comparison operations, ORO, PRED and SUCC, on its values. The type
dec i rna l i n t, on the other hand, can take part in arithmetic operations. The
use of these types is illustrated in Figure 9.3.

170 SIMD Programming Manual for linux and Windows

9.2.1 Representation

Sub-range types in Vector Pascal will be stored using either octets, halfwords
or words, depending on the range of the type.

Numeric sub-range types whose ranges fall within the range -128 ... 127
are represented as signed octets. Numeric types whose lower bound is zero or
greater and whose upper bound is in the range 128 ... 255 are represented as
unsigned octets.

Numeric sub-range types whose upper bound is in the range 28 ... 215 - 1
and whose lower bound is greater than or equal to -215 will be stored in signed
16-bit integers.

Numeric sub-range types whose upper bound is in the range 215 ••. 216 - 1
and whose lower bound is zero or positive will be stored in unsigned 16-bit
integers.

Other numeric subranges are stored as signed 32-bit numbers. As always
when working with finite precision arithmetic, care has to be taken with
arithmetic operations on sub-range types which could potentially take them
out of bounds.

9.3 Dimensioned Numbers

One use of types in programming languages is to divide up our universe of
discourse into different categories which are incommensurable. It does not
make sense to compare days of the week with colours. By allocating a set of
distinct names to days of the week and to colours using scalar types, one can
prevent a programmer inadvertently assigning values proper to one type to
variables of another.

A variable of type day and a variable of type col o u r will both occupy one
octet, and thus from the format standpoint one could be copied into another.
Semantically it would be nonsense. Strong typing protects us from even
attempting it.

There is another sort of error which it would be nice to avoid, one captured
in the aphorism that one cannot add apples to oranges. This type of error relates
to performing arithmetic between quantities of things that are themselves
incomensurable. Numbers are used in two senses. In the one sense they are
abstract mathematical objects whose production and manipulation is governed
by formal laws. The finite numerical representations used on computers along
with the arithmetic hardware of the processor provide a partial model for these
abstract numbers. However, in addition to this Platonic existence, numbers
have a more mundane use in measurement. In commerce people work with
quantities such as £35.2, $12.5, 2.3 barrels Brent Crude, where the number
is paired with a unit of currency or a commodity. These quantities have to be
kept distinct. Adding barrels of oil to dollars does not make sense. Concep­
tually, quantities of oil and quantities of dollars are measurements along
orthogonal axes.

Standard Pascal provides no means of distinguishing between these types of
numbers, but Vector Pascal provides a way of specialising the type rea l so

Chapter 9 • User-defined Types 171

VECTOR

that it can represent real valued measurements along such conceptually ortho­
gonal axes. These specialisations of the real numbers are termed dimensioned
numbers.

Let us consider the coding in Vector Pascal of a fragment of program to handle
currency conversions and oil price bids in several currencies. Let us assume that
the trading takes place in UK currency, US currency and EU currency and that
there is only one type of oil being traded. Our system of measurement is thus
arranged along four axes. In Pascal, the standard way to represent a fixed size
collection of entities such as these axes is to use a scalar type:

TYPE commodity=(oil , UKcurrency, EUcurrency, UScurrency):

The type commodity now provides us with a set of labels for our axes of
measurement. We can use them to define a collection of further types for
quantities of each of these currencies.

barrel s=real OF oil:
pounds =real OF UKcurrency:
euros =real OF EUcurrency;
dollars=real OFUScurrency;

The part of the defintion after the word 0 F gives the dimension of the type.
The scalar type from which the dimension name is taken is termed the basis of
the dimensioned type set. A dimensioned type set is a set of numeric types that
share a basis.

Suppose we now want to write a function to quote, for instance, in euros for
a certain number of barrels of oil. In generalised commodity trading with n
commodities, there is a matrix of r?- possible inter-commodity exchanges or
relative values. However, in an ideal consistent system of commodity exchange
these n2 relative values are degenerate. By using one commodity as a numeraire
or universal equivalent (Marx, 1976), one can derive the entire matrix from
n - 1 prices in terms of this universal equivalent.

If we fix Sterling to be our universal equivalent, then we can use the Sterling
price of oil and of EU currency to quote oil in euros. We therefore need three
variables to hold the exchange rates of the other commodities against Sterling.
What should the types of these variables be?

The dollar rate for Sterling is typically specified as some number x of dollars
per pound. We can write this as x$1£, or borrowing the conventions of
the physical sciences, x$£ -l; x is thus a real number whose dimension can
be expressed in more verbose Pascal terms as UScurrency*UKcurrency
P 0 W - 1. We can therefore specify our exchange ratios as

VAR
doll arRate: real OF UScurrency*UKcurrency POW -1:
euroRate :real OF EUcurrency*UKcurrency POW -1:
oil Rate :real OF oil *UKcurrency POW -1:

Here the dimension is given as a product of sub-dimensions each raised to a
power. All of the sub-dimensions must be drawn from the same basis.

We can now write a function that will quote a price in euros for a quantity
of oil (see Figure 9.4).

172 SIMD Programming Manual for linux and Windows

function oillnEuros(b:barrels):euros;
begin

oillnEuros f- b x euroRate.
d oilrate '

en ;

Figure 9.4. Function oillnEuros.

Let us look at the expression used to calculate the function. The parameter b
is of dimension oil, and e u r o Rate is of dimension EU currency per
UKcurrency. Hence the expression b * e u r oR ate is of dimension oil times
EUcurrency per UKcurrency. If we divide this by the oilrate, which is of
dimension oil per UKcurrency, then the dimensions oil and UKcurrency cancel
out, leaving the dimension EUcurrency, which is what we want.

Now suppose we want to read from the keyboard a quantity of oil and print
out the euro price. We immediately have a problem, since the built-in read
procedure only supports the system rea l type. We can read the quantity of oil
wanted into a real valued variable, but how do we pass it to the function
oilinEuros?

VARoilwanted:real;
BEGIN

READ(oilwanted);
WRITE<oilinEuros(oilwanted));

will not work for two reasons:

1. The system real type is dimensionally incompatible with the type b a r r e l s
wanted by the function oil In Eu ros.

2. The type e u r o s returned by the function is incompatible with the types
supported by the system write routine.

The answer to these problems is provided by the use of dimensioned constants
to encode units of measurement. Suppose we have the constants shown in
Figure 9.5. By multiplying the variable oil wanted in procedure eu roq uote
by the constant b a r r e l it is converted to the type b a r r e l s. Similarly, by
dividing the p r i c e variable through by the constant e u r o, it is converted
from a dimensioned real constant to a dimensionless constant suitable for
printing.

The dimensioned constants can also be used to initialise the relative prices
using statements of the form

dollarRate:=1.45*dollar/pound;

One should note that the relationship between the names dol l a r s and
dol l a r is purely conventional. What matters from the standpoint of the
compiler is that the name of the dimensioned constant denoting the unit of
account is distinct from the name of the type of the unit of account. This is
illustrated by the declaration of the constant cent (see Figure 9.5), which
shares the type dol l a r s but has a different value.

Chapter 9 • User-defined Types

program trade;
type

commodity = (oi/,UKcurrency,EUcurrency,UScurrency);
barrels = real of oil;
pounds = real of UKcurrency;
euros = real of EUcurrency;
dollars = real of UScurrency;

const
barrel:barrels = 1.0;
megabarrel:barrels = 1 E6;
dollar:dollars = 1.0;
cent:dollars = 0.01;
pound:pounds = 1.0;
euro:euros = 1;

var
Let dollarRate E real OF UScurrency * UKcurrency POW -1;
Let euroRate E real OF EUcurrency * UKcurrency POW -1;
Let oil Rate E real OF oil * UKcurrency POW -1;

function oillnEuros (b:barrels):euros; (see Figure 9.4)
procedure euroquote; (see Figure 9.6)

begin
dollarRate ~ 1.45 x dollar.

pound '
eurorate ~ 1.62 x euro;

pound
oil Rate ~ o 04 x barrel;
euroquote; pound

end.

173

Figure 9.S. A simple program which uses dimensioned types in the context of a commodity trading
problem.

procedure euroquote;
var

Let oilwanted E real;
Let price E euros;

begin
WRITE('Oilin barrels:');
readln(oi/wanted);
price~ oillnEuros(oilwanted x barrel);
WRITELN(chr($ee), price);

end;
euro

Figure 9.6. Procedure euroquote.

9.3.1 Arithmetic on Dimensioned Numbers

At compile time, a vector of integers is associated with each dimensioned
number type. The dimension vector is indexed by the basis of the dimensional
type set.

174 SIMD Programming Manual for Linux and Windows

Dimensioned values can be added or subtracted provided that they have the
same basis and the same values in their dimension vectors. Dimensionless
numbers cannot be added to or subtracted from dimensioned numbers.

Dimensioned values can be multiplied by dimensionless numbers. The opera­
tion leaves the dimensions unchanged. Two-dimensioned numbers may be
multiplied provided that they share the same basis. The result type's dimension
vector is the sum of the dimension vectors of the types being multiplied.

Dimensioned values can be raised to an integer power n using the POW
operator. In the statement b: =a POW n, let ai denote the ith element of the
dimension vector of the type of a and bi the corresponding element of the
dimension vector of the type of b. Then the rules of dimensional algebra
require that bi = nai.

Dimensioned quantities can be divided by dimensionless numbers. Such
division leaves the dimensions unchanged. Dimensioned quantities can be
divided provided that they share the same basis. Consider c :=a I b, then using
the same notation as before, Ci = ai - bi.

9.3.2 Handling Different Units of Measurement

Consider the problem that arises when working with different systems of
measurement, for example the metric system of kilograms, and metres and the
American or imperial system of pounds and feet. Serious errors can arise if
quantities in one system are confused with those in the other. Dimensioned
numbers provide a way of avoiding this danger, but there are some potential
pitfalls in using them.

One approach would be to use two distinct enumerated types as the bases
for the systems of measurement:

TYPEimperial=(lbs,ft,secs);
Metric=(kgs,mtrs,secs);

This falls foul of the rule that the identifier sec s cannot be a member of two
distinct scalar types. One might alternatively try defining a composite scalar
type that includes identifiers for both imperial and metric units:

TYPEmeasurements=(kgs,mtrs,secs,lbs,ft);

This will work, and would provide a basis for the definition of dimensioned
numbers for the different units:

kilograms=REALOFkks;
meters =REAL OF mtrs;
seconds =REALOFsecs;
pounds =REALOFlbs;
feet =REAL OF ft;

This type system is secure, in the sense that it is as impossible to assign a
quantity of type pounds to a variable of type k i l o grams as it is to assign a
variable of type feet to one of type pounds. This approach, however, fails to
model accurately the properties of the real-world measurement systems that
we are using. The difference between feet and pounds is of a different order to

Chapter 9 • User-defined Types 175

150-7185

that between kilograms and pounds. Kilograms and pounds are both units of
mass whereas the foot is a unit of length. In terms of dimensional analysis,
kilograms and pounds are dimensionally identical but differ in scale, whereas
pounds and feet are dimensionally distinct. If we fail to make this distinction
we are forced into making a needless duplication of dimensional types. For
instance, we would need to define two types for acceleration:

metri cacc=REAL OF mtrs*secs POW -2:
i mperacc =REAL OF ft*secs POW- 2:

A function to compute velocity from acceleration and time would work for
metric or imperial units but not both, since its formal parameters would only
be consistent with one of the types of acceleration.

The preferred approach to the problem is first to define the basis of the
dimensioned type system in a way that is independent of our measuring rods
as illustrated in Figure 9.7. We then go on to define a number of different
measuring rods. Using these constants, one can initalise variables of type
l eng t h with expressions such as 3 . 0 * m i l e s or 7 * mt r s. The expressions
directly express what is done when we measure a distance, the laying out of a
measuring rod a certain number of times. Using the same approach, we define
a set of standard intervals for time: seconds, hours, days, weeks, etc. A function
to compute distance traveled will now work whichever dimensionally correct
units we use to supply its parameters:

FUNCTION compDC a: acceleration: t: interval): length:
BEGIN

compD:=(a*t*t)/2.0:
END:

BEGIN
WRITE(compd(9.8*metersPerSecond/secs,3*hrs)/miles);
WRITELN(compd(2*miles/(hrs*hrs),l*yrs)/mtrs);

END.

9.4 Records

A record type defines a set of similar data structures. Each member of this set,
a record instance, is a Cartesian product of number of components or fields
specified in the record type definition. Each field has an identifier and a type.
The scope of these identifiers is the record itself:

TYPEmonthname=(jan,feb,mar,apr,may,jun,
jul,aug,sep,oct,nov,dec):

date= RECORD

END:

year: integer:
month:monthname:
day:l. .31:

176

150-7185

SIMD Programming Manual for linux and Windows

type
measure = (matter,space,time);
length = REAL of space;
interval = REAL of time;
mass = REAL of matter;
acceleration = REAL of space* time pow - 2;
velocity = REAL of space* time pow -1;
force = REAL of matter* space* time pow - 2;

const
{-measures of space}
em/en = 0.01;
inch/en =2.54 *em/en;
foot/en = 12 * inch/en;
kilometer/en = 1 000;
mile/en = 1760 * 3 * foot/en;
mtrs:length = 1.0;
cms:length = em/en;
ins:length = inch/en;
ft:length = foot/en;
kms:length = kilometer/en;
miles:length = mile/en;
{-measures of time}
minute/en = 60.0;
hour/en = 60 * minute/en;
day/en = 24 * hour/en;
year/en = 365.25 *day/en;
secs:interval = 1.0;
mins:interval = minute/en;
hrs:interva/ = hour/en;
yrs:interval = year/en;
{- measures of velocity}
metersPerSecond:ve/ocity = 1;
milesPerHour.velocity = milelen/hourlen;

Figure 9.7. The preferred approach to using dimensioned numbers to handle different units of measure.

Date is now the name for a type each of whose elements has a yea r, month
and a day field. The type can be used to declare variables in the usual way:

VARtoday,eid:date;

Record variables can be assigned just like any other:

today:=eid;

The names of the fields of the record are hidden until a record variable is
subscripted using the full-stop operator. This allows the fields to be addressed
as component parts of the entire variable:

today.day:=succ(today.day);

Chapter 9 • User-defined Types 177

150-7185

150-7185

IF today. day= 1 THEN today. month: =succ (today. month);
IF today. month= jan THEN today. year:= today. year+ 1;

A record type may have as a final component a variant part. The variant
part, if a variant part exists, is a union of several variants, each of which may
itself be a Cartesian product of a set of fields. If a variant part exists there may
be a tag field whose value indicates which variant is assumed by the record
instance:

TYPE val code=(strva l. numva l, textva l. rangeva l);
value=RECORD

seqnum: integer;
CASEvaldist:valcodeOF
strva l , textva l: (thestri ng: stri ng[20];);
numval :(thenum:real;);
rangeval :(first,last:integer;);

END;

All field identifiers, even if they occur within different variant parts, must be
unique within the record type. The variant parts, where they exist, will typi­
cally be aliased to the same store locations. Assignment to one of the variants
will typically corrupt all of the others.

9.5 Pointers

Variable names in Pascal are tokens for storage addresses in computer memory.
The compiler associates with the name a type and a statically defined formula
for calculating the address at which that variable will reside at run time. Store
for variables is allocated either on the run time stack or in a global data segment.
In order that the compiler can calculate where these addresses will be, Pascal
requires that all variables, including array variables, have a predefined size. A
benefit of this strategy is that variable accesses, including array accesses, can be
translated into very efficient machine code. The obvious disadvantage is that
the memory requirements of algorithms may not be known at compile time.

Suppose that we want to read a list of names in from a file and sort them.
We could allocate an array that we thought would be large enough, read the
file into the array and sort it as shown in Figure 9.8.

If we use a fixed-size buffer, we have to be sure that the data will fit into the
buffer. This encourages us to make the buffer substantially larger than we
expect to need, just for safety. The consequence is that in a large program with
many buffers a great deal of space is wasted.

Pascal provides a mechanism for store to be dynamically allocated at run time
in a distinct area of memory termed the heap. The built-in procedure NEW will
allocate a buffer and return a typed pointer to it.

The type constructor " can be used to define the type of a pointer to a
buffer. Suppose we have the definition

TYPEpint="integer;

178 SIMD Programming Manual for Linux and Windows

PROGRAM sortf;
{Program to sort a file of lines alphabetically}
CONST maxsize=100;
TYPE t=STRING[80];

index=1 .. maxsize;
dataarray=ARRAY[1 .. maxsize] OFt;

VAR buf:dataarray;
count,i:integer;

PROCEDURE bubblesort(VAR a:dataarray; n:index);
VAR i ,j:integer;

temp:t;
BEGIN

END;

FOR i :=1 TO n-1 DO
FOR j:=1 TO n-1 DO

IF a[j]>a[j+1] THEN BEGIN {swap pair}
temp:=a[j]; a[j]:=a[j+1]; a[j+1]:=temp;

END;

{Read lines up until a blank line}
PROCEDURE readdata(VAR a:dataarray; var n:integer);

VAR s:t;
BEGIN

END;
BEGIN

END.

n:=O;
REPEAT

READLN(s);
IF s<>'' THEN BEGIN

n:=SUCC(n);
a[n]:=s;

END
UNTIL (s='') OR (n=maxsize);

readdata(buf,count);
IF count>O THEN bubblesort(buf,count);
FORi :=1 TO count DO WRITELN(buf[i]);

Figure 9.8. An approach to sorting a file using a fixed-size buffer. It should be noted that the inefficient
bubble sort procedure is presented just for simplicity.

then we can declare a pointer variable:

VARp:pint;

The variable pis initially undefined. It does not point at a buffer until NEW (p)
is called. After the call, p contains the address of a buffer large enough to hold
an integer. The buffer can be accessed to by de-referencing the pointer variable

Chapter 9 • User-defined Types 179

150-7185

thus:

P" :=7;
write(p"+l);

The type of the expression p" is i n t e g e r, and more generally if x is of type "t
then the expression x" is of type t.

The main use of dynamically allocated buffers is to hold data structures
made up of inter-linked records. We can illustrate this with an alternative
sorting program. This will both make use of dynamically allocated buffers and
be more efficient than the example in Figure 9.8. It will create a sorted binary
tree of records, each of which holds a string. As lines are read in they will be
inserted into the appropriate position in the tree. At the end, the tree will be
traversed to print the lines out in sorted order.

Our basic data types are

TYPE pnode="node;
node=record line:string[80]; l,r: pnodeend;

The nodes will form a tree with the rule that any node reached by the field l
must hold a string less than the current string, and any node reached by the
field r must hold a string greater than or equal to the current string. The type
p n o d e is declared as a pointer to the as yet undefined type n ode. This is the
only exception to the Pascal rule that an identifier must be declared before it is
used. The exception is necessary if one is to have recursive data types.

9.5.1 Pointer Idioms

The program in Figure 9.9 illustrates a number of common idioms used in
programming with pointers. Some of these are matters of style and some
illustrate syntactic features of Pascal designed to facilitate programming with
pointers.

Constructor Fundions
It is good practice to write constructor functions to handle heap allocation and
buffer initialisation. Thus we have a function newnode which calls new and
allocates values to all fields of the record buffer.

The Value n i l
The i n s e r t function ensures that whenever a new string is inserted into the
tree it is in the appropriate position. Given a null tree indicated by the pointer
taking on the reserved value n i l , the function updates its parameter to point
to a new buffer. The value n i l can be assigned to any pointer type and should
be used as a placeholder to indicate the ends of lists or pointers which do not
yet have a buffer allocated to them. The new buffer created by i n s e rt has
both of its pointer fields initialised to n i l .

180

150-7185

SIMD Programming Manual for Linux and Windows

PROGRAM Tsort;
TYPE pnode=Anode;

textline=string[80];
node=RECORD line:textline; l ,r:pnode END;

VAR l :textline;
t:pnode;

FUNCTION newnode(line:textline; l ,r:pnode):pnode;
VAR p:pnode;
BEGIN

END;

NEW(p);
pA.line:=line; pA.l :=1; pA.r:=r;
newnode:=p

PROCEDURE insert(s:textline; VAR p:pnode);
BEGIN

END;

IF p=nil THEN p:=newnode(s,nil,nil)
ELSE IF s<pA.line THEN insert(s,pA.l)
insert(s,pA.r)

PROCEDURE print(p:pnode);
BEGIN

END;
BEGIN

END.

IF p<>nil THEN WITH pA DO BEGIN
print (l) ; write l n (l i ne) ; print (r) ;

END;

t:=nil; {an empty tree}
REPEAT

READLN(l);
IF l<>" THEN insert(l,t);

UNTILl='';
print(t); {output in sorted order}

Figure 9.9. A more efficient sorting program than in Figure 9.8, one which, moreover, makes use of
dynamic storage allocation from the heap.

Pointer Comparison

Pointer values can be compared for equality and inequality, but the ordered
comparison operators >, <, >=and <=are not allowed on pointers.

The W I T H Construct

The fields in a record normally have to be accessed by explicit subscripting,
using the . operator. When one has to operate on several fields of a record in
sequence, it is useful to dispense with the explicit subscripting. The reserved

Chapter 9 • User-defined Types 181

150-7185

150-7185

TURBO

word WITH, illustrated in the phrase

WITH p" DO

in the procedure p r i n t allows the fields of the buffer record pointed to by p
to be referred to as local variables. Thus the field identifiers l i n e, l , r are used
in the following compound statement as if they were normal variables.

9.5.2 Freeing Storage

In the example above, the file is read into memory once, printed and then the
program terminates. So long as the computer has enough memory to store the
file in RAM, the program will run. If a program keeps on allocating buffers
then it will eventually run out of memory. The following small program will
cause problems:

PROGRAM evernew;
TYPEt=string[SO];

pt="t;
VARp:pt;
BEGIN

WHILE true DO new(p);
END.

Repeated calls will be made on the operating system to allocate more buffer
space. Eventually it will run out of store to handle it, causing a crash in a
system-dependent fashion.

Buffers that are not needed can be returned to the system by the predefined
Pascal procedure d i s pose. This is called with a single pointer parameter thus:

dispose(p);

The buffer pointed to by p is returned to the system and can be re-allocated on
subsequent calls to new.

Allocation Using get me m
The procedure new will always allocate a buffer at least big enough for the data
type referred to by its parameter. There may be occasions when this is
inefficient. In the program t sort, the nodes contained buffers big enough to
hold 80 character strings, although most lines would be much shorter.

Turbo Pascal introduced an alternative store allocator, getmem, for such
situations. It allows one to control explicitly the number of bytes of store
allocated. Doing this is potentially dangerous, for several reasons:

1. It can reduce portability.
2. It requires the programmer to have a detailed knowledge of the layout of

data types such as strings.
3. If mistakes are made in the sizes ofbuffers allocated, then the type system is

subverted and no protection is provided against memory corruption.

182

VECTOR

150-7185

SIMD Programming Manual for linux and Windows

For compatibility, getmem is also provided in Vector Pascal.

Garbage Collection

In most Pascal implementations, all de-allocation from the heap has to be
done explicitly using d i s pose. There is no reason in principle why Pascal
cannot be made to run with an automatic storage recovery system and some
implementations have them. For instance, the Delphi system uses reference
counts to handle automatic freeing of long strings held on the heap.

Vector Pascal has the option of being linked using the Boehm conservative
garbage collector. When using this option, d i s pose can still be called and will
free the buffer it is passed. If, however, there are either deliberate or
inadvertent memory leaks, the garbage collector will be eventually be invoked
to recover unused buffers.

9.6 Set Types

Pascal is rather unusual as imperative languages go in that it includes sets as a
built-in data type. A set type y is declared using the syntactic form y =SET 0 F
t, where t is some type. This would appear to allow one to construct sets of any
predeclared type. Russell's paradox is avoided since the set type y is itself
undeclared at this point. In practice, compiler writers have found sets hard to
implement, so the Pascal standard only requires simplified versions in which
the type t must be an ordinal type.1

Thus one can declare a set of characters but not a set of records. Some
compilers also restrict the maximum size of the sets supported to be no larger
than the character set. 2

9.6.1 Set Literals
Suppose we have the type day defined in Figure 9.1. We can define a set of
days and declare variables of that type:

TYPE dayset=SET OF day;
VAR days: day set;

One can then assign set literals to the variable as in

days:=[monday,friday,tuesday];

A set literal is either:

1. the null set, written [

1 The term ordinal types describes a collection of types which have a common property: they are
either numeric integers, or they can be mapped on to integers (their 'ordinal values'), and are
indeed represented internally by these ordinal values. Some predefined types are ordinal types, in
particular integer and integer sub-ranges such as word, char (character type). Other ordinal types
are defined within the program: enumerated types, specified sub-ranges of ordinal types.
2The Borland Turbo Pascal compiler did this.

Chapter 9 • User-defined Types 183

150-7185
150-7185
150-7185
150-10206
150-7185
150-7185
150-7185
150-7185
150-7185

150-10206

Table 9.2. The set operators

a+b
a-b
a*b
a>< b
a IN b
a=b
a<> b
a<=b
a>=b

Returns a

Set
Set
Set
Set
Boolean
Boolean
Boolean
Boolean
Boolean

2. a singleton set, written [today]

Meaning

a, b:sets, union of a with b
a, b:sets, members of a not in b
a, b:sets, intersection of a with b
a, b:sets, symmetric difference =(a+b)-(a*b)
a:scalar, b:set, set membership
a, b:sets, set equality
a, b:sets, set inequality
a, b:sets, a subset of b
a, b:sets, b subset of a

3. a comma-separated list of elements as in [monday, friday, tuesday]
4. or it may be defined in terms of sub-ranges as in [monday .. thursday,

sunday].

Note that whereas the ordinal type over which a set is defined is ordered, the
elements of a set do not have to be listed in any particular order.

9.6.2 Operations on Sets

The set operators are summarised in Table 9.2. They broadly follow the oper­
ators for arithmetic with the addition of the symmetric difference operator > <,
introduced in the ISO standard (ISO, 1991a), and with the elimination of and
> and < operators. The priorities of the operators follow those which they have
in Pascal numeric arithmetic.

The semantics of the set operators are illustrated in Figure 9.10. Two other
features of set use are brought out in this example.

1. There is no built-in way of printing or reading sets in Pascal. Instead, it has
to be explicitly programmed.

2. In the example, the procedure pset is used to print sets of char. The
procedure uses an extension to the for statement for use with sets, FORi IN
s DO. In this, i iterates overs's members in the ascending order provided by
the base type of s.

9.7 String Types

Vector Pascal's treatment of strings follows that of Turbo Pascal. A string is a
pair consisting of a length field followed by an array of char with lower bound
1 and a type-specific upper bound. Strings constitute a family of types
differentiated by their upper bound. Thus, in

TYPEtextline=string[80];
namefield=string[64];
longstring=string[200];

184 SIMD Programming Manual for linux and Windows

PROGRAM setcomp (output);
TYPE chs=SET OF char;
(* Print the set s*l
PROCEDURE pset(VAR s:chsl;
VAR c:char;
BEGIN

FOR c INs DO WRITE(c);
END;
{print sl op s2 '=' l
PROCEDURE ptrip(VAR sl,s2:chs;op:string);
BEGIN

pset(sll;WRITE(op:3);pset(s2);WRITE('= ':3);
END;
VAR v,vl,v2,v3:chs;
BEGIN

v:=['a' .. 'f'J;
vl:=['A' .. 'M'];

v2:=v+vl;
WRITE('v =':12l;pset(vl;WRITELN;
WRITE('vl=':l2l;pset(vll;WRITELN;
WRITE('v2=':12);pset(v2);WRITELN;
v3:=v2-vl;
WRITE('v2-vl=':12);pset(v3l;WRITELN;
v3:=(v2)*['A' .. 'c'];
WRITE('v2*[A .. c]=':l2l;pset(v3l;WRITELN;
ptrip(vl,v2,' =');WRITELN(vl=v2:6);
ptrip(vl,v2.' <>');WRITELN(vl<>v2:6);
ptrip(vl,v2,' <=') ;WRITELN(vl<=v2:6);
ptrip(vl,v2.' >=');WRITELN(vl>=v2:6);
v3:=v2><v;
ptrip(v2,v,' ><'l;pset(v3l;WRITELN;

END.

Output produced:

v =abcdef
vl=ABCDEFGHIJKLM
v2=ABCDEFGHIJKLMabcdef

v2-vl=abcdef
v2*[A .. c]=ABCDEFGHIJKLMabc

ABCDEFGHIJKLM =ABCDEFGHIJKLMabcdef=false
ABCDEFGHIJKLM<>ABCDEFGHIJKLMabcdef= true
ABCDEFGHIJKLM<=ABCDEFGHIJKLMabcdef= true
ABCDEFGHIJKLM>=ABCDEFGHIJKLMabcdef=false
ABCDEFGHIJKLMabcdef><abcdef=ABCDEFGHIJKLM

Figure 9.10. A program which illustrates the effect of the set operators.

Chapter 9 • User-defined Types 185

TURBO

three distinct types of string are defined. Text 1 i n e is a string type whose
characters are numbered 1 ... 80, 1 on g s t r i n g has characters numbered
1 ... 200, etc.

There is a distinction between the upper bound of the string and the current
length of the string. The upper bound of a string type defines how much space
is allocated for character storage in the string. The length indicates how many
of the characters are currently valid. The length cannot exceed the upper bound.
There is an implementation defined constant max s t r i n g which specifies the
maximum upper bound with which a string type can be declared.

Individual characters of a string can be obtained by indexing the string as a
one-dimensional array. Thus:

vars:text1ine:
begin

s : =' sammy snake ' :
write(s[l],s[3],1ength(s)):

end:

would produce the output

sm 11

Note that the length field of the string is being found using a predefined
function3 1 ength. The characters of a string can also be assigned to using
array index notation:

s[2J :='i': s[3J :='1 ': s[4J :='1 ':
write(s):

will produce the output

sil1ysnake

Or one can assign to whole slices of a string at once:

b:='BillyKing';
s[l .. 4]:=b[l .. 4]:
write1n(s):

will produce the output

Bil1ysnake

It is important to note that the type of s [1 .. 4] in the above is ARRAY
[1 .. 4] 0 F c h a r and not S T R I N G [4]. Thus the following assignments would

3Ifthe implementation is such that the value ofmaxstri ng is known to be 255, then the length
field will be held as a single byte as in Turbo Pascal and the length could be obtained by the
expression o rd (s [0 J) . This usage is not portable between implementations with different
maximum string lengths.

186

TURBO

SIMD Programming Manual for linux and Windows

be rejected by the compiler:

s[l..4]:='bill';
s :=b[l. .4];

Each is an invalid combination of an array of char and a string.4

To obtain a string containing the first four characters of b we would have to
call the system function s u b s t r i n g:

s:=substring(b,l,4);
write(s);

Whereas the assignment s [1 .. 4] : =b [1 .. 4] leaves the length of s
unchanged, assigning a string to s, as the example above does, changes the
length. The use of a distinct length field for the string has advantages over the
C convention of null-terminating strings:

1. The length of a string can be found faster since no search has to be done for
null.

2. The string can contain null characters, which is usefull when dealing with
encoded strings.

Between strings the + operator is interpreted as concatenation. The com­
parison operators give results as shown in Alg. 23. No other operators are valid
on strings.

4This is a deviation from the Pascal standard which allows assignments of string constants to
arrays of char, requiring the constant to be blank padded up to the length of the array.

150-7185

Input and Output

10.1 File Types

Pascal provides the word F I L E as a type constructor. For any type t then F I L E
0 F tis the type of an extensible n-tuple whose elements are of type t. Associated
with each such n-tuple is a file cursor which defines the point within the tuple at
which data can be read or written. Variables may be declared to have file types.

Whereas other variables are volatile, file variables allow Pascal programs
access to the persistent store provided by the underlying operating system. 1

1 0.1.1 Binary Files

A file type may be declared as, for instance, a file of integers or as a file of some
record type:

TYPEintfile=FILEOFinteger;
gender=(male.female) ;
person=RE CORD

name : st r ing[50];
sex :gender:

END;
pfil e=FI LE OF person:

Files such as these are termed binary files. The persistent data stored in them
have a format which is implementation dependent. The arrangement of binary
digits in the persistent store mirrors that of the bits in the volatile store. As
such, the format of a F I L E 0 F t created by a program running on an Intel
processor may differ from that of a F I L E 0 F t created on a Motorola processor
because of differences in the internal binary formats used on the machines.
This can give rise to difficulties when binary files are transported between
different processors.

Binary files are also unsuitable for human consumption.

1The persistent store is often thought of as the disk and the volatile store as the RAM of the
computer. This is not strictly accurate, as on some operating systems both will be mapped to the
computer's virtual memory and reside either on disk or in RAM depending on frequency of use.

187

188 SIMD Programming Manual for Linux and Windows

150-7185

150-10206

150-10206

150-10206

150-10206

TURBO

10.1.2 Text Files

Pascal also provides a predeclared type identifier text which is defined to be
equal to F I L E 0 F c h a r. A file of type text, as the name implies, is made up
of a sequence of characters. Text files can be read by people, and also provide
a relatively machine-independent2 means of recording and transferring
numerical information. This is because numbers are represented in text files
in terms of their decimal expansion.

1 0.1.3 Operating System Files

When originally released (Jensen and Wirth, 1978), Pascal provided no clearly
defined mechanism for associating file variables with operating system files.
This led to divergent approaches by implementors. In some systems file
variables could only be accessed if they had first been associated with a
persistent operating system file. In others, for instance DEC Pascal, a temporary
file was created on disk whenever control entered a scope containing a file
variable, and this file was automatically bound to the file variable.

The Turbo Pascal compiler adopted the former approach, and provided
procedures to associate file variables with operating system files which were
later adopted as a de facto standard by the implementors of most other Pascal
systems for the PC.

The Pascal standardisation community recognised that there was a need for
a standard way of binding file variables to operating system files. When the
Extended Pascal standard, IS0-10206, was released in 1991 (ISO, 1991a), it
introduced the concept of a bindable variable. A bindable variable in a Pascal
program is a symbol or reference to something outside the program itself.
IS0-10206 says that file variables are bindable. Procedures are defined for
carrying out the bindings between file variables and operating system files.

The concept of a bindable variable is elegant and can potentially be used for
things other than file variables, such as graphics contexts or mice. But because
the procedures provided for file binding in IS0-10206 are incompatible with
those derived from Turbo Pascal, and because the latter are used by almost all
Pascal programs that have written for the PC and Linux platforms, the author
has chosen not to implement the IS0-10206 file binding mechanism. Instead,
Vector Pascal derives its library of file binding routines from those introduced
in Turbo Pascal.

Assign

Before a file variable is used, a call must be made to the system procedure
a s s i g n to bind it to a named operating system file. As s i g n takes a file variable
and an operating system file name as parameters. The file name should follow
the naming conventions of the operating system on which the program is
running.

2Not absolutely machine independent, because in principle Pascal implementations may use
EBCDIC, ISO or other character sets.

Chapter 10 • Input and Output 189

TURBO

150-7185

150-7185

TURBO

Example

ass i g n (f , • c : \ myfi l e s \ s r c \a l ph a . txt ') ;

Although ass i g n established a binding with the operating system file, it
does not open the file, which must be done using one of the following
procedures.

Append

If the file already exists, is sequential in nature, and one wants to add to it, it is
opened with append. Provided that the file variable has been bound to an
operating system file, this will open it for writing with the file cursor indicating
the end of the file.

Example

ass i g n (f , · c : \ myfi l e s \ s r c \ a l ph a . txt ') ;
append(f);

Rewrite

If a file is to be written for the first time or is to be overwritten, the procedure
r e w r i t e is called. R e w r i t e can also be called if it is necessary to move the file
cursor back to the start of the file at any point during the writing of an already
opened file.

Example

assign (f, 'c: \myfil es \s rc\data. txt');
rewrite(f);

Reset
If a file is to be opened for reading, or if an already open file is to be re-read,
then the procedure reset must be called. It positions the file cursor at the
start of the file.

Example

assign(n, 'people/names.src');
reset(n);

Close

When a file variable is no longer in use, the procedure c l o s e should be called.
Calling this causes any buffers to be flushed to disk. After a call to c l o s e the
file variable still has the operating system file name associated with it and
allowing a further call to append, reset or rewrite.

190

150-7185

SIMD Programming Manual for Linux and Windows

Example

assign(n, 'people/names.src');
rewrite (n);
write(n,namelist);
close(n);
reset(n);
read(n,othernames);

10.2 Output

Pascal defines two standard output procedures, w r i t e and w r i tel n. Unlike
other procedures, these may take a variable number of arguments of variable
type. Furthermore, their names are reserved and cannot be redefined. W r i t e
works on both text and binary files, w r i tel n only on the former.

1 0.2.1 Binary File Output

To write to a binary file, two formats can be used:

1. write (j,e0) ; where f : FILE 0 F t, and eo : t.
2. wri te(f,el>ez, ... ,en); where f: FILE OFt, and ei: t.

The values of the expressions ei are transferred to the file in the order in which
they are listed and the file cursor moved to point immediately beyond the file.

Expressions of any type may be validly written to a binary file.

10.2.2 Text File Output

When outputting to a text file, there are four variants in which w r i t e can be
called and six in which w r i tel n can be called. All these variants can be
defined in terms of the two canonical forms l.a and 2.a, in the enumeration
below.

1. (a) write (j,eo); where f: FILE OF char, and eo: t and tis an integer,
real, string, ordinal or array type. This outputs an appropriately
formated representation of eo to the file f.

(b) write(eo); This is equivalent to write(output, eo);.
(c) write(f,el>ez, ... ,en): where f: FILE OF char, and each ti is an

integer, real, string, ordinal or array type. This is equivalent to
write(f,ei); write(f,ez) ... write(f,en) ;.

(d) write (el>ez, . .. ,en) ; This is equivalent to
write(output,el>e2, ••• ,en);.

2. (a) w r i tel n (j) ; This outputs a newline to the file f. The sequence of
characters output will vary between operating systems. On Linux it will

Chapter 10 • Input and Output 191

VECTOR

be a line feed character3 whereas on Windows it will be a carriage
return, line feed sequence.4

(b) write l n ; This is shorthand for w r i tel n (output) ; .
(c) write l n (j,eo) ; This is shorthand for write (/,eo) ;

writeln(j);.
(d) write l n (eo) ; This is equivalent to write (eo) ; write l n ; .
(e) write l n (el>e2, •• . ,en) ; This is equivalent to

write(el>e2, ... ,en); writeln;.
(f) wri tel n (f,el>e2, ••• ,en); This is shorthand for

write(j,el>e2, ... ,en); writeln(j) ;.

Example

VARa:string[30];
b,c:integer;

BEGIN
b: = 9+ 12;
c:=20;
a:='toomuch';
WRITE('total', a);
WRITELN;
WRITELN(output,b,b>c);
WRITELN(c,l/c);
WRITE (c*c);
WRITE LN (·is c raised to the power 2 ') ;

END;

which produces the output

total too much
21 true
20 0.05

400 is c raised to the power 2

Formating Output in Columns

The example above shows that the default behaviour of the w r i t e procedure
for text files is to write the data out in columns of equal width. The standard
width of these columns is 12 for all types other than characters for which the
standard column width is one character.

If the textual representation of a value is shorter than the column width, the
output field is left-padded with space characters. If the output width is greater
then the column width, then the field overflows the column to the right.
Where the default widths are unsuitable, Pascal provides a means by which
column widths can be altered.

3chr(10).
4chr(l3)chr(l0).

192

150-7185

150-7185

150-7185

SIMD Programming Manual for Linux and Windows

Output of Integers

For integer output one can follow the integer expression with a colon and then
another integer expression giving the column width to be used. The decimal
expansion of the integer is printed right justified in the column. Thus, to print
the integer x out in a field six characters wide, one writes

write(x:6);

Output of Reals

For real numbers you can specify both the the width of the field and the
number of digits after the decimal point. Thus:

write(x:8:2):

Output of Characters

When a character variable is printed, it is output in binary with no modifications
to the text file. If the optional width field is present, the character is left padded
with spaces before output, in a manner analogous to integers (see above).

{Chin_prog01}
{Print a Cosine graph going across the screen}
{26/11/2002}
fll¥ Graph (output);

~· d:O .. 95;
y:real;

Jfltl{ BEG! N}
'IJft; {Write l n}
'Sft; {Writeln}
'IJft('********COSINE GRAPH********'); {Writeln('COSINE GRAPH')}
d:=O;
l!f d<=90 411JF {while d<=90 do}

71'16 {begin}
y:=~!i (d*TI/180)*30; {y:=cos(d*pi/180)*30}
1mJ: ~fi'JV.(y)=O {if round(y)=O}
1M. 'IJft('*') {then writeln('*')}
WJII~ 'Jfj'(' ':l!!lfi':E.A(y), '*'); {else writeln(' ':round(y), '*');

d:=d+5;
ii!ill[; {end ; }

fi!iJII:.{END.}

Algorithm 37. The use of formatted output and also the use of Chinese characters in reserved words.
The equivalent Standard Pascal program commands are shown as comments.

Chapter 10 • Input and Output 193

VECTOR

TURBO

VECTOR

IS0-7185

Output of Scalars

When a scalar variable is printed, the lower-case form of the element of the
enumerated type is output to the text file. The field is left-padded by the
optional width field in the same way as integers are.

Output of Strings

A string is printed without enclosing quotes. Semantically write (s) is equ­
ivalent to

for i : =1 to length (s) do write (s [i J)

1 0.2.3 Generic Array Output

In Standard Pascal, any type including an array can be written to a binary file,
but output to text files must be of simple types or string types. Vector Pascal,
in conformity with the general overloading of operations on arrays, extends
w r i t e to operate on arrays. A one-dimensional array is written as a sequence
of values on a line. Thus, for a one-dimensional array a with bounds 1 ... u,
the statement write (a) ; would be equivalent to

FOR i:=l TO u DO write(a[i]);

where i is a temporary integer variable. If the array b has more than one
dimension, and the bounds of the leftmost dimension are m ... n then the
expansion is

FORj:=m TOn DO writel n (b[j]);

In conjunction with the re-write rules given in Section 10.2.2, this gives an
unambiguous definition of w r i t e for arrays. The effect is that dimensions of
the arrays are separated by newlines. These ru1es are illustrated in Figure 10.1.

10.3 Input

Pascal defines two standard input procedures, read and read l n. Like the
standard output procedures but unlike other procedures, these may take a
variable number of arguments of variable type. Again, their names are reserved
and cannot be redefined. Read works on both text and binary files, readl n
only on the former.

Other than the optional leading file variable, all parameters to a r e ad call
must be variables.

1 0.3.1 Generic Array Input

In Standard Pascal, any type including an array can be read from a binary file,
but input from text files must be of simple types or string types. Just as Vector
Pascal extends write operations to arrays, so it extends read operations in such

194

VECTOR

150-7185

SIMD Programming Manual for linux and Windows

PROGRAM ARRAYOUT(OUTPUT);
CONST a:ARRAY[1 .. 2,1 .. 2,1 .. 3] OF integer=

(((1,2,3),

BEGIN
write(a);
END.

(2,4,6)),

((99,2,97)'
(98,4,94)));

produces the output

1
2

99
98

2
4

2
4

3
6

97
94

Figure 10.1. The formating rules for output of multi-dimensional arrays.

a way as to ensure that if an array a is written to a file f with the call w r i t e
(j,a) then it can be read by the call read (j,a). The expected input format for
arrays is hence that which would have been produced by the array having been
written by a Vector Pascal program (see Section 10.2.3).

10.3.2 Binary File Input

Input from a binary file involves direct binary transfers of the bytes of the
binary representation from the file to the variable.

10.3.3 Text File Input

When performing input from a text file representational, conversions are
performed between number and scalar types' ASCII text representation and
their memory representation. The semantic expansion rules for read and for
readl n mirror those for write and wri tel n shown in Section 10.2.2, but
with the substitution of read wherever w r i t e occurs in the rules and the
substitution of the file variable i n put wherever the file variable output is
referred to in Section 10.2.3.

Read l n simply reads the next newline sequence from its input file.

Input of Integers or Reals

On a call of read (j,n) with text file f and numeric variable n, the spaces in
the text file are skipped up to the first decimal digit. Decimal to binary
conversion is then performed on the number and the result placed in n.

Chapter 10 • Input and Output 195

IS0-7185

VECTOR

TURBO

IS0-7185

UNIX

TURBO

Input of Characters

No format conversion is performed on character input. The character is read
in binary form from the text file and transfered to the character variable
parameter.

Input of Scalars

Spaces are skipped up until the first letter. Letters and digits are then read up
until the first non-alphanumeric character. The alphanumeric sequence is then
converted to lower case and compared with the legitimate lower-case repre­
sentations of the identifiers in the enumerated scalar type. If one is found then
the ordinal value of the identifier within the scalar type is returned.

Input of Strings

Characters are read into the string variable up until either the first newline is
encountered in the input file or the maximum length of the string is reached.

1 0.4 File Predicates

Two file predicates, eo f (f) and eo l n (f) , are provided to test the position of
the file cursor. eof tests for end of file and eo l n tests for end of line.

1 0.5 Random Access to Files

For database applications, it is necessary to be able to read and write records at
random positions in a file.

10.5.1 Seek

The file cursor in a binary file may be positioned at any place in the file using
the function seek. Its form is

functionseek(varf:fileptr;pos,mode:integer):integer;

The type fileptr is a generic type for any binary file type. The parameter p o s
specifies the position to seek to in the file. The mode parameter should be one of:

SEEK_SET pos is relative to start of file
SEEK_CUR pos is relative to current file cursor
SEEK.END pos is relative to the end of the file.

10.5.2 filepos

The current position of the cursor within a binary file can be obtained using
the function fi l e p o s, the form of which is

functionfilepos(varf:fileptr):integer;

196 SIMD Programming Manual for Linux and Windows

TURBO

file exists

error in opening file

1 0.5.3 Untyped i/o

There are two procedures, block read and b l ockwri te, available to perform
untyped i/o of sequences of bytes with the forms

procedure b l oc k read (v a r f: fi l ept r;
varbuf;

count: integer;
varresultcount:integer);

procedureblockwrite(varf:fileptr;
varbuf;

count:integer;
varrcount:integer);

where f is any binary file, b u f is any variable (where an array is to be trans­
ferred the first element ofthe array should be passed), count is the number of
bytes to transfer and res u l t co u n t as a post -condition holds the number of
bytes actually transferred.

1 0.6 Error Conditions

When performing i/o operations, error conditions can arise owing to factors
external to the program, such as the non-existence of files or files containing
unexpected content. These can set an internal system io-error flag. If an i/o
operation is performed whilst the io-error flag is set the program will abort.

The flag can be queried using the i ores u l t function, which has the form
function i ores ul t: integer; . It returns a non-zero value if the io-error
flag is set. Calling the function has the side effect of clearing the flag. It is good
practice to check the io-error status after each call to file the opening pro­
cedures reset and rewrite, as shown in Figure 10.2.

program iocheck;
var

Let~ E text;
LetS E string;

begin
assign (~, 'message');
reset(~);

if ioresult = 0 then
begin

read(~,5);

write('Message is:' , 5);
end
else

write('Could not open message file');
end.

Figure 1 0.2. The use of i ores u 1 t to check the validity of file open calls.

Permutations and
Polymorphism

Standard Pascal allows the assignment of whole arrays. As we have seen in
Section 7.5, Vector Pascal extends this to allow the consistent use of mixed­
rank expressions on the right-hand side of an assignment. For example, given

r1:real; r1:array[O .. 7] of real;
r2:array[O .. 7 ,0 .. 7] of real

then we can write

1. r1:=1/2;
2. r 2 : = r 1 * 3 ;
3.r1:=\+r2;
4. r 1 : = r 1 + r 2 [1 J ;

Line 1 assigns 0 . 5 to each element of r 1. Line 2 assigns 1 . 5 to every element
of r 2. In line 3, r 1 gets the totals along the rows of r 2. In line 4, r 1 is
incremented with the corresponding elements of row 1 of r2.

These may be translated directly to standard Pascal through iteration:

1. fori :=0 to 7 do rl[i J :=1/2;
2. fori :=0 to 7 do for j :=0 to 7 do r2[i ,j] :=rl[j]*3;
3. fori :=0 to 7 do begin

t:=O;
for j:=7 downto 0 do t:=r2[i ,j]+t;
rl[i J :=t;
end;

4. fori :=0 to 7 do rl[i J :=rl[i J+r2[1. i J;

The compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting as the data source.
In the above, i , j, t are assumed to be temporary variables not referred to
anywhere else in the program. The loop variables are called implicit indices.

The variable on the left-hand side of an assignment defines an array context
within which expressions on the right-hand side are evaluated. Each array
context has a rank given by the number of dimensions of the array on the left­
hand side. A scalar variable has rank 0. Variables occurring in expressions with
an array context of rank r must have r or fewer dimensions. The n bounds of
any n-dimensional array variable, with n :S r occurring within an expression

197

198 SIMD Programming Manual for linux and Windows

evaluated in an array context of rank r, must match with the rightmost n
bounds of the array on the left-hand side of the assignment statement.

Where a variable is oflower rank than its array context, the variable is repli­
cated to fill the array context. This is shown in the examples above. Because the
rank of any assignment is constrained by the variable on the left-hand side, no
temporary arrays, other than machine registers, need be allocated to store the
intermediate array results of expressions.

Maps are implicitly and promiscuously defined on both monadic operators
and unary functions. If f is a function or unary operator mapping from type r
to type t, then if x is an array of r then a : =f (x) assigns an array oft such that
a [i J =f (x [i J) .

11.1 Array Reorganisation

Array reorganisation involves conservative operations which preserve the number
of elements in the original array. If the shape of the array is also conserved, we
have an element permutation operation. If the shape of the array is not con­
served but its rank and extents are, we have a permutation of the array dim­
ensions. If the rank is not conserved we have a flattening or reshaping of the
array.

Vector Pascal provides syntactic forms to access and manipulate the implicit
indices used in maps and reductions. These forms allow the concise expression
of many conservative array reorganisations.

When an assignment is performed to an array, the compiler creates implicit
index variables with which to perform the iterations. These index variables
may be accessed using the syntactic form i o t a i, where i is an integer. 1 i o t a i
returns the ith current implicit index. Thus, the sequence

v1:array[1 .. 3] of integer;
v2:array[0 .. 4] of integer;

v1:=iota0;
v2:=iota0*2;

would set v 1 and v 2 to

v1 =1
v2 =0

2 3
2 4 6 8

In contrast, given the sequence

m1:array[l .. 3,0 .. 4] of integer;
m2:array[O .. 4,1. .3] of integer;
m2 :=iota 0 + 2*i ota 1;

1The reserved word ndx is a synonym for iota.

Chapter 11 • Permutations and Polymorphism

would set m2 to:

m2= 2
3
4
5
6

4
5
6
7
8

6
7
8
9

10

199

The argument to i o t a must be an integer known at compile time within
the range of implicit indices in the current context.

A generalised permutation of the implicit indices is performed using the
syntactic form

perm[index-sel[, index-sel]*]expression

The index-sels are integers known at compile time which specify a permutation
on the implicit indices. Thus in e evaluated in context perm[i,j,k]e, then

iota 0 =iota i, iota 1 =iota j. iota 2 =iota k

This is particularly useful in converting between different image formats.
Hardware frame buffers typically represent images with the pixels in the red,
green, blue and alpha channels adjacent in memory. For image processing it is
convenient to hold them in distinct planes. The perm operator provides a
concise notation for translation between these formats:

typerowindex=0 .. 479;
co1index=0 .. 639;

varchanne1=red .. a1pha;
screen: array [rowi nd ex, co 1 index, chan ne 1 J of pi xe 1 ;
img:array[channe1,co1index,rowindex] ofpixe1;

screen:=perm[2,0,1Jimg;

trans and d i a g provide shorthand notions for expressions in terms of
perm. Thus, in an assignment context of rank 2, trans= perm[l, OJ and
diag=perm[O,OJ.

The form trans x transposes a vector, matrix, or tensor.2 It achieves this
by cyclic rotation of the implicit indices. Thus, if trans e for some expression
e is evaluated in a context with implicit indices:

iotaO .. iotan

then the expression e is evaluated in a context with implicit indices:

iota'O .. iota'n

where

iota· x=i ota ((x+ 1) mod n+ 1)

It should be noted that transposition is generalised to arrays of rank greater
than 2.

2Note that trans is not strictly an operator, as there exists no Pascal type corresponding to a
column vector.

200 SIMD Programming Manual for linux and Windows

For example, given the definitions used above, the program fragment

m1:=(trans v1)*v2;
m2:=transm1;

will set m1 and m2:

m1= 0 2 4 6 8
0 4 8 12 16
0 6 12 18 24

m2= 0 0 0
2 4 6
4 8 12
6 12 18
8 16 24

11.1.1 An Example

The program in Figure 11.1 illustrates the use of implicit indices and their
manipulation.

1. o:, an array of 1 ... 5, is initialised to the numbers 1 ... 5.
2. t, a two-dimensional array, is then organised to form a times table by

multiplying o: with o:T.
3. b then gets the sum down the columns of the table.
4. c is initialised to successive powers of 2, i.e. 21...5 •

5. d gets the diagonal oft, which of course contains (1 ... sf
6. t is reassigned a new times table whose elements are t6 x 2'0 •

11.1.2 Array Shifts

Shifts and rotations of arrays are not supported by any explicit Vector Pascal
operator, although one can use a combination of other features to achieve
them. For example, given

vara,b:array[O .. n-1Jofinteger;

a left rotation can achieved as

a:=b[(l+iota 0) mod nJ;

and a reversal by

a:=b[n-1-iotaO];

11.1.3 Element Permutation

Permutations are widely used in APL and J programming, an example being
sorting an array a into descending order using the J expression \ : a { a. This
uses the operator \ : to produce a permutation of the indices of a in descending
order, and then uses { to index a with this permutation vector. The use of
analogous constructs requires the ability to index one array by another. If

Chapter 11 • Permutations and Polymorphism 201

times tables

sum of columns
powers of two
squares up to 25

program tables;
var

Let a,b,c,d E array[1 . .5] of integer;
t :array [1 .. 5, 1 .. 5] of integer;

begin
a~t0;

t~ a X aT;

write(t);

b~LtT;
writeln(b);
c~ 2to;
d~ diag t;
t~ C X dT;
writeln(c,d};

output table of i2 X 2i

write(t);
end.

Program output:

1
2
3
4
5

15

2
1

2
8

18
32
50

2 3
4 6
6 9
8 12

10 15

30 45

4 8
4 9

4 8
16 32
36 72
64 128

100 200

4 5
8 10

12 15
16 20
20 25

60 75

16 32
16 25

16 32
64 128

144 288
256 512
400 800

Figure 11.1. Demonstration of the use of transpose to produce tables: VPTfXed program. For the
original Pascal source, see Figure 11.2.

x : a r r a y [t 0 J of t 1 and y : a r ray [t 1 J of t 2, then in Vector Pascal, y [x]
denotes the virtual array of type a r ray [t 0] o f t 2 such that y [x][i] =
y[x[i]].

For example, given the sequence

cons t per : a r ray [0 .. 3 J of i n t e g e r= (3 • 1 • 2 • 0) ;

202 SIMD Programming Manual for Linux and Windows

program tables;
var alpha,b,c,d:array[1 .. 5J of integer;

t:array[1 .. 5,1 .. 5J of integer;
begin

end.

alpha:=iota 0;
t:=alpha*trans alpha:
write(t); (times tables}
b:=\+trans t;
writeln(b); (sum of columns}
c:=2 pow iota 0; (powers of two}
d:=diag t; (squares up to 25}
t:=c*trans d;
writel n(c,d);
(*! output table of $iA2\times2Ai$ *)
write(t);

Figure 11.2. Demonstration of the use of transpose to produce tables: the original Pascal source.

varma,mO:array[O .. 3] of integer;

mO:=(iota0)+1;
ma:=mO[per];

would set the variables such that

mo = 1
per= 3
rna = 4

2
1
2

3
2
3

4
0
1

11.1.4 Efficiency Considerations

Expressions involving transposed vectors, matrix diagonals and permuted
vectors, or indexing by expressions involving modular arithmetic on i o t a, do
not parallelise well on SIMD architectures such as the MMX. These depend on
the fetching of blocks of adjacent elements into the vector registers, which
requires that element addresses be adjacent and monotonically increasing.
Assignments involving re-mapped vectors are usually handled by scalar registers

11.2 Dynamic Arrays

Pascal implementations typically use three areas of store for variables. Global
variables are allocated space in a static area of memory allocated before
computation starts. Variables local to procedures are dynamically allocated
space on the stack whenever the procedure is entered. Variables accessed via
pointers are allocated space on the heap at run time by calls to the procedure
new. For global and local variables, the compiler has to know the offset of the

Chapter 11 • Permutations and Polymorphism 203

TURBO

FUNCTION mkim(rows,cols:integer):pimage;
VAR tim:pimage;
BEGIN

getmem(tim,rows*sizeof(prow));
WHILE rows>O DO
BEGIN

rows:=rows-1;
getmem(timA[rows],cols);

END;
mkim:=tim;

END;

Figure 11.3. Use of getmem to allocate dynamically a two-dimensional array for image data.

variables relative either to the base of the global segment, or relative to a base
register that points at the current procedure context on the stack. This is the
reason why in Standard Pascal the bounds of all arrays must be known at
compile time.

This restriction can be inconvenient for many algorithms which require
arrays whose size needs to be determined at run time. An example is when a
program reads in an image file from disk, where prior to reading the file the
size of the pixel array needed is unknown. A number of ways round this
restriction have been experimented with in Pascal implementations.

In Turbo Pascal, the usual approach was to declare an image array as follows:

TYPE row =ARRAY[0 .. max col] 0 F byte ;
prow =Arow;
image =ARRAY[O .. maxline] OF prow;
pimage=Aimage;

VAR im:pimage;

The constants max col and max l i n e are defined to be much larger than the
largest number of rows and columns with which we expect to have to deal.
Once the file header has been read in, store is explicitly allocated for i m using a
procedure getmem, which has the form

procedure getmem(va r p: poi ntertype; bytes: integer);

and then space is allocated for the rows of the image. The initialisation might
be done using the function m kim shown in Figure 11.3. The elements of the
array are then accessed using pointer dereferencing thus:

imA[i]A[j];

Whilst this technique works, and is still supported in Vector Pascal, it is
inelegant and means that array bounds checking is dispensed with.

11.2.1 Schematic Arrays

Extended Pascal provided a notation that allowed dynamically sized multi­
dimensional arrays to be declared. This involved the declaration of schema types.

204

TURBO

VECTOR

SIMD Programming Manual for linux and Windows

In the previous problem we could have declared a schema type for images:

TYPE image(maxrow,maxcol :integer)=
ARRAY[O .. maxrow,O .. maxcol]OFbyte;
pimage="image;

VAR im:pimage;

The image array can be allocated space on the heap using an extended form
of new:

new(im,rows,cols);

where rows, col s are variables initialised at run time.
Access to the array now involves only one level of indirection as in i m" [i , j] .

This probably makes little difference to performance on modern processors with
large caches. Four memory accesses are still required to determine the array
element's address, one each for i and j, one for i m and one for a hidden
descriptor field specifying the length of the rows. However, it is conceptually
neater and allows array bounds checking to be enforced by the compiler.

11.3 Polymorphic Functions

Standard Pascal provides some limited support for polymorphism in its read
and write functions. Vector Pascal allows the writing of polymorphic func­
tions and procedures through the use of parametric units.

The unit is a concept introduced in Turbo Pascal to support separate com­
pilation. Vector Pascal supports Turbo Pascal type units and an example is given
in Section 13.2. Here we are concerned only with the extensions provided by
parametric units.

Consider the issue of writing a sort routine such that shown in Figure 9.8.
In Standard Pascal this has to be written to sort items of some given type t - in
the case of Figure 9.8, it sorted strings. If we want a routine to sort integers, we
could modify the source of the program sort f to redefine t so that

t=integer;

Since the only operation other than assignment that bub b l e sort carries
out on values of type t is to compare them, it follows that we could have
declared t to be any comparable type. However, there is no way in Standard
Pascal to do this without altering the program source. Vector Pascal gets
round this restriction by allowing type parameters to be passed to compilation
units. We can therefore write a generalised sort unit, that has a type t passed
into it. This is shown in Figure 11.4.

The algorithm used is identical with that in Figure 9.8, except that t is
unspecified. If we are to use the unit generi csort, we must instantiate it
with a specific type. An instantiation to sort integers is given by

unit intsort;
interface
in genericsort (integer);

Chapter 11 • Permutations and Polymorphism

unit genericsort(t);
interface
type

dataarray (n,m:integer) = array [n .. m] oft;
procedure sort (var a:dataarray); (see Figure 11.5)

implementation

procedure sort (var a:dataarray); (see Figure 11.5)
begin
end.

Figure 11.4. A polymorphic sorting unit.

procedure sort (var a:dataarray);
var

Let ij e integer;
Let tempe t;

begin
fori f- a.n to a.m - 1 do

end;

for jf- a.n to a.m- 1 do
if ai > ai+ 1 then begin begin

temp f.- ai;

ai f- ai+1;

ai+ 1 f- temp;
end;

Figure 11.5. Procedure sort.

205

which, when compiled, creates a compiled unit called i n t sort whose interface
and body are provided by g en e r i c s o r t where all references to type t are
interpreted as meaning i n t e g e r.

The unit i n t sort can now be included in the program shown in Figure
11.6, where sort is passed an array of integers to sort.

11.3.1 Multiple Uses of Parametric Units

Suppose we have a program that needs sort both integers and arrays of dates.
We have given a declaration for dates in Section 9.4, but for dates to be

sortable we need to have the > operator defined on them. This can readily
be done using the operator definition facility of Vector Pascal. The unit
c a l end a r, shown in Figure 11.7, exports both the type date and the operator
> over dates.

206 SIMD Programming Manual for Linux and Windows

program sort;
uses intsort;
const

a:array [1 .. 5] of integer = (2,8,3,4,7);
var

Let b E ARRAY[1 . .5] of integer;
begin
b~a;

sort (b1..4);
write(a,b);

end.

program output:

2
2

8
3

3
4

4
8

Figure 11.6. A program that uses the integer sorting unit.

unit calendar;
interface

type
monthname = (jan,feb,mar,apr,mayjun,
jul,aug,sep,oct,nov,dec);
date = record

year:integer;
month:monthname;
day:1..31;

end;
function dategt (a,b:date):boolean; (see Section 11.3.2)

OPERATOR>= dategt;
implementation
function dategt (a,b:date):boo/ean; (see Section 11.3.2)
begin
end.

Figure 11.7. A unit to export dates and their order.

7
7

Chapter 11 • Permutations and Polymorphism

program sort2;
uses calendar,datesort,intsort;
const

var
a:array [1 .. 5] of integer= (2,8,3,4,7);

Let be array[1 . .5] of integer;
Let c e array[1 . .3] of date;
Let i,d e integer;

begin
bf-a;
sort (b1..4);
WRITE(a,b);
for if- 1 to 3 do
begin

read(d);
c;.dayf- d;
readln(c[J1.month,c[J1.year);

end;
sort (cu);
for if- 1 to 3 do writeln(c;.day,c;.month,c;year);

end.

Given the input:

11 sep 2002
16 mar 1952
4 jan 2002

this produces the output:

2
2

16
4

11

8
3

mar
jan
sep

3
4

1952
2002
2002

4
8

7
7

Figure 11.8. The use of two instantiations of the same parametric unit within one program.

11.3.2 Function dategt

207

The ordering of dates is done taking years as more significant than months,
which are more significant than days:

function dategt (a,b:date):boo/ean;
begin

if a.year > b.year then
dategt +-- true

208 SIMD Programming Manual for linux and Windows

else if (a. year= b. year) and (a. month > b.month) then
dategt <---- true

else if (a. year= b. year) and (a. month= b. month) and (a. day > b. day) then
dategt <---- true

else dategt <---- false;
end;

Using this, we can create another instantiation of generi csort to sort dates:

unit datesort;
interface uses calendar;

in genericsort (date);

Both sorting units are then imported into program sort 2 shown in Figure
11.8. The compiler uses the type of the parameter to decide which instance of
the generic function is to be called. This is a limited form of procedure
overloading. It allows mutiple instantiations of a generic function to share the
same name. All instances of a generic function have the same number of
parameters, only their types differ.

Part Ill

Programming Examples
Paul Cockshott

Advanced Set
Programming

12.1 Use of Sets to Find Prime Numbers

Let us look at a simple but practical algorithm that uses sets. The algorithm is a
very old one for finding prime numbers and is shown in Alg. 38.

To find all primes less than or equal to max 1 i m, it removes successive
multiples of each prime number from a set intialised to include all integers
from 2 to rna x 1 i m. A non-prime is a multiple of primes. Hence once we have
removed all multiples of primes, the set of integers we are left with must be the

program seive (output);
const

maxlim = 1 00;
type

range = 1 .. maxlim;
intset =set of range;

var
Let primes E intset;
Let i, k,j E integer;

begin
primes f- [2 .. maxlim];
kf- 1;
fori in primes do
begin

j f- i X (k + 1);
while j ::s maxlim do
begin

primes f- primes- [j];
j f- j + i;

end;
end;
primes f- primes + [1];
fori in primes do WRITELN(i);

end.

Algorithm 38. The sieve of Eratosthenes, coded using sets.

211

212 SIMD Programming Manual for Linux and Windows

primes. When removing the multiples of prime i, we can ignore all multiples
less than or equal to i x p, where p is the highest prime less than i, since we
have already removed all multiples of p from the set. The basic step of removing
numbers from the set of primes is done with the line

primes :=primes- [j J;

which subtracts the set containing only the integer j from the set primes.
Nate that we cannot in Pascal write

primes :=primes - j;

without giving a rise to a type error, since j is an integer and primes is a set.

12.1.1 Set Implementation

Like other Pascal compilers, Vector Pascal implements ordinal sets as bitmaps.
A Pascal set is defined over an ordinal type. Associated with each element of
the ordinal type, the compiler allocates one bit in a bitmap to indicate
membership of the set. This representation is efficient and compact for dense
sets. For sparse sets it can be wasteful of space. It is usually better to represent
very sparse sets as explicitly programmed linked lists or trees rather than using
the built-in set types. If the occupancy of the sets is likely to be less than 1%
of the range over which the set type is defined, then more space-efficient
representations can usually be explicitly programmed.

If space efficiency is not of key importance, the bitmap representation used
in Pascal has considerable speed advantages. On machines with a wide word
length such as the MMX, the basic set operations can be performed at high
speed, as they translate into AND and OR operations on machine words.

The overall efficiency of set algorithms also depends crucially on the
efficiency of the set insertion and deletion operations. These are expressed in
Pascal in terms of addition or subtraction of singleton sets. Unless these are
recognised as special cases, the compiler will generate code to perform Boolean
operations on what can be large bitmaps. If the addition or subtraction of
singleton sets is recognised as a special case, then the compiler can generate
code to toggle an individual bit, which will be much faster for large bitmaps.

Vector Pascal performs such optimisations. Their presence not only makes
set operations very fast compared with other Pascal implementations, but also
alters the complexity order of algorithms. Table 12.1 compares the run times on
sieve of two Pascal compilers: Vector Pascal and Prospera Extended Pascal.1 It
can be seen that Vector Pascal is between 40 and 300 times faster than Prospera
Pascal. Column 4 of the table shows that for Vector Pascal the algorithm is
<On, whereas column 5 shows that for Prospera Pascal it is ~ On2•

1 Prospero Pascal is probably the only complete implementation of IS0-1 0206 available for Intel
processors. Other Pascal compilers for PCs will generally not handle sets of arbitrary size as
required by the program.

Chapter 12 • Advanced Set Programming 213

Table 12.1. Comparative performances of different Pascal implementations on the Sieve program as a
function of set size

Maxlim 2 3 4 5
Seconds Ratio Microseconds per integer

Vector Prospera Vector Prospero

20000 0.73 42 57:1 0.1217 6.96
25000 0.91 63 69:1 0.1213 8.40
40000 1.30 315 242:1 0.1083 26.25

Measurements taken using a 700 MHz Trans-Meta Crusoe processor. Vector Pascal compiled to the MMX instruction­
set. Columns 1 and 2 give total run time in seconds to find the primes excluding time to print them. Column 3 shows
the speed ratio between the two compilers. Columns 4 and 5 show how the time to process each integer changes as
the set size grows.

12.2 Ordered Sets

Standard Pascal supports only sets of ordinal types. Vector Pascal allows sets of
any ordered type. Thus Vector Pascal allows one to define sets of strings or sets
of reals. Since the maximum cardinality of such sets is not known until run
time, dynamic data structures are used. One consequence of this is that any
program using dynamic sets should be compiled with garbage collection
enabled to prevent memory leaks.

Dynamic sets are implemented in terms ofbalanced binary trees. Since binary
trees are a sorted data structure, they require an ordering relationship between
the elements stored in the nodes of the tree. Hence it is possible to declare sets of
any type over which the operators <, >, = are declared. Among the predeclared
types, sets of string or real numbered types will be implemented dynamically.

When a dynamic set type SET 0 F xis declared, the compiler loads a generic set
unit parameterised by the type x. It then code generates a library of routines
specialised to handling sets of x.

One adverse consequence of the use of tree structures for dynamic sets is
that they cannot be written out to a binary file as a single operation. Input and
output of sets has to proceed by iterating through the set.

As an example of the use of dynamic sets, we will consider a program that
reads two documents and sends to the standard output channel a list of all
words that occur in both documents.

The data type used will be a set of lexemes, where a lexeme is a string of up to
w o r d m a x characters. Words of more than w o r d max characters will be ignored.
The strategy is to form a set of lexemes for each file, form the intersection of
these and then print the intersection.

We will define a valid lexeme to be a sequence of adjacent alphabetic char­
acters. All other sequences of characters will be skipped over.

The main program, shown in Alg. 39, reads in the files to sets, intersects
them and then lists the result.

For instance the command

0:\WPC\documents\ilcg\book\tests>uniquewordsnorm.pas
roman.pas

214 SIMD Programming Manual for linux and Windows

produces the list of words

array
of
program
var
writeln

The contents of the two files can be determined by using the cat command:

0:\WPC\documents\ilcg\book\tests>catroman.pas~orm.pas
program roman;
cons t rom: array [0 .. 4 J of string [1]= (· C · • · L · , ·X · , · V · , · I ·) ;
numb: array [0 .. 4 J of in te ge r= (2 , 1 . 1 , 0, 3) ;
vars:string;
begin

s:=numb.rom;

program uniquewords;
const

wordmax =20;
type

var

lexeme =string [wordmax];
lexset =set of lexeme;

files: array [1 .. 2] of text;
words: array [1 .. 2] of /exset;
Let i E integer;
Let common words E lexset;
Let aword E lexeme;

function openfiles:boo/ean; (see Section 12.2.1)

procedure /oadset(var f:text;var words:/exset); (see Section 12.2.2)

begin
if open files
then
begin

fori f- 1 to 2 do loadset (files;,words;);
commonwords f- words1 X words2;

for aword in common words do
writeln(aword);

end
else writeln('U sage:uniquewords file 1 file2 ');

end.

Algorithm 39. Main program for unique words.

Chapter 12 • Advanced Set Programming

writeln(s);
end.

program norm;
type vec=array[O .. 3] of real;
functionn(varv:vec):real;
begin

n:=sqrt(\+(v*v));
end;
varv:vec; r:real;

begin
v:=iotaO;
r: =n (v) ;
writeln(v,r);

end.

215

On the other hand, we can find all of the unique words in a single file by inter­
secting it with itself thus:

0:\WPC\documents\ilcg\book\tests>uniquewords norm.pas
norm.pas
array
function
iota
n
norm
of
program
r
real
sqrt
type
v
var
vee
writeln

12.2.1 openfiles

function openfiles:boo/ean;

This returns true if it has suceeded in opening both files. Two possible error
conditions can arise:

1. The number of filenames supplied to the program may be wrong. This is
tested using the integer valued function paramcount which is provided in
the System Unit. This returns the number of parameters provided to the
program on the command line.

216 SIMD Programming Manual for linux and Windows

2. The names provided may not correspond to valid files. This is tested by
attempting to reset the files for writing and then testing the ioresult function.
To use this one must disable the automatic i/o checks provided on reseting
a file which would otherwise cause the program to abort with a run time
error. This is done with the compiler directive { $ i -) . The previous
presence of this directive allows the ioresult function to be used to test
whether file opening failed.

label 99;
var

Let i E integer;
begin

openfiles +- false;
if paramcount < 2
then goto 99;
for i +- 1 to 2 do
begin

assign (filesi,paramstr(l));
{$i -checks off}
reset (fi/esi);
if ioresu/t-# 0
then goto 99;
{$i+checks on)

end;
open files +- true;
99:

end;

12.2.2 loadset
procedure loadset (var f:text;var words:/exset);

This procedure finds all the unique words in a file and returns them in lexset.
This module is responsible for all of the parsing of the input files. It declares
the set l e t t e r s used in discriminating words from other text:

const
a== 'a';

z== 'z';
var

Let letters E set of char;
type

state= (inword,skipping);
var

Let c E char;
Let s E state;
Let theword E lexeme;

function getch:char; (see Section 12.2.2)

Chapter 12 • Advanced Set Programming 217

of loadset

of getch

procedure get/ex (var /:/exeme); (see Section 12.2.2)

begin
s +--skipping;
words +-- [] ;

letters+-- ['a' .. 'z', 'A' .. 'Z'];
repeat

get/ex (theword);
words +-- words + [theword];

until theword = ' ';

end;

getch

function getch:char;

Read in a character from the current file, return the null character on end of
file. This function has to deal with the problems of

1. Ends of lines, which in Pascal are detected by the eoln function. These are
dealt with by returning the ASCII CR character 13.

2. End of file, detected by the eof function. This is dealt with by returning the
ASCII NUL character 0. The occurence of NUL characters is dealt with at
the next higher level of processing to ensure that termination occurs.

var
Let local E char;

begin
if eoln (f) then
begin

readln (f);
getch +-- chr(13);

end
else
begin

if eof (f) then
begin

getch +-- chr(O);
end
else
begin

read ((,local);

getch +-local;
end;

end;
end;

getlex

procedure get/ex (var /:/exeme);

218

of getlex

SIMD Programming Manual for Linux and Windows

This procedure parses the input stream for the next word. It then returns it
in 1. It operates as a simple finite state machine that can be in one of two states:

1. skipping: the machine is in this state between words whilst it moves over
non letter characters.

2. inword: the machine is in this state whilst it parses a word.

The special case of the occurrence of the null character causes a branch to label
99, ensuring that a null string is returned by the procedure. This is used at the
next higher level as a termination condition. Labels, although deprecated in
structured programming, remain a useful construct for escaping from loops.
Note that membership of the character in the set of letters is used to switch
between the two states of the parser. This is an entirely orthodox use of sets in
Pascal.

label99;
begin

I+--";
while s = skipping do
begin

c+-getch;
if c in letters then s +-- inword;
if c = chr(O) then goto 99;

end;
while s =in word do
begin

If length (I) = wordmax
then goto 99;
1+--l+c;
c+-getch;
if c in letters then s +-- inword else s +-- skipping;
if c = chr(O) then goto 99;

end;
99:

end;

12.3 Sets of Records

One can also define sets over record types provided that appropriate equality
and ordering operators have been defined. Although Vector Pascal does not
support persistence, this can still provide a useful mechanism for implement­
ing in-memory databases, provided that one writes the routines to load and
store the sets of records.

Let us consider the case of a simple name, address and telephone number
database. We can define an appropriate record type as follows:

person=record
id:string[80];

Chapter 12 • Advanced Set Programming

address:string;
home,mobile:string[30];

end;

219

Let us choose to treat the id as a primary key for the database, that is, we will
define two records to be identical if they have the same primary keys. The
address and telephone number fields will be ignored for identity purposes. The
consequence is that each person in the set will have a unique address and pair
of telephone numbers.

To do this, we need to define ordering operators over persons:

operator== personeq;
operator<= personl t;

and then define the appropriate ordering functions:

functionpersonlt(pl,p2:person):boolean;
begin

personlt:=pl.id<p2.id;
end;
functionpersoneq(pl,p2:person):boolean;
begin

personeq:=pl. id=p2. id;
end;

12.3.1 Retrieval Operations

Given a set of person records in db, we can add a person by the operation

db:=db+[p];

Less obviously, we can query the set to look up a person given their name.

p.id:=id;
res:=db*[p];
forpinresdo;

The operation x * y returns the set of elements in x that also occur in y. In the
case of db* [p] it selects the singleton set comprising the record in db whose
id field matched the i d field of p. This is then loaded into p by the following
for .. i n loop. The address and telephone number fields of the record p will
now be those last stored in the set.

12.4 Use of Sets in Text Indexing

Our next example will address text retrieval. Suppose one wants to search for
the occurrence of a word in a number of files. Most operating systems provide
tools to do this, either on the command line or through the file manager. The
simplest such tool is probably the Unix grep command. One might try to
discover which of one's Pascal files were units by entering

$grep "unit"*.pas

220 SIMD Programming Manual for linux and Windows

and obtain the response

bloomfilter.pas:unitbloomfilter;
bmp. pas: unit bmp;
bmp. pas: This unit provides a 1 i bra ry to access and manipulate
bmp.pas: in .bmpfiles. ItisusedinternallyintheunitBMP
calendar.pas:unitcalendar;
datesort.pas:unitdatesort;
intsort.pas:unitintsort;
metricunits.pas:PROGRAMmetricunits;
personrecs.pas:unitpersonrecs;
System.pas:unitsystem;

Then g rep would search all of the files with the . pas suffix for the sequence
'unit', finding in the process all of one's units plus some other files.

The technique involves reading the entire files to find any occurence of the
requested word. Although fast enough for searching within one directory, it is
slow when applied to a whole directory tree. For faster access one wants some
sort of index, which, when given a word, will return all the files containing that
word. This index would either have to associate with each word a set of files
that contain it, or associate with each file a set of the words that it contains.
We will take the latter approach.

If we assume that the index will be held on disk, performance is likely to be
constrained either by disk seek times for a random access structure, or by disk
throughput if an index is read in a single pass. If we are storing a set of words
with each file, we have to access each set of words once. There will be many
such sets. We can either design the sets on disk in such a way that the entire set
is read in with a single DMA transfer, or represent each set as some sort of tree
on disk that we navigate with random access reads. Since disks achieve the
highest bandwidth on sequential accesses, and since the number of sets to be
queried will be large, the best strategy is to read each entire set in turn. This
implies that the performance constraint will be provided by disk bandwidth
rather than by disk seek times. In order to make the best use of bandwidth, we
shall try to use a relatively compact set representation.

The sets of ordinal type are stored very compactly as a bitmap. However, we
have a problem, since textual words do not constitute an ordinal type. They can
be stored in ordered sets as shown in Section 12.2, but these sets, being imple­
mented as trees, cannot be written to direct access files. However, there is a way
to use ordinal sets to act as surrogates of sets of words. Suppose we have a hash
function that will assign an ordinal to each possible word, then the words can be
stored in an ordinal set using their hashed images (Figure 12.1). So if we define an
ordinal type with, let us say, a range oflOOO elements, we can take a word such as
'cat' and hash it into this range and store the corresponding ordinal in the set.

If we prepare one such an ordinal set for each text file, such that the hashed
images of the words in the file have been added to the set, we could use it for
indexing. Let us call these sets index-sets. To check which files might contain a
word, we need only check for the presence of its hashed ordinal in each of
these index -sets. If the hashed ordinal is not present, we know that the file will
not contain the word.

Chapter 12 • Advanced Set Programming 221

~==•I Has=hf"n~=ion ~' ===
Ordinal set

Figure 12.1. Use of a hash function to store words in an ordinal set.

0.8
~- ~ ll

, .. I

- ~· I

0.6

0.4

---· !

-------v-0.2

0 500 1000 1500 2000

Figure 12.2. The upper line shows the probability of false positives with a set in the range 0 ... 1023 as
the number of unique words stored in it rises. The lower line shows the probability of false positives if
unanimous results must be obtained from eight independently hashed sets.

However, like any hashing process, this will suffer from collisions, where
two words hash to the same ordinal, prevents us from being able to deduce
unambiguously the presence of a word in a file from the presence of its ordinal
in the index-set.

Let our hash function be uniform and the cardinality of our index sets be m.
Then, if a file contains n distinct words, what is the probability of obtaining a
false positive when we test for set membership?

Define a function u(n) which gives the expected number of members of
the index set as a function of the words inserted, we have u(O) = 0, and the
recurrence relation

u(n) = u(n-1) + 1 - u(n- 1)
m

Clearly, the probablity of a false positive is given by u~) . Figure 12.2 shows how
this probability rises with the number of hashed words inserted into the set
goes up. Clearly, as the number of words stored approaches half the range of
the index set, the selectivity of the index becomes poor. At a 50% loading we
have just under a 40% false-positive probability. If we assume that the index is
used as a filter to supply filenames to a text searching program such as g rep,
this may still be worthwhile.

However, we can greatly inprove the selectivity of the index by using
multiple independently hashed sets. Suppose that instead of a single set we

have p of them, then the probability of false positives becomes [u~)r; in

222 SIMD Programming Manual for Linux and Windows

words, the probability of false positives falls exponentially with the number of
independently hashed index-sets that we use.

Let us give an example. If we have a single index-set ranging over 0 ... 1023,
then the false-positive rate with a loading of 512 entries is 39.4%, but with eight
independent index-sets each of the same size, the false-positive rate falls to
0.06%. An alternative approach might be simply to use a single set that was eight
times as big, but this is much less effective. It would give a false-positive rate of
6% at the same loading, 100 times less selective than the use of multiple sets.

12.5 Constructing an Indexing Program

Let us now construct a program that will construct an index of all of the words
in all of the files in the current directory tree. We can break the design of the
program into three component parts:

1. Parsing text files to find the words in them. This problem has basically been
solved in a previous example (see Section 12.2.2).

2. Traversing a directory tree to find all the files in it. This is a new problem
for us and we will examine it below (see Section 12.5.1).

3. Constructing and manipulating the index sets. This will be dealt with in the
unit bloomfilter (see Section 12.6).

12.5.1 dirlist: A Program for Traversing a Directory Tree

We start by constructing a program that simply lists a directory tree. We can
then use this as a framework to do something to each file in a directory tree.
The logic of the program is simple; the main novelty consists in the introduc­
tion of a number of sugared Linux system calls for accessing directories. The
same calls work under Windows.

program dirlist;

This program takes a single parameter: a directory name. It traverses the
directory tree listing all of the filenames found.

const
above= ' .. ';
this= '.';

The constants are used to refer to the Unix and Windows representations of
the current and superior directory.

var
Let s E string;

procedure intodir (s:string;level:integer); (see Section 12.5.2)
begin

s ~ paramstr (1);

intodir (s,O);
end.

Chapter 12 • Advanced Set Programming 223

12.5.2 intodir

procedure intodir {s:string;/eve/:integer);

This procedure recursively traverses the directory whose name is passed as a
parameter. All files encountered are listed to the standard output stream. The
body of the function is shown in Alg. 40. A major complication is the need to
convert between Unicode strings used internally and the ASCII filenames used
by Linux. It uses the following variables:

var
buf: array [0 .. 1 00] of ascii;
Let n E pchar;
Let un E string;
Let thedir E pdir;
Let theentry E pdirentry;

Type ascii is an internal representation of ASCII characters, stored one per
byte. It is declared in the system unit. The type pchar is a pointer to an ASCII
character. This is the standard way in which strings are passed in C and it is
needed to converse with the Linux or Windows file system. Types pdir and
pdirentry are types declared in the system unit for traversing operating system
directories. The function also makes use of a group of system procedures or

begin
unicodestring2ascii(s,buf0);

thedir := opendir(@buf);
if thedir =F nil then
begin

chdir(@buf);
theentry ~ readdir(thedir);
while (theentry =F nil) do
begin

n ~ entryname(theentry);
un ~ strpas(n);
writeln{un);
if isdir(n) then

if un =F above then
if un =F this then

intodir(un,level + 1);
theentry ~ readdir(thedir);

end;
unicodestring2ascii(above,buf0);

chdir(@buf);
end;

end;

Algorithm 40. Body of the function intodir.

224 SIMD Programming Manual for Linux and Windows

functions:

• The procedure unicodestring2ascii takes a Vector Pascal string and copies it
into an array of ASCII characters, appending the requisite null character
expected by C.

• The function opendir must be passed the address of an ASCII string and
returns a directory handle.

• The chdir procedure changes the current directory to the one specified by
the ASCII string provided in its parameter.

• The function readdir reads the next directory entry from the directory
directory specified by the handle passed to it.

• The function entryname returns a pointer to an ASCII string which has to be
converted to a Pascal string using the function strpas.

12.6 bloomfilter

unit bloomfilter;

This unit provides a set oflibrary routines for creating and manipulating index­
sets for indexing the words in documents.

interface
const

maxhash = 1 023;
bloomdepth = 8;

The above constants control the overall dimensions of the index-sets. Maxhash
defines highest ordinal number in the set and bloomdepth defines how many
index sets are to be used for each file.

type
hashcode = O .. maxhash;
bloomrange = 1 .. bloomdepth;
filter = set of hashcode;

A f i 1 t e r is a single index -set. These are then grouped into a

bloom = array [bloomrange] of filter;

A lexeme will be hashed to a hash vector, a vector of independently computed
hash codes:

hashvector =array [bloom range] of integer;

Each text file is then described by a filefilter which encodes information about
the words in the file along with the filename:

filefilter = record
wordset:bloom;
filename:string;

end;

Chapter 12 • Advanced Set Programming 225

procedure hashword {var theword:string;var codes:hashvector); (see Section
12.6.1)
procedure setfilter {var theword:string;var f:bloom); (see Section 12.6.2)
function testfilter {var theword:string;var f:bloom):boolean; (see Section 12.6.3)
implementation

12.6.1 hashword

procedure hash word {var theword:string;var codes:hashvector);

This procedure performs parallel hashes on theword to yield a a vector of hash
codes in codes. It uses for this purpose the vector of prime numbers:

const
primes: array [bloomrange] of integer= {7, 11, 13, 17, 19,23,29,31);

var
Let i,l E integer;
Let j E hashcode;

begin
I +-length (theword);
codes+- 0;
for i +- 1 to I do
begin

j +- ord(theword;);

The following line has the effect of computing the polynomials:

c1p~- 1 + c2p~-2 · · · + C!-1P1 + C!

1-1 + 1-2 + + c1P2 C2P2 · · · Cz-1P2 c1

c1p~- 1 + c2p~-2 · · · + Ct-IP3 + cz

etc., where Cj is the jth character in the string and p; is the ith prime in the
vector of primes. Where the instruction-sets allow, it will be computed in
parallel.

codes+- codes x primes+ j;
end;

Constrains the result to be in the appropriate range.

codes +-codes 1\ maxhash;
end;

12.6.2 setfilter

Computes the hash vector for the word and inserts the hashed elements into
all of the filters in the bloom. Note that the assignment context of the second
statement is an array of sets; this has the effect of causing the array identifier
codes to be indexed in the set on the right-hand side.

226 SIMD Programming Manual for Linux and Windows

procedure setfilter (var theword:string;var f:b/oom);
var

Let codes E hashvector;
Let i E integer;

begin
hashword (theword,codes);
f+- f+ [codes];

end;

12.6.3 testfilter

Computes the hash vector for the word and tests if the co responding elements
are present in all the filters of the bloom. Note the use of and-reduction on the
vector of Boo leans that results from the expression codes i n f.

function testfilter (var theword:string;var f:bloom):boolean;
var

Let codes E hashvector;
begin

hashword (theword,codes);
testfilter +- \A (codes E f);

end;

12.7 The Main Program to Index Files

This uses a slightly modified version of intodir to traverse the tree. The new
version of intodir calls the procedure processfile for every file encountered. In
consequence, indexes are built for every file in the directory tree and the index
records all written to the index file.

The usage of the program involves issuing the command

indexfiles

which causes the current directory and all sub-directories to be scanned and an
index of all the words found to be stored in the file w o r d i n de x . i n d.

program indexfiles;
uses b/oomfilter;
const

dirsep = '\' ;
word max= 25;
above=' . .';
this='.';

type
lexeme = string;

var
Let index E file of filefilter;

procedure /oadset (var f:text;var words:bloom);
(see Section 12.2.2 for something similar.)

Chapter 12 • Advanced Set Programming

procedureprocessfi/e(fn,path:string); (see Section 12.7.1)
procedure intodir (s:string;prefix:string);

(see Section 12.5.2 for something similar.)
begin

assign (index, 'wordindex.ind');
rewrite (index);
intodir (' .' , '.');
close (index);

end.

12.7 .1 processfile

227

This builds an index for file fn and adds it to the index. It uses a Standard
Pascal file of records to write the index records to disk. It associates with each
index record the full file path that was used to find the file. This is built up by
the intodir procedure as it traverses the directory tree.

procedure processfile (fn,path:string);
var

Let ff E filefilter;
Let f E text;

begin
writeln(path);
assign (f,fn);
{ $ i - }
reset (f);
if ioresult = 0 then
begin

{ $i +}

ff.wordset +---;
/oadset (f,ff.wordset);
ff.filename +---path;
write(index,ff);

end
else writeln('cant open', fn, ':',path);
close (f);

end;

12.7 .2 A Retrieval Program

The retrieval program searchindex scans the index file for a word and prints
the names of the files that are likely to contain the word. For example:

sea rchi ndex bird

will list all the files containing the word 'bird'. The index file is assumed to be
in the current directory and called w o r d i n de x . i n d.

program searchindex;
uses b/oomfilter;

label99;

228 SIMD Programming Manual for Linux and Windows

var
Let index E file of filefilter;
Let entry E filefilter;
Let i E integer;

begin
else
begin

assign (index, 'wordindex.ind');
{ $ i - }
reset (index);
if ioresult = 0 then

while not eof (index) do
begin

read (index,entry);
if ioresult -1- 0 then goto 99;
if testfilter(paramstr(1),entry. wordset) then
writeln(entry.fi/ename);

end;
99:close (index);

end;
end.

As an example, i n de x f i l e s was used to construct an index over the gee
include directory. The times taken to search for the files containing the word
printf using search i n de x and g rep were then compared. The statistics
below indicate that sea r c h i n de x was approximately 100 times faster than
using g rep.

Number of files
Size of data
Size of index
Time using search index
Time using g rep -R

712
3.8 Mbyte
980K
0.04s
4.06s

The files in this case were relatively small, so the index file was relatively
large compared with the data being indexed. This could have been reduced by

1. Using a shorter string to hold the file names in the bloom records. With the
current design, the filenames occupy 510 bytes, which is excessive.

2. Using smaller sets, the set data currently occupy 1024 bytes per file. This
could be reduced if most of the files being indexed are small.

It will be understood that the data structures in this example are not highly
optimised for storage efficiency, being designed instead for ease of under­
standing in a textbook. They do, however, indicate how comparatively simple
set structures can give significant performance boosts in text retrieval.

13.1

Parallel Image
Processing

Declaring an Image Data Type

Vector Pascal does not have a predeclared image data type. However, one can
readily declare one. There are two common approaches to representing full­
colour image data. In both of them the colour is represented as three compo­
nents, each of 8-bit precision.

1. Display manufactures for PCs usually store the information as two­
dimensional arrays of 24- or 32-bit pixels, made up of red, green and blue
fields with an optional alpha field for colour blending. The fields typically
contain 8-bit unsigned numbers with 0 representing minimum brightness
of the colour and 255 representing the maximum brightness. This approach
simplifies display design but is not so suitable for image processing.

2. The alternative approach separates the colour information out into distinct
planes, so that a colour picture is manipulated as three' distinct' mono­
chrome images, one of which represents the red component, one the green
and one the blue. This approach allows image-processing procedures
designed to operate on monochrome images to be applied unmodified to
each of the planes of a colour image.

In what follows we use the colour plane model for images:1

type
i mage(maxpla ne ,maxrow, maxcol :integer)=

a rray [0 .. maxp lane. 0 .. max row. 0 .. max col J of pixel ;

This declares an image to be a parameterised data type with a variable number of
image colour planes and a variable number of rows and columns. Although this
definition will store also pixels in an 8-bit representation, it is as a signed 8-bit
binary fraction in the range -1 . . . 1, instead of as 8-bit unsigned integers.

13.2 Brightness and Contrast Adjustment

The signed fractional representation of pixels lends itself well to image­
processing applications where arithmetic is done on pixels. We frequently want

1The definitions of the image type along with several of the functions over images are given in
Unit Bmp in Section 13.12.

229

230

negate image

halve contrast

brighten

program contrast;
usesbmp;
var

SIMD Programming Manual for Linux and Windows

Let im,outim e pi mage;
begin

if loadbmpfile('grey1.bmp',im) then
begin

new(outim,im A.maxplane,im A.maxrow,im A.maxcol);
outimi f- imi x -1.0;
storebmpfile('neg. bmp',outim i);
outimi f- imi X 0.5;
storebmpfile('half.bmp' ,outim i);
outimi f- imi + 0.3;
storebmpfile('bright.bmp' ,outim i);

end
else writeln('failed to load file');

end.

Algorithm 41. Simple manipulations of image contrasts and brightnesses. The type pimage used is a
pointer to an image.

to subtract images from one another. Doing this can give rise to negative-valued
pixels. Using an unsigned format, negative pixels have no natural representa­
tion. Using signed pixels, 0 represents mid grey, -1 represents black and
1 white. This representation allows the contrast of an image to be adjusted simply
by multiplying by a constant. Thus, if we multiply an image by 0.5 we halve its
contrast; if we multiply it by -1, we convert it to an negative image, etc.

13.2.1 Efficiency in Image Code

Alg. 41 illustrates how easy it is to alter the brightness/contrast of an image by
adding/multiplying it with a real value. Although concise, this does not
necessarily produce the fastest code. The rules used in expression evaluation
mean imj xO.S is expanded out to imj Lo,t1,12 xO.S, which is a multiplication of
a pixel by a real. Since reals are of higher precision, the pixel has to be
promoted to a real before the multiplication. This effectively prevents the
original array expression being vectorised.

A more efficient approach is seen in the procedure adjustcontrast shown in
Alg. 42, where a vector of pixels is initialised to hold the adjustment factor. By
holding it as a vector of fixed-point numbers, the operation can be effectively
vectorised on MMX-based processors.2 Since the fixed-point pixel format only
works for lfl ~ 1, it is necessary to use floating-point multiplication when
increasing the image contrast.

2It is a weakness of the Intel MMX instruction-set that it does not support scalar to vector
operations. There are no instructions to operate between a signed byte and a vector of signed
bytes. Motorola processors do not suffer from this weakness.

Chapter 13 • Parallel Image Processing

procedure adjustcontrast(f:real; var src,dest:image);
var

Let IE Aline;
Let rE real;

begin
new(l,src .maxcol);
{ $r- l
Ji f- t;
if (abs(f) < 1) then dest f- src X li
else dest f- src X f,
{ $r- l
dispose (I);

end;

231

Algorithm 42. A more efficient way of adjusting contrast. Note that in this example the type line refers
to a vector of pixels.

Recall that pixels are represented as signed 8-bit numbers, with the
conceptual value 1.0 being encoded as + 127 and the conceptual value -1.0
being encoded as -128. Multiplication of pixels proceeds by

1. multiplying the 8-bit numbers to give a 16-bit result
2. shifting the result right arithmetically by seven places
3. selecting the bottom 8 bits of the result

The 8-bit signed format contains 7 bits of significance plus the sign bit and the
16-bit result contains 14 bits of significance plus two replicated sign bits. It is
clear that this format cannot represent multiplication by a number greater
than 1.

13.3 Image Filtering

As another practical example of Vector Pascal, we will look at an image-filtering
algorithm. In particular we will look at applying a separable three-element
convolution kernel to an image. We shall initially present the algorithm in
Standard Pascal and then look at how one might re-express it in Vector Pascal.
The entire program is shown in Alg. 45 and then developed in Algs 44 and 46.

Convolution of an image by a matrix of real numbers can be used to smooth
or sharpen an image, depending on the matrix used. If A is an output image, K
a convolution matrix, then if B is the convolved image:

By,x = L L Ay+i,x+jKi,j
j

A separable convolution kernel is a vector of real numbers that can be
applied independently to the rows and columns of an image to provide
filtering. It is a specialisation of the more general convolution matrix, but is

232 SIMD Programming Manual for Linux and Windows

Figure 13.1. Test images used to illustrate brightness, contrast adjustment and filtering. The images
(a)-(e) were produced by the program graphio.

algorithmically more efficient to implement. If k is a convolution vector, then
the corresponding matrix K is such that Ki,j = kikj.

Given a starting image A as a two-dimensional array of pixels, and a three­
element kernel CJ>c2,c3, the algorithm first forms a temporary array T whose

Chapter 13 • Parallel Image Processing 233

Original After blur

Figure 13.2. The effect of a blurring filter on a finite impulse.

elements are the weighted sum of adjacent rows: Ty,x = c1Ay-l ,x + c2Ay,x+
c3Ay+l ,x· Then in a second phase it sets the original image to be the weighted
sum of the columns of the temporary array: Ay,x = c1 Ty,x-l + Cz Ty,x+
c3 Ty,x+l· Clearly, the outer edges of the image are a special case, since the
convolution is defined over the neighbours of the pixel, and the pixels along
the boundaries are missing one neighbour. A number of solutions are available
for this, but for simplicity we will perform only vertical convolutions on the
left and right edges and horizontal convolutions on the top and bottom lines
of the image.

13.3.1 Blurring

An image can be blurred using the separable filter (0.25,0.5,0.25). Consider that
this implies each row in the output image is formed by a mixture of itself and
the rows above and below, with half the amplitude of the signal coming from
the current row and half from the adjacent rows. Similarly, each column is
made up of half from the current column and half from the adjacent column.
The net result is that a pixel's influence spreads out over a 3 x 3 grid. We can
examine the effect of the filter on a point source. Here a single pixel that stands
out against a uniform background in the initial image shows how the initial
pixel spreads out to affect the region around. This is shown in Figure 13.2.

Figure 13.3 shows the effect of using this filter on the classical "Mandrill"
test image.

13.3.2 Sharpening

If we use a filter that has negative weights away from the centre, the effect is to
sharpen an image. Suppose we apply the filter (-0.25,1.0,-0.25) to an image,
what will be the result?

The first thing to note is that this filter is non-unitary, that is, its coefficients
do not add up to 1. If we use a unitary filter such as the blur (0.25,0.5,0.25),
the mean contrast of the image is unchanged.

Since the coefficients of our sharpening filter sum to 0.5 and since the filter
is applied twice, once vertically and once horizontally the net effect is to reduce
the mean contrast to one-quarter of what it was originally. This is shown in

234 SIMD Programming Manual for Linux and Windows

Figure 13.3. The image at the top is the original. The bottom left image has been subjected to a
blurring filter (0.25,0.5,0.25) and that on the right to a sharpening filter.

Figure 13.4. Effect of a sharpening filter on a finite impulse.

Figure 13.4. To compensate, we must multiply the image by 4.0 to restore the
original contrast, as shown in Alg. 43. Note the characteristic "ringing" induced
in the image by sharpening filters. Figure 13.3 shows how the picture of a
Mandrill can be sharpened. Note that over the fur, the effect of sharpening is

Chapter 13 • Parallel Image Processing

procedure sharpen(var im:image);
var

Let i E integer;
begin
;~ 1;
pconv(im, -0.25,0.998, -0.25);

end;

Algorithm 43. The sharpening method.

just to introduce noise. This is for two reasons:

235

1. This algorithm results in the loss of 2 bits of precision when the multiplica­
tion by 4 takes place; the effect is to introduce additional quantization noise.

2. Sharpening is only visually effective where an feature with high spatial
frequency occurs against a background with lower spatial frequency. The
hair area is all of high spatial frequency. In consequence, the ringing
produced by sharpening overlaps with other hairs, occluding them.

13.3.3 Comparing Implementations

Alg. 44 shows con v, an implementation of the convolution in Standard Pascal.
The pixel data type has to be explicitly introduced as the sub-range -128 ... 127.
Explicit checks have to be in place to prevent range errors, since the result of a
convolution may, depending on the kernel used, be outside the bounds of valid
pixels. Arithmetic is done in floating point and then rounded.

Because ISO Pascal does not support dynamic arrays, the image sizes in
both this version and the parallel version are statically declared.

Image-processing algorithms lend themselves particularly well to data­
parallel expression, working as they do on arrays of data subject to uniform
operations. Alg. 47 shows a data-parallel version of the algorithm pconv
implemented in Vector Pascal. Note that all explicit loops disappear in this
version, being replaced by assignments of array slices. The first line of the
algorithm initialises three vectors p1, p2, p3 of pixels to hold the replicated
copies of the kernel coefficients c 1, c2, c3 in fixed-point format. These vectors
are then used to multiply rows of the image to build up the convolution. The
notation thei m[J [1.. .max pix -1 J denotes columns 1. .. max pix -1 of all
rows of the image. Because the built-in pixel data type is used, all range
checking is handled by the compiler. Since fixed-point arithmetic is used
throughout, there will be slight rounding errors not encountered with the
previous algorithm, but these are acceptable in most image-processing
applications. Fixed-point pixel arithmetic has the advantage that it can be
efficiently implemented in parallel using multi-media instructions.

It is clear that the data-parallel implementation is more concise than the
sequential one, 12 lines with 505 characters compared with 26 lines with 952
characters. It also runs considerably faster, as shown in Table 13.1. This
expresses the performance of different implementations in millions of effective

236 SIMD Programming Manual for linux and Windows

procedure conv(c 1,c2,c3:real);
var

tim:array[O .. m ,O .. m] of pixel;
Let quarter, half, temp E real;
Let iJ E integer;

begin
for if- 1 to m -1 do

for j f- 0 to m do
begin

end;

temp f- theimi-lj X c7 + theimij X c2 + theimi+lj X c3;
if temp > 127 then temp f- 127 else

if temp < -128 then temp f- -128;
timij f- round(temp);

end;
for j f- 0 to m do
begin

timoj f- theimoi
timmjf--- theimm,j;

end;
fori f- 0 to m do
begin

for j f- 1 to m -1 do
begin

tempf--- timij-1 X c7 + timij+l X c3 + timij X c2;
if temp > 127 then temp f- 127 else

if temp < -128 then temp f- -128;
timi,j f- round(temp);

end;
theimi,o f- timi,o;
theimi,m f- timi,m;

end;

Algorithm 44. Standard Pascal implementation of the convolution.

arithmetic operations per second. It is assumed that the basic algorithm
requires six multiplications and six adds per pixel processed. The data-parallel
algorithm runs 12 times faster than the serial one when both are compiled
using Vector Pascal and targeted at the MMX instruction-set. The pconv also
runs one-third faster than conv when it is targeted at the 486 instruction-set,
which in effect serialises the code.

For comparison, conv was run on other Pascal compilers,3 DevPascal1.9,
Borland Pascal and its successor Delphi.4 These are extended implementations,

3In addition to those shown, the tests were performed on PascaiX, which failed either to compile
or to run the benchmarks. TMT Pascal failed to run the convolution test.
4Version 4.

Chapter 13 • Parallel Image Processing

program dconv;
const

m =255;
repeats = 400;

type

var

pixel= -128 .. 127;
tplain = array[O .. m,O .. m) of pixel;

Let theim,theres E tplain;
Let i E integer;
Let oldtime,ops E real;

procedure showtime; (see Alogrithm 46)
procedure conv (c7 ,c2 ,c3:real); (see Alogrithm 44)

begin
oldtime f- sees;
opsf- 12 x (m +1) x (m +1) x repeats;
for if- 1 to repeats do conv (0.2, 0.6, 0.2);
showtime;
writeln(' done' ,sees);

end.

237

Algorithm 45. The program dconv, a test harness for image convolution written to work under several
Pascal compilers.

procedure showtime;
var

Let sec,duration,rate E real;
begin

sec+- sees;
duration f- sec - oldtime;
write(duration,' ');

ops
rate +--- duration;
write(~ 'M ops per sec')·

1000000' '
oldtime +--- sec;

end;

Algorithm 46. The procedure showtime.

but with no support for vector arithmetic. Delphi is a state-of-the-art
commercial compiler, as Borland Pascal was when released in 1992. DevPas is
a recent free compiler. In all cases range checking was enabled for consistency
with Vector Pascal. The only other change was to define the type pixel as
equivalent to the system type shortint to force implementation as a signed
byte. Delphi runs conv 40% faster than Vector Pascal does, whereas Borland
Pascal runs it at only 7% of the speed, and DevPascal is roughly comparable to
Vector Pascal.

238 SIMD Programming Manual for Linux and Windows

procedure pconv(var theim:tp/ain;c 1 ,c2,c3:real);
var

tim:array[O .. m,O .. m] of pixel;
Let p 1 ,p2,p3 e array[O .. m] of pixel;

begin
p1 ~ c1;
p2~c2;

p3~c3;

tim1 .. m-1 ~ theimo .. m-2 X p1 + theim1..m-1 X p2 + theim2 .. m X p3;
tim0 ~ theim0;

end;

timm ~ theimm;
theimo .. m,1 .. m-1 ~ timo .. m,O .. m-2 X p1 + timo .. m,2 .. m X p3 + timo .. m,1 .. m-1 X p2;
theimo .. m,o ~ timo .. m,o;
theimo .. m,m ~ timo .. m,m;

Algorithm 47. Vector Pascal implementation of the convolution.

Table 13.1. Comparative performance on convolution

Algorithm Implementation Target processor Million operations per second

conv Borland Pascal 286+287 6
Vector Pascal Pentium + MMX 61
DevPascal 486 62
Delphi 4 486 86

pconv Vector Pascal 486 80
Vector Pascal Pentium + MMX 820

Measurements done on a 1 GHz Athlon, running Windows 2000.

13.4 genconv

The convolution algorithms presented so far use one-dimensional kernels and
work by being applied successively in vertical and horizontal directions. As
such, they are unable to deal with asymmetrical kernels - ones which blur in
one direction and sharpen in another, for instance. They also, because they use
8-bit pixel multiplication, suffer from rounding errors when using sharpening
convolutions.

We will now present

procedure genconv(var p:image;var K:matrix);

which computes a general convolution on an image p producing a modified
image q such that if

qi,j,k = L L Pi,j+y-a,k+x-b X Kx,y
X y

where a= (K.rows)div2 and b = (K.cols)div2. At the end pis updated with q.

Chapter 13 • Parallel Image Processing

function dup(ij :integer):boolean; (see Section 13.4.1)
function prev(ij :integer):pimage; (see Section 13.4.2)
function pm(ij :integer):pimage; (see Section 13.4.3)
procedure doedges; (see Section 13.4.4)
procedure freestore; (see Section 13.4.5)

begin
new(f,K.rows,K.cols);
tif- nil;
new(flags,K.rows,K.cols);
flagsi f- false;

for if- 1 to K.rows do

for j f- 1 to K.cols do
else ti[iJ1 f- pm(iJ);

239

The loops above perform the premultiplication of the input image to form the matrix of
images. If item Ki,j is a duplicate then we use a previous premultiply or else we perform
the premultiply now.

a f- K.'fws;

b f- K.~ols;

p[][a .. p.maxrow- a,b .. p.maxcol- b] :=0;
for if- 1 to K.rows do

for j f- 1 to K.cols do
p[][a .. p.maxrow- a,b .. p.maxcol -b] :=
p[][a .. p.maxrow- a,b .. p.maxcol- b] + fA[i,j]
A[iota O,i + iota 1 - a,j + iota2 - b];

The above line forms the convolution by replacing the central region of the image with the
sum of the shifted premultiplied images.

doedges;

freestore;
end;

Algorithm 48. Main body of the generalised convolution.

Genconv allows an image to be convolved with an arbitrary two­
dimensional matrix of real numbers. If one performs this operation naively
with an n x n matrix of reals against an image of dimensions r x c, then the
algorithmic complexity will be Orcn2, since each output pixel is the result of
multiplying n2 input pixels by kernel components.

However, it is worth observing that for most practical convolutions there
are repeated matrix elements in the kernel. A nine-element matrix might
contain only four distinct values. We can take advantage of this by analysing
the matrix to determine how many unique components it has and then
forming premultiplied copies of the input image, one for each unique matrix

240 SIMD Programming Manual for Linux and Windows

function dup(i,j:integer):boolean;

var
Let c,d,l,m E integer;
Let b E boolean;

begin
cf- K.cols;
df-j+iXc;
bf- false;
for If- 1 to c do for m f- 1 to k.rows do

b f- b v (K;j = Km,t) A (m + c X I < d);

dupf- b
{dup:=\or\or((K[i ,j]=K)and(iota l+c*iota O<d));}

The Vector Pascal statement is more or less a direct translation of the mathe­
matical formulation of the problem. We use or-reduction over both axes of the
matrix to search for duplicates.
end;

Algorithm 49. The function which checks for duplicate kernel elements.

element in the kernel. Appropriate selection from these premultiplied copies
allows us to compute the convolution.

Let us define a couple of types and a variable to help with this:

type
premult(rows,cols:integer) =array [1 .. rows, 1 .. co/s] of pi mage;
tflag(rows,cols:integer) =array [1 .. rows, 1 .. cols] of boolean;

var
Let f E' premult;
Let a,b,ij E integer;
Let flags E ' tflag;

We will use f to hold the premultiplied versions of the image such that f;,j =
p x Ki,j· The algorithm for constructing the premultiplied matrix of images
will avoid carrying out redundant multiplications.

a,b store the steps away from the centre of the kernel.
flags[i,j] is true if f[i,j] holds the first pointer to a premultiplied image.

13.4.1 dup

This function returns true if there exists an m,n such that

n + m x K.cols < j + i x K.cols

and
Km,n = K;,j

in other words, if the matrix element K;,j is preceded in the matrix by an
identical element. If that is true, then the element K;,j is a duplicate and this

Chapter 13 • Parallel Image Processing 241

fact can be taken advantage of in reducing the amount of premultiplication
required to perform the convolution.

13.4.2 prev

For duplicated matrix elements, K;,j function prev returns the premultiplied
version of the image that was previously computed for this value of the matrix
element.

This uses classical Pascal constructs to search the matrix for the position of the
premultiplied duplicate and then assigns the duplicate to the return value of the
function. Note that the function does not return when the assignment is made.

13.4.3 pm

The function pm (shown in Alg. 51) premultiplies the image by the real valued
coefficient K;,j returning a new image. The fact that a new premultiplied image
has been created is recorded in the flags matrix.

function prev (ij:integer):pimage;
var

Let m,n E integer;
Lets E real;

begin
Sf- k;j;
for m +-- 1 to i -l do

for n +-- 1 to K.cols do
if Km,n = s then

prev +-- ti[m,n];
for n f- 1 to j-1 do

if K;,n = s then
prev +-- ti[i,n];

end;

Algorithm SO. Function to find a previous instance of a kernel element.

function pm(ij:integer):pimage;
var

Let x E pi mage;
begin

new(x,p.maxplane,p.maxrow,p.maxcol);
adjustcontrast(K;jp, xi);
flagsi[i,j] +--true;
pm+-x;

end;

Algorithm 51. The premultiplication function.

242 SIMD Programming Manual for Linux and Windows

13.4.4 doedges

When performing a convolution on an image, the edges always pose a
problem. The convolution operation determines the value of each output
image from the corresponding neighbourhood in the input image. Around the
edges only part of this neigbourhood exists. Some strategies that can be
adopted here are as follows:

1. One can treat the image as being topologically equivalent to a torus so that
upper the neighbourhood of pixel on the top line of the image continues on
to bottom lines of the image. This approach is computationally easy: when
finding the neighbours of pixel Pi,j we would normally do this by using the
expression Pi+y,j+x iterating over a range of values of x andy. To treat the
image as a torus we substitute the indexing expression p [(i + y) mod
p.rows,(j+x)mod p.cols]. Although this is computationally easy, it
does not make a great deal of sense, since it allows output pixels to be influ­
enced by input pixels in the parts of the picture that are furthest away from it.

2. One can mirror the original image around all four edges so that on, for
instance, the top edge the upper neighbour of a pixel is the same as its lower
neighbour. This makes more sense than using a toroidal topology, and will
work well for where the edge of the image is intersected by a feature that
runs a right angles to the edge.

3. One can assume that the edge pixels themselves are replicated to an arbitrary
degree beyond the edge itself, and compute the edge convolution on this
basis. This is the most parsimonious assumption, and is the one we use here.

If we have a 5 x 5 convolution matrix and a 100 x 100 image, then we will
have a central sub-region of the output image: q [2 .. 9 7 , 2 .. 9 7 J, which can
be evaluated from the full convolution matrix. The 2-pixel wide vertical
margins can be expressed a sum of columns of images within the premultiplied
image matrix. Thus the zeroth output column is the sum of the zeroth image
columns within the first three columns of the premultiplication matrix plus
the first image column of the fourth column of the premultiplied image matrix
and the second image column of the fifth column of the premultiplied image
matrix, etc. Processing the edges takes many more lines of code because it is a
mass of special cases.

13.4.5 freestore

The first occurrence of an image in the premultiplied image matrix is disposed
of. The record in the flags matrix, initialised when premultiplication occurred,
is used to keep track of this.

13.5 Digital Half-toning

Printing images on paper requires that they be converted into a dot pattern
since it is not practical to print with ink of varying shades of grey. Since a

Chapter 13 • Parallel Image Processing 243

$r-

iterate through the
planes

top

bottom

left

right

procedure doedges;
var

Let ij,l,m,n,row,co/ e integer;
Let r e pi mage;

begin
j~ k.r~ws;
i~ k.cols;

2
p[][O.J -1] := 0;
pOO[O .. i -1] := 0;
p0[1 + p.maxrow- j .. p.maxrow] := 0;
p00[1 +p.maxcol- i..p.maxcol] := 0;
for n ~ 0 to p.maxplane do

for I~ 1 to k.rows do
form ~ 1 to k.co/s do
begin

r~ fi[l,m];
for row~ 0 to j -1 do

Pn,row~ Pn,row + ri[n,(row + I - j -1)];

The line above computes the convolution for the top edge, so that the neigh­
bours above the top are replaced by the correspoding elements of the per­
multiplied top scan-line.

for row~ p.maxrow j + 1 to p.maxrow do
Pn,row~ Pn,row+ ri[n,(row + 1- j -1)];

for co/~ 0 to i -1 do for row~ 0 to p.maxrow do begin begin
Pn,row,col~ ri[n,row,(col + 1 + m -I)]+ Pn,row,col;

end;

Using a similar technique we compute the convolution for the left edge. Note
that the construct p [n J [J [col J means of planes n select the column col
from all rows.

end.

for co/~ 1 + p.maxcol - ito p.maxcol
do for row~ 0 to p.maxrow do begin

begin
pn,row,col~ pn,row,co/ + ri[n];
end;
{$r+J

end;

Algorithm 52. The edge processing algorithm.

digital image may have a range of grey values, one has to map these to dots in
such a way that the average darkness of the dots over a small area of the paper
is the same as the average darkness of the corresponding area of the image. In
this section we present two algorithms to achieve this, one parallel and the
other inherently sequential.

244

procedure freestore;
var

Let i,j E integer;
begin

SIMD Programming Manual for linux and Windows

for i ~ 1 to K.rows do
for j ~ 1 to K.co/s do

if flagsi[i,j]
then dispose(fi[i,j]);

end;

Algorithm 53. The release of temporary store.

Figure 13.5. Effect of applying a diagonal edge detection filter to Mandrill.

13.5.1 Parallel Half-tone

Alg. 54 is a parallel technique for half toning. It involves defining a mask of
pixels of varying brightnesses and comparing the image with this mask. If a
pixel is darker than the corresponding mask position it is printed as black and
otherwise as white. The effect is shown in Figure 13.6. The mask is chosen to
be 8 bytes long to ensure that the operation will parallelise in the MMX
registers. The mask is combined with the picture using modular arithmetic on
the indices to, ~1·

Chapter 13 • Parallel Image Processing

Figure 13.6 Mandrill rendered with a 4 x 8 mask.

procedure halftone(var src,dest:image);
const

black:pixel = - 1 .0;
white:pixel = 1.0;
pattern: array [0 .. 3,0 . .7] of pixel= ((0.75,-0.95,0.0,0.5,-0.3,0.33,-0.2,-0.7),
(0.62,-0.75,-0.1,-0.45,0.8,0.25,0.95,-0.6),
(-0.15,0.3,0.4,-0.8,-0.9,-0.5,0.15,0.17),
(-0.25,0.9,0.7,- 0.33,- 0.4,0.2,0.1 '-0.82));

begin
dest f- patternt1 mod 4h mods;

d t { white if src > dest
es f- . ;

end; black otherwise

Algorithm 54. Parallel half-toning using a fixed mask.

13.5.2 errordifuse

245

It is clear that simply masking, although quick, yields annoying artifacts since
the human eye is well able to pick out the repetitive motifs embedded within the
mask. Another disadvantage is that the mask will approximate the brightness
of the picture with a spatial wavelength equivalent to twice the size of the mask
itself. It therefore responds poorly to sharp edges.

If one is willing to sacrifice parallelism, error diffusion techniques yield a
much better result, as is shown in Figure 13.7.

Alg. 55 compensates for the quantization errors by adjusting the likelihood
of using black or white for neighbouring pixels. Once it has decided whether to
render a pixel in black or white, it computes the quantization error in e 1. This
error term is then spread around the pixels to the right and below by
subtracting weighted components of it to a temporary source image.

When the corresponding pixels in the temporary source come to be
processed, the likelihood of their being rendered black or white is now biased
away from its original value by this error term.

246 SIMD Programming Manual for linux and Windows

Figure 13.7. Mandrill rendered using error diffusion.

procedure errordifuse(var src,dest:image);
var

Let tempE "image;
Let i,j,k E integer;
Let black, white E pixel;
Let e7,e2,e3 E real;
Let r1,r2 E integer;

begin
black f- - 1.0;
white f- 1.0;
new(temp,src.maxplane,src.maxrow,src.maxcol);

{ 1 .0 if src > 0
dest f- -1.0 otherwise:

tempi f- src;
fork f- 0 to src.maxplane do

end;

fori f- 1 to src.maxrow - 1 do for j f- 1 to src.maxcol - 1 do
begin

r7 f- random;
r2 f- random;

{ 0.2 if r7 > r2
e3 f- · -0.2 otherwise'

d { white if tempi[k,iJ] > 0.0
estk,ij f- black otherwise ;

e 7 f- destk.ij- temp i[k,i,j];
tempi[k,i,j + 1] f- tempi[k,i,j +1] - (0.45-e3) X e7;
tempi[k,i +1J] f- tempi[k,i + 1J] - (e3 + 0.375) x e7;
tempi[k,i +1J- 1] f- tempi[k,i +1 ,j -1]-(0.125) x e7;

end;
dispose(temp);

Algorithm 55. Classical error diffusion, non-parallel code.

Chapter 13 • Parallel Image Processing 247

Suppose a pixel had the value 0.2 and was rendered as 1.0. The error term
e 1 would be 0.8, which would be subtracted from the surrounding pixels.
Sufficient might be added to the pixel to the right to trip it from its original
rendering as white to a rendering as black.

The way in which the errors are distributed is randomised using the term
e3. In the absence of this random term one obtains visually intrusive "brain
coral" patterns in the half toning.

13.6 Image Resizing

A very common operation in dealing with images is to resize them, making
them larger or smaller. This may be done either uniformly - preserving their
aspect ratio - or unevenly so that both the shape and size of the image change.

In a naive resizing algorithm we simply scale the indices of the pixels in the
source image by the ratio of the images sizes. Suppose we wanted to halve the
size of an image, then we could simply select every second pixel. As can be seen
in Figure 13.8, a number of unpleasant artifacts occur with this method. When
shrinking an image, thin lines can lose pixels, or even vanish. When enlarging
an image, what were originally square pixels become oblong, something which
is particularly disconcerting when looking at text. Collectively these errors are
called aliasing.

The removal of these artifacts is termed anti-aliasing. The artifacts arise
because of the spatial frequencies possible in pictures of different sizes. The
notion of spatial frequency is illustrated by the test image shown in Figure 13.1.
These show horizontal and vertical gratings of varying spatial frequency. The
Nyquist theorem states that the maximum spatial frequency, measured in
oscillations per inch, that can be supported by an image is half the number of
pixels per inch. The highest frequency in the images shown in Figure 13.1
corresponds to this limit. If we apply the blurring convolution [0.25,0.5,0.25]
to the test image in Figure 13.1.a to produce the image in Figure 13.l.f, we
have the effect of making the highest spatial frequency invisible. Thus the
blurring convolution can be viewed as a subtractive spatial frequency filter that
selectively removes the highest frequency information.

Now consider what happens when one increases the size of an image. The
effect is to introduce new spatial frequency bands into the image. Since these

10 X 10 SX8 25 X 30

Figure 13.8. Naive resampling used to scale pictures introduces artifacts.

248 SIMD Programming Manual for linux and Windows

10 X 10 SX8 25 X 30

Figure 13.9. Anti-aliased rescaling using blurring and interpolation reduces artifacts.

frequencies are higher than any that we have had up to now, what will occupy
them?

If we use a naive sampling algorithm, simply replicating each original pixel,
the higher frequency bands are populated with Moire fringe noise, generated
by the interference between the old Nyquist limit frequency and the new
Nyquist limit frequency. What we want instead is for these wavebands to be
empty. We can achieve this by using an interpolation procedure which fills in
new pixel positions as a weighted average of the neighbouring pixel positions.

Conversely, if one reduces the size of an image, one removes certain possible
spatial frequencies. But if one uses a naive approach, some of the original
high-frequency information is erroneously transferred to lower frequencies.
The answer in this case is to apply a blurring filter first to remove the high­
frequency information before sampling. Figure 13.9 shows the effect of
blurring before shrinking and of interpolating when expanding.

If we resize an image, we have to take into account the possibility that the
scaling in the horizontal and vertical directions will differ; it is therefore desir­
able to resize it in two steps, once in each direction. Consider first the problem
of expanding an image. Horizontal interpolation involves the process shown in
Figure 13.10.

Here we introduce a new sample point r between two existing sample points
p, q. The value of r should be a weighted average of the values at the known
points. If r is close top then p should predominate and vice versa for r. The
simplest equation that achieves this is

r = 8(p,r) + (1 _ 8(p,r))
p 8(p,q) q 8(p,q)

where 8(a,b) is the horizontal distance between points a,b.
It is clear that in the general case of horizontal resizing, the weights 8(p,r)/

8(p,q) will differ for sequential pixels. As such, horizontal rescaling lends itself
poorly to SIMD parallelization. Vertical rescaling can be parallelized, since we
can compute a complete new scan line as the weighted average of two original
scan lines. It is therefore important to perform expansion in the horizontal
direction first followed by rescaling in the vertical direction. This maximises
the share of the work that can be run in parallel. Alg. 56 illustrates this.

Chapter 13 • Parallel Image Processing 249

p r q

Go 0
pr........_.
pq +----------+

Figure 13.1 0. Horizontal interpolation of a new pixel position r between existing pixel positions p and q.

procedure resize(var src,dest:image);

This invokes the horizontal and vertical resize functions to do the effective
work. Since vertical interpolation is run in parallel whereas horizontal inter­
polation must run sequentially, we want to do as much work as possible in
the vertical resizing. If we are making a picture higher then it is quicker to
resize horizontally and then resize vertically. If we are reducing the height
of a picture the reverse holds.

var
Lett E pi mage;

begin
if (src.maxrow < dest.maxrow) then
begin

new(t,src.maxplane,src.maxrow,dest.maxcon;
resizeh(src,ti);
resizev(ti,dest);
dispose(t);

end
else
begin

new(t,src.maxplane,dest.maxrow,src.maxcon;
resizev(src,ti);
resizeh(t i,dest);
dispose(t);

end
end;

Algorithm 56. Resize an image.

13.7 Horizontal Resize

This is done with the procedure

procedure resizeh(var src,dest:image);

This will change the size of an image in the horizontal direction. Dest must
be same height as src. Its internal operation is shown in Alg. 57.

250

by 2
by n/2

SIMD Programming Manual for linux and Windows

var
Let n E real;
Let t,av E pi mage;
Let i E integer;

begin
n +- 1 + src.maxcol .

1 +dest.maxcol'
ifn< 1
else

ifn = 1
then dest +- src
else

ifns 2
then
begin

We cannot simply select every nth pixel on a row, since this would allow high­
frequency noise to penetrate the reduced image. We have to filter out this
noise first. The way we do it is by first forming a new image each of whose
pixels is the average of the corresponding two horizontally adjacent pixels in
the source.

new(t,src.maxplane,src.maxrow,src.maxcol);
new(av,src.maxplane,src.maxrow,src.maxcol);
adjustcontrast(O.S,src,ti);

avi+- ti;
av"[]O[src.maxcol] := src[]O[src.maxcol];

av now contains a horizontally blurred version of the source.

dispose(t);
interpolateh(av i,dest);
dispose(av);

end
else
begin

Apply the shrinking recursively to get down to a shrinkage factor< 2.

end;

new(t,src.maxplane,src.maxrow,(l + src.maxcol)div 2 + -1);
resizeh(src,ti);
resizeh(ti.dest);
dispose(t);

end

Algorithm 57. Horizontal resize an image.

Chapter 13 • Parallel Image Processing

13.8 Horizontal Interpolation

This is performed by procedure

procedure lnterpolateh(var src,dest:image);

251

This will interpolate an image in the horizontal direction. Src and dest must
differ in size only in the horizontal direction.

This is an inherently serial procedure and as such used classical Pascal loops.
Its internals are shown in Alg. 59.

13.9 Interpolate Vertically

This is performed by the procedure

procedure lnterpo/atev (var src,dest:image);

This interpolates in the vertical direction. Src and dest must differ in size
only in the vertical direction. This is parallel code, and uses array expressions.
The internals of the procedure are given in Alg. 60.

13.10 Displaying Images

In all of the examples up to now we have concentrated on the internals of
image processing. We have relegated the job of making the images visible to
other utilities by writing the images out to . bmp files that we can look at in
some image viewer.

It is, of course, possible to write a Vector Pascal program that will output an
image to the screen, but to do this we need to call libraries that interface
between Vector Pascal and the display hardware of the machine on which the
program runs. A good library for this purpose is the Simple Direct Media
Layer, or SDL library. This is targeted at games designers and is portable
between Linux and Windows, allowing 2D graphics programs to be similarly
portable. SDL is incorporated into many Linux distributions, and for other
system it is available from www.libsdl.org.

SDL uses an abstraction termed a surface to represent both the display and
images. Image files can be loaded into these surfaces and blitted to the display.
The surfaces allow us to abstract from the pixel formats used in the display
hardware. One can specify the bit depth and organisation of the pixels to be
used on a surface and SDL will translate these to the format used by the display
hardware behind the scenes.

13.10.1 demoimg - An Example Image Display Program

We take as an example a program that loads an image file into a three­
dimensional array of pixels, the standard Vector Pascal image type in other

252

by 2
by n/2

SIMD Programming Manual for linux and Windows

procedure resizev(var src.dest:image);

Change the size of an image in the vertical direction. Dest must
be same width as src.

var
Let n E real;
Let t,av E pi mage;
Let rows E integer;

begin
n f- 1 + src.maxrow .

1 +dest.maxrow '
else

if n = 1 then dest f- src
else

if n ::s 2
then
begin

This filters in the vertical direction.

new(t,src.maxplane,src.maxrow,src.maxcol);
new(av,src.maxplane,src.maxrow,src.maxcol);
adjustcontrast(O.S.src.ti);
for rows f- 0 to src.maxrow - 1 do

avif- tl;
avAO[src.maxrow] := src[][src.maxrow];

av now contains a vertically blurred version of the source.

dispose(t);
interpo/atev(av I dest);
dispose(av);

end
else
begin

Apply the shrinking recursively to get down to a shrinkage factor <2.

end;

rows f- src.~axrow;

new(t,src.maxplane,rows,(src.maxcol));
resizev(src,tl);
resizev(tl,dest);
dispose(t);

end

Algorithm 58. Vertical resize routine.

Chapter 13 • Parallel Image Processing

var
Let ratio,p,q e real;
Let ij,k,l e integer;

begin
ratio +- 1 +src.maxcol •

1 +dest.maxcol'
for j +- 0 to dest.maxrow do
begin

fork+- 0 to dest.maxcol do
begin

p +- k X ratio;

p holds the horizontal position in the source from which the
data must come.

I+- trunc(p);

1 holds the sample point below p and 1 + 1 holds the position above it.

q+-p-1;

q holds the distance away from l, that p was.

if I + 1 > src.maxcol then dest 0 U,k] : = rc 0 U,ll
else

destOU,kl := src Ou,/1 * (1-q)+src OU,1 +I] *q;

Interpolate in the horizontal direction using linear weighting.

end;
end;

end;

Algorithm 59. Horizontal interpolation routine.

253

words. It then performs some image processing on it and displays it on the
screen.

The new problems to be dealt with here concern:

1. Linking to SDL.
2. Initialising the SDL sub-system.
3. Converting the images into a format recognised by SDL.

Linking to SOL

A program that is going to use SDL must start with the compiler directives:

{$1 SOL}
{$1 pthread}
{$c sdl_rwops.c}

254

var
Let I e Aline;
Let pp e pixel;
Let ij,k e integer;
Let ratio, p,q e real;

begin

SIMD Programming Manual for Linux and Windows

new (l,dest .maxcol);
ratio f- 1 +src.maxrow •

dest.maxrow+ 1 '
for j f- 0 to dest.maxrow do
begin

p f- j X ratio;
k f- trunc(p);
qf-p- k;
ppf-q;

Convert weight to pixel.

/if- pp;

Replicate to a line to allow efficient vectorisation.

for if- 0 to src.maxplane do if k + 1 > src.maxrow then dest;j f- src;,k x li
else

dest;j f- src;, 1 + k X li;
ppf-1- q;
li f-pp;
for i f- 0 to src.maxplane do dest;j f- dest;j + src;,k X li;

end;
dispose(/);

end;

Algorithm 60. Vertical interpolation of image lines.

The first two lines specify the compiled SDL and system libraries that are
needed. The last line specifies the name of a C stub file that contains some
auxiliary routines needed to interface Vector Pascal to the standard SDL
library. The library routines will be located on the standard library path. The
file sd l_rwops. c should be located in the current directory.

In addition, the program must include the Pascal unit SOL in its uses list.
This unit contains the Pascal declarations of all of the routines in the SDL
library.

Initialisation

The key steps here are initialising the SDL video sub-system and creating a
surface to represent the display screen.

Chapter 13 • Parallel Image Processing 255

At 253 X 169 Original512 X 512 At598 X 756

Figure 13.11. Effect of applying resize to Barbara.bmp.

Pixel Conversion

Pixel conversion involves two translations. First, we must change the data
from 8-bit signed numbers to 8-bit unsigned numbers. The operator
pixel2byte will do this. Next we have to reorganise the data from the planar
organisation used for image processing applications to the adjacent pixel
format used in the display hardware, and which is assumed by SDL. This can
be achieved in a single Vector Pascal statement. We then have to create an SDL
surface that uses our array of unsigned bytes as its pixel store.

The program is as follows:

{$lSDLJ
($1 pthread}
{$csdl_rwops.cl
program demoimg;
{Demonst r at i on program designed to tes t th e SDL vid eo subsystem
with Vec tor Pascal. Wri tten by Ben Wat t}
uses SOL, bmp;
const

{Resoluti on}
width= 250;
height = 250;
colordepth = 16;
toppixel = 2;

type

unsignedRGBimage(row,co/,depth:integer) = array [O .. row,O .. coi,O .. depth]
of byte;

punsignedRGBimage = "unsignedRGBimage;
var

Let caption E pasciiarray;
Let screen,bg,ghost E PSDL_Surface;
Let colorkey E Ulnt32;
Let src,dest E SDL_Rect;

256

width
height

bit pixels
pitch
RED MASK
green

SIMD Programming Manual for Linux and Windows

Let background E pimage;
Let unsignedbackground E punsignedRGBimage;

begin
src.x <-- 0;
src.y <-- 0;
src.w <-- 180;
src.h <-- 180;
dest <-- src;
{Initialisation}
SDL_Init(SDL_INIT_ VIDEO);
screen <-- SDL_SetVideoMode(width, height, colordepth, SDL_DOUBLEBUF);
If screen = nil then
begin

writeln ('Couldn' 't initialise video mode at ', width , 'x' ,
height ,'x', colordepth ,'bpp');

end
else
begin
{Set the window caption}

new (caption);
string2pasciiarray('Vector Pascal Demo', caption);
SOL_ WM_SetCaption(caption, n;n;
dispose(caption);

Load an image. This will be stored as planes of signed pixels, which is suitable
for image processing but not for display. Immediately after loading we apply
an image processing operation to it, calling the sharpen procedure from the
bmp unit.

/oadbmpfile('bg.bmp', background);
sharpen(backgroundT);

Create a buffer of unsigned bytes to hold the image for display purposes.
This has the colours packed into 24-bit pixels. We then copy the image into
the buffer, permuting the indices as we do.

new(unsignedbackground,backgroundA.maxrow,backgroundA.maxco/,2);
unsignedbackground T <-pixel2byte(backgroundl[~2.~0,~,]);

Create an SDL surface from the buffer passing in a description of its
dimensions and the location of the pixel fields.

bg := SDL_CreateRGBSurfaceFrom(@unsignedbackgroundA[O,O,O],
backgroundT .maxcol + 1
backgroundT .maxrow + 1
24,
3*(backgroundA.maxco/ + 1),
Sff,
$ff00,

Chapter 13 • Parallel Image Processing 257

blue
alpha
alpha

$ff0000,
0
);

We now use SDL to load in another. bmp file directly into an SDL surface.
We will not do image manipulation on this image in order to show SDL's
ability to directly load and display . bmp files.

Ghost +- SDL_LoadBMP('ghost.bmp');
if (bg=ni/) V(Ghost=nil) then
begin

Writeln('Could not load image');
SDL_Quit;
Halt(l);

end
else
begin

Draw Background, copying the background surface to the screen.

SDL_BiitSurface(bg,@src,screen,@dest);
src.w +- 32;
src.h +- 32;

Draw the Ghost Image on the screen.

dest.x +- 20;
dest.y +- 20;
SDL_BiitSurface(Ghost,@src,screen,@dest);

Make sure that the hardware display is updated.

SDL_UpdateRect(screen, 0, 0, 0, 0);
end;
(* Wait 6 seconds before c l os in g. *)
SDL_Delay(6000);
SDL_FreeSurface(ghost);
SDL_FreeSurface(bg);
SDL_Quit;

end;
end.

13.11 The Unit BMP

What follows is a Vector Pascal source unit converted to Npc and formatted
using the VPTEX system:

unit bmp;

This unit provides a library to access and manipulate bitmap images provided
in Microsoft . bmp file format.

interface

258 SIMD Programming Manual for Linux and Windows

The module exports an image type as a three-dimensional array of pixels in
which the first dimension identifies the colour plane, the second dimension
indicates the row and the third dimension indicates the column of the pixel.

type

image(maxplane,maxrow,maxcol:integer) =
array [O .. maxplane,O .. maxrow,O .. maxcol] of pixel;
pi mage =Image;
filename = string [79];

procedure storebmpfi/e(s:string;var im:image); (see Section 13.12.2)

This procedure will store an image im as a Microsoft . bmp file with names:

function loadbmpfile(s:filename;var im:pimage):boolean; (see Section 13.12.3)

This function returns true if it has sucessfully loaded the . bmp file s. The
image pointer im is initialised to point to an image on the heap. The program
should explicitly discard the image after use by calling dispose.

procedure adjustcontrast(f:real;var im:image); (see Section 13.12.4)

This procedure takes a real number as a parameter and adjusts the contrast of
an image to by that factor. Iff = 2 then contrast is doubled; iff = 0.5 then
contrast is halved.

procedure pconv(var im:image;c7,c2,c3:real); (see Section 13.12.5)

This procedure performs a data parallel separable convolution of width 3 on
the image

implementation
type

The following data structures are defined by Microsoft for their bitmap files
(.BMP)

bitmapfi/eheader = packed record
bftype: array1 .. 2 of byte;
bfsize : integer;
res 7 : arrayo .. 3 of byte;
bfoffbits : integer;
end;

Note that in the bitmapfileheader the bftype field has been defined in terms
of bytes rather than as char since Vector Pascal uses 16-bit UNICODE internal
representation of characters, whereas the file format expects 8-bit ASCII.

A BitmaplnfoHeader is the internal data structure used by microsoft
Windows to handle device independent bitmaps (DIBs). We only need this
structure to interpret the data in a . B M P file.

TBitmaplnfoHeader =record
biSize : integer;
biWidth : integer;

Chapter 13 • Parallel Image Processing

biHeight : integer;
biPlanes : Word;
biBitCount : Word;
biCompression : integer;
biSizelmage : integer;
biXPelsPerMeter : integer;
biYPelsPerMeter : integer;
biC/rUsed : integer;
biC/rlmportant : integer;

end;

259

This data structure can optionally include a colour table, but this library does
not support reading . bmp files with colour tables:

TBitmaplnfo = record
bmiHeader : TBitmaplnfoHeader;

end;

The start of a . bmp file has a file header followed by information about the
bitmap itself:

bmpfile = packed record
fileheader : bitmapfileheader;
filedata : tbitmapinfo;

end;
pbmpfile =fbmpfile;

This data type is the format in which lines of pixels are stored in . bmp files. It
is used internally in the unit BMP to load and store images to files. This
process involves translating between internal and external representations.

imageline(mincol,maxcol,minplane,maxplane:integer) =
array [mincol .. maxcol,minplane .. maxplane] of byte;

procedure initbmpheader(var header:bmpfile;var im:image); (see Section 13.11.1)

procedure storebmpfi/e(s:string;var im:image); (see Section 13.11.2)

function loadbmpfile(s:filename;var im:pimage):boolean; (see Section 13.11.3)

type
line (high:integer) = array [O .. high] of pixel;

procedure adjustcontrast(f:real;var im:image); (see Section 13.11.4)

procedure pconv(var im:image;c1,c2,c3:real); (see Section 13.11.5)

begin

end.

260 SIMD Programming Manual for Linux and Windows

13.11.1 Procedure initbmpheader

procedure initbmpheader(var header:bmpfile;var im:image);

This procedure has the task of initialising a Window's BMP file header in a
way conformant with the dimensions of the image passed as a parameter:

begin

FileHeader BMP files have the letters BM at the start followed by a 32-bit
integer giving the file size, 4 reserved bytes and then a 32-bit integer giving the
offset into the file at which the bitmap data start.

header.fileheader.bftype1 +--- ord ('81;
header.fileheader.bftype2 +--- ord ('M1;
header.fileheader.bfsize +--- sizeof(bmpfi/e) +
(im.maxco/ + 1) x
(im.maxplane + 1) x
(im.maxrow + 1);
header.fileheader.res 1 +--- 0;
header.fileheader.bfoffbits +--- sizeof(bmpfi/e);

Bitmap info Next comes a bitmap info header which gives details about the
bitmap itself. The fields of this are as follows:

bisize This gives the size of the entire bitmap info header as a 32-bit integer.

biwidth This 32-bit integer gives the number of columns in the image, which
can be determined from the bounds of the pixel array provided.

biheight Another 32-bit integer which gives the number of scan lines in the
image, which can again be determined from the bounds of the image array.

biplanes This gives the number of planes in the image as a 16-bit integer.
This defaults to 1.

bibitcount Gives the number of bits per pixel; we only support 8- and 24-bit
versions at present.

bicompression The meaning of this field is not clear, it seems to be 0 in
most files.

biXPelsPerMeter, biYPelsPerMeter These specify the printable spacing of
pixels. The author uses the value $ec4 that is observed in a number of. bmp files.

biClrUsed, biClrlmportant These fields are only used in images with colour
maps; set them to zero for now.

with header.fi/edata.bmiheader do begin begin
bisize +--- sizeof(tbitmapinfo);
biwidth +--- im.maxcol + 1;
biheight +--- im.maxrow + 1;
biplanes +--- 1;
bibitcount +--- 8 x (im.maxplane + 1);
bicompression +--- 0;

Chapter 13 • Parallel Image Processing 261

setup header
write it
get buffer

write data
free buffer

biXPelsPerMeter +--- \$ec4;
biYPelsPerMeter +--- \$ec4;
biC/rUsed +--- 0;
biC/rlmportant +--- 0;

end;

end;

13.11.2 Procedure storebmpfile

procedure storebmpfile (s:string;var im:image);
This function writes an image in Vector Pascal format to a microsoft . BMP file.
It is designed only to work with one or three plane images.

type
lines(rows,cols,planes:integer) =array [O .. rows,O .. cols,O .. planes] of byte;

var
Let f E file;
Let fsize,i,indexj,k,m,row,res E integer;
Let pf E bmpfile;
Let Ia E 'lines;
Let bE byte;

begin
assign(f,s);
rewrite(f);
initbmpheader(pf,im);
blockwrite(f,pf,sizeof(bmpfile),res);
new(la,im.maxrow,im.maxcol,im.maxplane);

Convert the data from the planar signed fixed point format used in Vector
Pascal to the interleaved unsigned byte format used in Windows:

Ia i +--- perm [2,0, 1] pixel2byte(im);

Compute the size of the data part of the resulting file and write it out with a
single block write operation:

fsize +--- (im.maxplane + 1) x (im.maxrow + 1) x (im.maxcol + 1);
blockwrite (f,laj[O,O,O],fsize,res);
dispose (Ia);

close (f);
end;

13.11.3 Fundion loadbmpfile

function loadbmpfile (s:filename;var im:pimage):boolean;
var

Let f E file of byte;
Let fsize,i,indexj,k,m,row,res E integer;
Let Ia E 'imageline;
Let pf E bmpfile;

262 SIMD Programming Manual for Linux and Windows

begin
loadbmpfile +--- false;
assign (f,s);
reset (t);
if ioresult i= 0 then loadbmpfile +--- false false
else
begin

fsize +--- filesize (t);
i +--- sizeof(bmpfi/e);
blockread (f,pf,i,res);
with pf.filedata.bmiheader do
begin·

new(im,2,biheight -1 ,biwidth -1);
new(la,O,biwidth -1 ,0,2);
if bibitcount = 8 then loadbmpfile +--- false false
else if bibitcount = 24 then
begin

Read in the file one line at a time, translating it as we go into signed fixed­
point format

for i +--- 0 to biheight - 1 do
begin

blockread(f,laj[0,0],3 x biwidth,res);
for k +--- 0 to biwidth - 1 do

form+-Oto2do
imi[m,i,k] +--- byte2pixel(lai[k,m]);

end;
loadbmpfile +--- true;

end;
dispose(la);
close(f);

end;
end;

end;

13.11.4 Procedure adjustcontrast
procedure adjustcontrast (f:real;var im:image);
var

Let I E • line;
begin

new(l,im.maxcol);
{ $ r- }
lj+- f;
if (abs (f) < 1) then im +--- im x lj else im +--- im x F,
{ $ r+}
dispose (/);

end;

Chapter 13 • Parallel Image Processing 263

13.11.5 Procedure pconv

procedure pconv(var im:image;c 7 ,c2,c3:real};

Convolution of an image by a matrix of real numbers can be used to smooth
or sharpen an image, depending on the matrix used. If A is an output image
and K a convolution matrix, then if B is the convolved image

By,x = L L Ay+i,x+jKi,j
j j

A separable convolution kernel is a vector of real numbers that can be
applied independently to the rows and columns of an image to provide
filtering. It is a specialisation of the more general convolution matrix, but is
algorithmically more efficient to implement.

If k is a convolution vector, then the corresponding matrix K is such that
Ki,j = kikj.

Given a starting image A as a two-dimensional array of pixels and a three­
element kernel c1 , c2 , c3, the algorithm first forms a temporary array T whose
elements are the weighted sum of adjacent rows: Ty,x = c1Ay-!,x + c2Ay,x+

c3Ay+I,x· Then in a second phase it sets the original image to be the weighted
sum ofthe columns ofthe temporary array: Ay,x = c1 Ty,x-1 + c2 Ty,x+ C3 Ty,x+I·

Clearly, the outer edges of the image are a special case, since the convolution
is defined over the neighbours of the pixel, and the pixels along the boundaries
are missing one neighbour. A number of solutions are available for this, but
for simplicity we will perform only vertical convolutions on the left and right
edges and horizontal convolutions on the top and bottom lines of the image.

type
plane(rows,cols:integer) = array [O .. rows,O .. cols] of pixel;

var
Let T,l E 'plane;
Let i E integer;

procedure convp(var p,I,T:plane); (see Section 13.12.6)

begin

This allocates a temporary buffer to hold a plane, and three temporary buffers
to hold the convolution coordinates as lines of pixels.

new(T,im.maxrow,im.maxcol};
new(/,3,im.maxcol};
li [0] +--- c1;
lj[1]+-c2;
I j [2] +--- c3;

Perform convolution on each of the planes of the image. This has to be done
with an explicit loop as array maps only work with functions, not with
procedures.

fori+--- 0 to im.maxplane do convp(im;,lj,Tj);

264 SIMD Programming Manual for Linux and Windows

This sequence frees the temporary buffers used in the convolution process.

dispose(/);
dispose(n;

end;

13.11.6 Procedure convp

procedure convp(var p,I,T:plane);
This convolves a plane by applying the vertical and horizontal convolutions in
turn.

var
Let r,c E integer;

begin

This sequence performs a vertical convolution of the rows of the plane p and
places the result in the temporary plane T. It uses the lines of pixels /[i] as
convolution weights. Use of lines of pixels rather than the floating-point
numbers for the kernel weights allows the computation to proceed 8 pixels at a
time in parallel.

{ $ r-} { disable range checks}
r +--- p.rows;
h.r-1 <---- Po .. r-2 X lo + P1..r-1 X /1 + P2 .. r X /2;

To+--- Po;
T, +--- p,;

Now perform a horizontal convolution of the plane T and place the result in p.

c +--- p.cols;

end;

Po .. r,l .. c-1 <---- To .. r,O .. c-2 X lo + To .. r,2 .. c X /2 + To .. r,l..c-1 X /1;

Po .. r,o <---- To .. r,o;
Po .. r,c <---- To .. r,c;
{ $ r+} { en a b l e range checks l

Pattern Recognition and
Image Compression

Our next examples of SIMD programming will be drawn from image compres­
sion. The encoding and decoding of compressed images were one of the
original target applications of the MMX architecture. In this chapter we will
give some theoretical background to image compression for those unfamiliar
with it, and then go on to examine an example compressor-decompressor
(CODEC) that makes use of SIMD parallelism.

14.1 Principles of Image Compression

14.1.1 Data Compression in General

Data compression is the name for techniques which take files or streams of
data and transform them in some way so that they can be represented in fewer
bits than they originally used. For data compression to be useful, there must be
a reverse process, decompression, which takes the compressed representation
and transforms it back into the original format. Let us call the data prior to
compression the source, the data after compression the encoding and the data
after decompression the decode. Compression techniques are generally expressed
as being either lossy or lossless.

In a lossy technique, the decode is similar to but not identical with the
source. For instance, an MPEG encoded film will decode to a sequence of video
frames which, to the human eye, look almost the same as the original film. The
functionally important measure of similarity in these cases is almost always in
terms of human perception. However, objective metrics based on signal to
noise ratios are also widely used to assess the quality of compression techniques.

In a lossless technique, the decode is identical with the source. A well-known
example is the LZW encoding process used in . z i p files. Lossless techniques
depend on the fact that the most commonly used data representations of text or
computer programs are redundant - that is, the source contains more bits than
information.

In computer programming, one generally thinks of a bit as simply a binary
digit, but in information theory it has a more technical meaning as the amount
of information required to decide between two equally probable outcomes.
Consider a text file sent as 7-bit ASCII stored in 8-bit bytes. It is evident that
the most significant bit conveys no information, since it will always be zero.

265

266 SIMD Programming Manual for linux and Windows

It is less evident that the remaining seven binary digits will generally contain
less than 7 bits of information.

One binary digit can encode two possible messages, seven binary digits can
obviously encode 128 or 27 distinct messages. Where an ASCII stream to have
no redundancy, where it to contain 8 bits of information per byte, it would be
the case that each successive bit of a byte distinguished between equally pro­
bable outcomes, each bit was as likely to be a 1 as it was to be a 0. Each possible
ASCII character would have to occur with equal frequency.

This does not occur in practical text streams; letters and spaces occur more
frequently than most control characters, for instance. Within the letters there
is a range of frequency of occurrence, with e occurring much more often than
z. A net reduction in file size can be achieved if the representation is changed
to one in which frequently occurring letters are encoded in less than 7 bits
whilst less frequent ones are stored in more than 7 bits. Because the shorter
codes occur more often, the savings here outway the cost of more bits for less
frequent letters. This is an example of a lossless encoding technique.

When compressing text files, lossless encodings are the only acceptable choice,
since any corruption of decoded text is immediately apparent. The underlying
reason for this is that text files have relatively little redundancy, certainly when
compared with the spoken word. By writing text down we abstract from all
personal variations in voice, or the emotional inflection that speech carries.
This abstraction corresponds to a loss of redundancy.

14.1.2 Image Compression

Data compression is an essential feature of our nervous system. The function
of a nervous system is to capture environmental stimulae, categorise them and
activate motor programs that will enhance survival in the environment that
generated the stimulae. The number of possible motor programs is much less
than the number of configurations of stimulae that an animal will encounter.
In mapping a large set of input messages to a smaller set of responses, the
nervous system is doing compression.

In an animal such as ourselves, this compression is done by multiple layers
of neurons. Consider vision. There are fewer neurons in the optic nerve than
receptor cells in the retina, and it takes the input from many optic nerve cells
to make a cell in the primary visual cortex fire. By the time a scene has been
processed by the primary visual cortex, it has been represented in terms of
salient features, edges with particular orientations, intensity gradients, etc.
Image compression software can fool the brain into thinking it is seeing the
source image to the extent that the decoded image is composed of those fea­
tures that the visual cortex is anyway tuned to recognise.

14.1.3 Vector Quantisation of Images

We shall present an example based on an image compression technique known
as vector quantisation. This differs from techniques such as MPEG and H261,
which are based on the discrete cosine transform (DCT). Vector quantisation
is better suited to very low bandwidth channels, for instance, sending video

Chapter 14 • Pattern Recognition and Image Compression

CODEBOOK

2

3

4

s

267

Source image

r----------. 3

Return index of best match

Figure 14.1. Outline of the vector quantisation process. Patches from the image are unwound into
vectors and these are then looked up in a codebook of vectors to find the best match. Then the index of
the best match is output as a surrogate for the patch.

over mobile telephone links. What we can present as a textbook example
involves considerable simplification when compared with a functional video
CO DEC, but we can show both the key principles of vector quantisation and
how SIMD techniques can accelerate the process.

An outline of the compression process is shown in Figure 14.1. The original
image is divided into rectangular patches. The pixels in these patches are then
formed into vectors. Each such vector is looked up in a codebook to find a
codebook entry that is similar to it. The entire patch is then encoded using the
row number in the codebook. At the decode end the reverse process takes place:
the row number is used to fetch a row from the codebook. This is then formed
into a patch which is placed in the image. This is illustrated in Figure 14.2.

When compressing an image, each patch must be compared with each entry
in the codebook to find the closest match. If we have n pixels in the image and
m rows in the codebook, the algorithmic complexity will be Omn. Decompres­
sion is much more efficient, being done simply by indexing the codebook to

268 SIMD Programming Manual for Linux and Windows

CODEBOOK

Figure 14.2. The process of decoding a VQ image is inherently faster than encoding since the codebook
searching used during encoding is replaced by a fetch from a calculated offset into the codebook. The
vector found is formed into a patch and placed in the image.

find the relevant row, giving a complexity of On. This does not matter much
for compressing a single image, but when compressing a video stream, there is
a need to accelerate the search. It is possible to do this by using indexing algo­
rithms, using techniques such as Hierarchical Vector Quantisation (HVQ), but
these can result in non-optimal entries being selected from the codebook.
SIMD parallelism is ideal for accelerating codebook lookup.

We will give a very simplified image compressor example. It will use 4 x 4
pixel patches which will be compressed using a codebook with 256 rows. The
net effect will be to perform 16:1 compression on the image file. This is a
relatively low compression ratio. Higher compression ratios can be obtained
by using larger patches. So 8 x 8 patches would give a 64:1 compression, etc.
Many compressors use some form of adaptive vector quantisation, so that
large patches are used in areas of the image with low detail and smaller patches
where the details are finer. This allows a higher overall level of compression to
be obtained without too much detail being lost. We leave such refinements out
of our example.

14.1.4 Data Structures

Let us first look at the data structures we may use for compressing image files.
We need to define the basic parameters of our compression process, the patch

Chapter 14 • Pattern Recognition and Image Compression 269

size, the length of the vectors used in the codebook and how many symbols
there will be in our code alphabet. We will declare all of this in a unit vq.

unit vq;
interface

const
patch size= 4;
vector/en = patchsize * patchsize;
maxcode = 255;

Following this, we declare the type of the code vectors. We declare them as
vectors of pixels, but we also declare a type which is a similar vector of reals.
We do this because although we will want to use a codebook of pixels for
decode purposes, this is inadequate for encoding. The limited precision of
8-bit pixels means that we obtain prohibitive rounding errors if we do our
compression calculations to only 8-bit accuracy. The encoder therefore uses
real valued code vectors.

type
codevec = array [O .. vectorlen -1] of pixel;
rcodevec = array [O .. vectorlen -1] of real;
codeword = O .. maxcode;
book = record

rows.cols:word;
tab: array [codeword] of codevec;

end;
codefileheader = record

imwidth,imheight:word;
colourplanes: 1..1 0;
tab/e:book;

end;
var
Let cbk E book;
rtab: array [codeword] of rcodevec;

The type declarations also include declarations of the records to be used as
file headers for compressed files. These define the parameters of the image
being compressed: its height, width and number of colour planes. Following
this in the file comes the codebook, which is also self-describing.

14.1.5 encode

The one function exported by vq is the encoder shown as Alg. 61. This
iteratively computes the squared distance between the source vector and each
vector in the real-valued version of the codebook. The key expression 1s
the line

270 SIMD Programming Manual for Linux and Windows

fundion encode(var v:codevec):codeword;
var

Let ij,k E integer;
Let d,least E real;
Let rv E rcodevec;
Let dv E codevec;

begin
rv~v;

j~O;

least~ 2 X vector/en;
fori~ 0 to maxcode do
begin

d ~ I,(rv- rtabi) x (rv -rtabi);
if d < least then
begin

j~i;

Jeast~d;

end
end;
encode~j;

end;

Algorithm 61. The vector quantisation routine proper. This takes a vector and searches the codebook
for the vector with the closest Euclidean distance to the source vector and returns the index of the
closest matching vector.

or in source format

d:=\+(rv-rtab[i])*(rv-rtab[i]);

Our aim is to select the vector which is closest to the source vector, that is,

wewanttominimizethedistance8(v,i) = VL,j(Vj- Ci.j)2, wherevisthesource
vector and Cis the codebook matrix. However, since the ordering of squared
distances will be the same as the ordering of the distances, it is unnecessary to
compute the square roots. It is very important that the calculations here are
done to sufficient precision. We cannot use pixels since they are saturated to
8-bit precision, and the subtraction of two pixels can fall outside the range that
can be represented by 8-bit signed numbers. This will lead to gross errors in
distance calculations if we use 8-bit accuracy. The use of reals obviates this
problem. The pixels vector passed to the routine is converted to a vector of
reals at before searching takes place. All subsequent calculations are done in
reals. This somewhat reduces the effective parallelism. On a bare-bones MMX
instruction-set such as that supported by Meta-data on the Crusoe, there is no
effective parallelism, but on recent Intel processors we can take advantage of
4-fold parallelism even when working with reals.

The decode program is much simpler, involving no more than copying
pixels from the codebook into the appropriate places in the image. It is shown
in Alg. 62.

Chapter 14 • Pattern Recognition and Image Compression

program vqdecode;
uses vq,bmp;
const

var
q = patchsize - 1;

Letp E pimage;
Let f e file;
Let header E codefileheader;
Let i,j,k,/ e integer;
Let index E codeword;

begin
assign (f,paramstr(1) + '.vq');
{ $ i -}
reset (f);
if ioresult = 0 then
begin

blockread (f,header,sizeof(codefileheader),l);
cbk f- header. table;

271

new (p,header.colourp/anes - 1,header.imheight - 1,header.imwidth - 1);
fori f- 0 top i.maxplane do

end

f · Ot j maxrowd or 1 f- 0 p . patchsize 0

fork f- o to pi.P'"af;h~;~ do
begin

blockread (f,index,sizeof(codeword),l);
(* Copy codevector into patch *)
p"[ij*patchsize.J*patchsize + q,k*patchsize .. k*patchsize + q] :=
cbk.tab;ndex,L1 Xpatchsize+•i

end;
storebmpfile (paramstr(2),p i);

else writeln('cant open', paramstr(1) + '.vq');
end.

Algorithm 62. The program vqdecode. This takes two parameters, a filename without extension for
the encoded file and a filename with extension as the destination file. Input is assumed to be in the
format generated by the vqencode program and output is a Windows BMP file.

14.2 The K Means Algorithm

The quality of the compressed image that we will obtain using a codebook
depends on how well the entries in the codebook represent the spread of image
patches found in the original image. The rows in the codebook matrix are all
potentially estimators of the source vectors. They will be a good set of
estimators if there is a good chance that one will be close to each source vector.

Vector quantizers can either use a universal codebook, designed to be
suitable for a wide range of images, or a tailored codebook that has estimators

272 SIMD Programming Manual for Linux and Windows

based on the image being compressed. The process of forming such a code­
book is referred to as training the codebook on the image.

The Concept of Mean

Suppose we have a collection of numbers and we must select a single estimator
for them; th~ best number to choose is their average. The average or mean of a
set of numbers is their expected value. It is the estimate which minimises error
between it and the observations.

Suppose instead of being allowed a single number to represent a set of scalar
observations we are allowed two. Suppose we wish to reconstruct the
observations with minimal error at a remote site, and that for each observation
we are allowed to send 1 bit. On the basis of this bit we select one of the two
estimators. By analogy with the concept of the single mean of a set of
observations, these two numbers are termed the two means of the observations.

Consjder the five numbers 1, 2, 3, 5, 7. Their mean, given by the equation

J.L = I:n1 o;, is 1f = 3.6, but the two means which best approximate the
distribution are 2 and 6.

If we used the single mean to estimate the observations, we would have the
following errors:

Oj f..L Oj- f..L (o;- J.L)2

1 3.6 -2.6 6.76
2 3.6 -1.6 2.56
3 3.6 -0.6 0.36
5 3.6 1.4 1.96
7 3.6 3.4 11.56

Totals 18 18 0 23.2

Note that the sum of errors will be zero for the mean, but the sum of
squared errors will in general be non-zero. Let us look at the situation where
we have two means:

Oj f..Lj Oj- f..Lj (o;- J.Lj)2

1 2 -1 1
2 2 0 0
3 2 1 1
5 6 -1 1
7 6 1 1

Totals 18 18 0 5

'
Again the sum of errors is zero but the sum of squared errors is markedly

reduced. In data compression literature one typically evaluates estimators in
terms of the peak signal to noise ratio (PSNR) that they give. The peak signal
energy is measured as the square of the maximum swing between low and high

Chapter 14 • Pattern Recognition and Image Compression 273

values in the signal. For instance, if the numbers in our example above were
encoded in 3 bits, then they would have a swing of7, and peak signal energy for
a single observation would be 49, and for a sequence of five numbers it would
be 245. The ratio between this and the sum of the squared errors errors gives
the PSNR. PSNR is typically expressed logarithmically as decibels. 1 If we had
only the mean to go on, our signal to noise ratio would be ii.~, or 10.2 decibels.
If we have two estimators the PSNR increases to 49, or 16.9 decibels.

As the number of estimators rises so should the PSNR, provided that our
estimators are appropriately chosen to minimise the squared error.

Outline of the K Means Algorithm

How can we choose our estimators? One way to do so is with the following
algorithm:

1. Select K distinct initial values for the K means.
2. Partition the observations into K disjoint sets associated with the means,

such that each observation is assigned to the set proper to the mean that
best approximates it.

3. Recalculate each mean as the mean of its proper subset.
4. If any mean has changed as a result of this process, go back to step 2.

Consider the operation of the algorithm with data 1,2,3,5,7 and K = 2. Let the
initial values of the means be 0,2. The algorithm proceeds as shown:

Means Partitions

0,2 { 1 },{2,3,5,7}
1,4.25 {1,2},{3,5,7}
1.5,5 {1,2,3},{5,7}
2,6 { 1,2,3 },{ 5,7}

The K means algorithm extends naturally from scalars to vectors. The single
mean J..L of a matrix M is the row vector which minimises the sum of squared
distances between J..L and the rows of M, as follows:

1 -1
2 1 -1
3 2 2

6 3 0 Totals

2 0 Average vector

Given the encode procedure defined in Alg. 61, we can implement the
vector version of K means as shown in Alg. 63. This basic training step is
iterated in the main compression program as shown in Alg. 64.

1To express the ratio in decibels we take its logarithm to the base 10 and multiply by 10.

274 SIMD Programming Manual for Linux and Windows

procedure trainstep(var im:image);
var

accum: array[codeword,O .. vectorlen - 1] of real;
n: array[codeword] of integer;
Let ij,k,/ E integer;
Let patch E codevec;
Let index E codeword;

begin
nf-1;

accum f- cbk.tab;
fori f- 0 to im.maxplane do

end;

f · 0 im.maxrow d or J f- to pat,hsize 0
for k f- 0 to tm.maxcol do
b • patchsize

egm

patch f- im;jxpatchsize+'o +patchsize,kxpatchsize+'o mod patchsize;
index f- encode (patch);
accum;ndex f- accum;ndex + patch;
n;ndexf- n;ndex + 1;

end;
cbk.tab f-acc~:n ;

0
rtab f- cbk.ta6;

Algorithm 63. Basic training step of the vector K means algorithm.

program vqencode;
uses vq,bmp;
var

Let i E integer;
Let p E pi mage;
Let fe file;

procedure trainstep(var im:image); (see Alg. 63)
procedure encodeimage(var im:image;var f.file); (see Alg. 65)
begin

if /oadbmpfile(paramstr(1) + '.bmp', p) then
begin

fori f- Ito 5 do
trainstep(p i);

assign(f;paramstr(l) + '.vq');
rewrite(f);
encodeimage(p i,f);
close(f);

end;
end.

Algorithm 64. The main image encode program.

Chapter 14 • Pattern Recognition and Image Compression 275

procedure encodeimage(var im:image; var f :file);

Encode an image, writing it out to the file with the appropriate header infor­
mation. The file is written out as a sequence of planes each of which is a se­
quence of rows, each of which is a sequence of codewords.

var
Let header E codefileheader;
Let i,j,k,/ E integer;
Let patch E codevec;
Let index E codeword;

begin
header.imwidth ~ im.maxco/ + 1;
header.imheight ~ im.maxrow + 1;
header. table~ cbk;
header.colourplanes ~ im.maxplane + 1;
blockwrite (f,header,sizeof(codefileheader),i);
for i ~ 0 to im.maxplane do

for j ~ 0 to im.maxrow do
patchstze

fork~ 0 to tm.maxcol do
begin patchsize

patch~ im;,jxpatchsize+ ~0 +patchsize,kxpatchsize+•o mod parchsize;
index~ encode (patch);

end;

blockwrite (f,index,sizeof(codeword),l);
end;

Algorithm 6S. Encodes an image given the codebook.

1 iteration 3 iterations 5 iterations

Figure 14.3. Effect of increasing number of iterations of the K means on image quality. All images have
been compressed to 16K from an 192K original, using the program v q encode, and then decoded using
vqdecode. Compare these with the images in Figure 13.3.

We can see the effect of the K means algorithm in Figure 14.3, which shows
how the image quality improves with more iterations of the basic training step.
Initially there is little detail within the 4 x 4 blocks, but as the computation
progresses more detail appears. This is shown more clearly in Figure 14.4.

276 SIMD Programming Manual for linux and Windows

After 1 iteration After 5 iterations Original

Figure 14.4. This shows how detail becomes apparent within the image blocks as iterations of the K
means algorithm progress.

It is apparent that the algorithm is a categorizer and pattern recognizer. It
discovers commonly occurring patterns of pixels and categorizes incoming
vectors against these patterns. Although we are using it for image processing,
the general algorithm is applicable to other domains in which the input data
can be mapped to a vector.

Performance

The kernel of the K means implementation is the encode function, which
searches for the closest matching vector in the codebook. As discussed above
(Section 14.1.5), the need to maintain accuracy during calculations forces us
to perform the distance calculations using reals rather than 8-bit fixed-point
notation. This constrains the parallelism achievable to a factor of 4 - the width
of the floating-point vector registers in the SSE instructions.

What we observe when we run the algorithm compiled for a P4 is roughly a
doubling of performance relative to compiling the code for a Pentium and
executing it on a P4. The time is to perform five iterations of the K means
algorithm and one encoding of the Mandrill picture.

Target CPU

P4
P2

Actual CPU

P4
P4

Clock speed (GHz)

1.7
1.7

Time (s)

5.1
10.6

Vectorisation gain (%)

107
0

This is slightly disappointing, but when considering results such as these we
have to take into account the effect of Amdahl's law. Suppose that just under
one-third of the instructions executed by the P2 were inherently serial, then
the effect of Amdahl's law alone would limit us to a doubling of program
speed. The fact that the acceleration is not greater is probably due both to a
residuum of serial instructions and to the fact that Intel processors cannot in
general dispatch four floating point operations per clock cycle.

Chapter 14 • Pattern Recognition and Image Compression 277

14.2.1 Vedor Quantisation of Colour Images

Another use for the K means algorithm is in selecting an optimal colour palette
for images. If we want to represent a colour image using only 8 bits per pixel,
one can either encode the colour within the 8 bits, allocating perhaps 3 bits for
red and green and 2 for blue, or one can try and find 256 representative colours.
One can view the process of finding representative colours for a palette as a
form of vector quantisation - carried out over the colour space with vectors of
length 3.

This form of compression gives one a reduction in file size of about 3 to 1. An
alternative approach is to utilise the correlation that exists between different
colour planes and use codebook vectors that extend over all planes. For
example, one could use vectors oflength 48 instead of 16 in our compression
program with the vectors drawn from corresponding 4 x 4 patches on each
plane. This will give a very high compression, but at the cost of a noticeable
degradation of quality.

30 Graphics

We said earlier that the handling of 3D graphics transforms was a key motiva­
tion for AMD's introduction of 3DNow instructions and for Intel's Streaming
SIMD instructions. In Section 3.6 we discussed the theory behind 3D coordi­
nate transformations and gave assembler routines to carry out some of the key
operations with AMD and Intel instructions. These routines, it was clear, were
machine specific. We will now look at a complete example program written in
Vector Pascal that displays a twirling 3D model on the screen. The program
will, when compiled with the appropriate CPU flags, take advantage of the SSE
or 3DNow instructions, but will also work correctly, albeit somewhat slower,
using the Pentium instructions.

Since we are concentrating on 3D graphics transforms, and since these
remain the same whether one is drawing a wire-frame or a shaded model, our
example will deal with the graphics pipeline for wire-frame models. This
pipeline goes from an internal representation of an object to an image on the
screen as shown in Figure 15.1.

In our example we assume that there is minimal hardware support for
graphics, with a simple screen buffer being the only resource available. Clearly,
on many machines the line or triangle drawing and the 3D transforms might
also be handled in the display card. In that case one would interface to them
via OpenGL or some similar library. In our example we want to demonstrate
how one can use the CPU itself to do the graphics transforms. This is in any
case what one is forced to do if one is wanting to manipulate a graphical data
structure for non-display purposes, since display cards do not work on data in
mam memory.

vertices

triangles

Done in the application using SSE instructions

'
'

Done by ; Done by
SOL 1 hardware

' '
' '

Figure 1 5.1. The graphics pipeline used in this chapter.

279

Screen image

280 SIMD Programming Manual for Linux and Windows

15.1 Mesh Representation

The first thing we have to decide upon is how to represent 3D objects internally.
A common way is as a triangulated mesh. For instance, VRML (Virtual Reality
Markup Language) uses an indexed face set notation for surface meshes. Here
is an example of a VRML mesh definition:

DEF wri st01- ROOT Transform {
translation0.464560.360.5294
children [

Shape {
appea ranee Appea ranee {

}

material Material {
di ffuseCol or 0. 6082 0.1463 0. 2895
shininess0.4
transparency 0

geometry DEF wri st01- FACES IndexedFaceSet {
ccw TRUE
solid TRUE

It is divided into a list of vertices, followed by a list of polygons. Within a
VRML file the list of points is provided as a list of triples of fixed-point
decimal numbers. These define coordinates in metres. The range of accuracy
demanded by the VRML specification corresponds to a 128-bit binary number
with 63 bits in front of the binary point and 64 bits after it. This is sufficient to
represent distance ranging from the galactic to sub-atomic scales.

coord DEF wri st01-COORD Coordinate {point [
-1.564-0.677626.61,
-1.128-0.8732 26.56,
-0.9983-0.949826.95,

-1.731-0.176826.63,

-0.9016-0.7997-27 .03]

These are then linked into polygons by a list of coordinate indices. Each
polygon is terminated by a -1.

coo rd Index [
0.1.2.-1.
3, 0, 4, -1. 5, 6, 3, -1.7. 8, 9, -1.10, 9, 11, -1.
12, 13, 11. -1. 14, 12. 15, -1. 16, 14, 17. -1. 18, 16, 19, -1.
20, 18, 21. -1. 22, 20, 23, -1. 2, 1. 22, -1. 8, 7. 6, -1.

Chapter 15 • 30 Graphics

A suitable Pascal unit declaring the mesh data type is

unit mesh;
interface

type
vervec(topver:integer) =array [O .. topver,0 . .3] of real;
tvervec(topver:integer) =array [O .. topver ,0 .. 2] of real;
trivec(toptri:integer) = array[O .. toptri ,0 .. 2] of integer;

1\ pvervec = vervec;
ptrivec = "trivec;
trimesh = record

vertices:pvervec;
triangles:ptrivec;

end;
function mktrimesh (var vert:tvervec;var tri:trivec):trimesh;
implementation
function mktrimesh (var vertvervec;var tri:trivec):trimesh; (see Alg. 66)
begin
end.

281

The representation that we use in Pascal is based on this VRML one, with
certain modifications:

1. We restrict our polygons to being triangles, since these are guaranteed to be
planar.

2. Consequently, the triangles do not have to be terminated by -1.
3. We represent the vertices in homogeneous coordinates, as four-element

vectors, for the reasons discussed in Section 3.6.

A generator function is provided to convert mesh data in 3D vectors to 4D
homogeneous coordinates.

function mktrimesh (var vert:vervec;var tri:trivec):trimesh;
var

Let m E trimesh;
begin

with m do begin begin
new (vertices,vert.topver);
verticesi f- vert;
vertices i f- 1;
new (triangles,tri.toptn);
trianglesi f- tri;

end;
mktrimesh f- m;

end;

Algorithm 66. The generator function for triangle meshes.

282 SIMD Programming Manual for Linux and Windows

15.2 linedemo: An Illustration of 30 Projection

We will now look at a demonstration program to display a mesh in wire-frame
format. It puts the mesh up in a window and then rotates it.

The program also demonstrates a number of useful graphics concepts coded
in Vector Pascal:

1. The use of the SDL interface for display purposes (see Section 15.3.2).
2. Line drawing using Bresenham's algorithm (see Section 15.6).
3. Graphics transformations for rotation of a 3D object (see Sections 15.4 and

15.3.2).
4. Graphics transforms for the projection of a 3D object on to a view-screen

(see Section 15.5).

{ $1 SOL}
{$1 pthread}
{$c sd1_rwops.c}
program linedemo;
uses SDL,mesh,paul;
const

Constants are used to define the screen setup. We use a full colour screen
which allows us to use integers as pixels.

width= 400;
height = width;
colourdepth = 32;
toppixel = 3;
red= 0;
green= 1;
blue= 2;
alpha= 3;

We now declare some constants which are used to set up the viewing
parameters.

zoom = 7 * width;
zoffset = 2.5;

type
unsignedRGBimage(row,col:integer) =array [O .. row,O .. con of integer;
punsignedRGBimage = ' unsignedRGBimage;
transform =array [0 .. 3,0 . .3] of real;

It is useful to define the identity matrix or null transform first, since other
transforms can be built up from these.

const
identity:transform = ((1.0, 0.0, 0.0, 0.0),
(0.0, 1.0, 0.0, 0.0),
(0.0, 0.0, 1.0, 0.0),
(0.0, 0.0, 0.0, 1.0));

Chapter 15 • 30 Graphics

var
Let unsignedbackground E punsignedRGBimage;

procedure rotmat (radians:rea/;d:integer;var t:transform); (see Section 15.4)
procedure BresenhamLine (xO,yO,x7,y7,Color:integer); (see Section 15.6)
procedure drawline (x7,y7,x2,y2:rea/;col:integer); (see Section 15.5.1)
procedure draw (m:trimesh;t:transform;col:integer); (see Section 15.5)
procedure demo3d; (see Section 15.3)
begin

demo3d;
end.

283

The program uses a dual buffer strategy with an internal buffer on which
drawing takes place bg and a screen buffer used for display purposes screen.
The internal buffer will be aliased to the two-dimensional array pointed to by
unsignedbackground. The screen buffer will be aliased by SDL to the actual
screen hardware. The use of two buffers ensures that the drawing and display
of an image appear to the user as an atomic operation, even though it actually
occurs in two phases.

1 5.3 demo3d: Main Procedure of linedemo

procedure demo3d;
var

Let caption,filename E pasciiarray;
Let screen,bg,ghost E PSDL_Surface;
Let co/orkey E Ulnt32;
Let src,dest E SDL_Rect;
Let i E integer;

Let t,t3,t4,t5 E transform;
begin

The first task is to set up the SDL regions of interest in the internal buffer
and in the screen buffer. These are held as the rectangles src and dest.

src.x+- 0;
src.y+- 0;
src.w +---width;
src.h +--- height;
dest+-src;
t+- 0;

1 5.3.1 Viewing Matrices

We now set up the viewing projection matrix t to have the form

zoom 0 0 0
0 -zoom 0 0

t=
0 0 1 zoffset
0 0 0 1

284 SIMD Programming Manual for Linux and Windows

Original projection After 1 rotation

After 2 rotations After 3 rotations

Figure 1 5.2. A sequence of four frames drawn by LineDemo.

and an initially null (identity) rotation transform

to,o .-. zoom;
t 1,1 .-. -zoom;
t2,2 .-. 1;
t3,3 .-. 1;
t2,3 .-. zoffset;
t3 .-. identity;

t3 =

1 0
0 1
0 0
0 0

0 0
0 0
1 0
0 1

To understand the function of these matrices, we need to look at the virtual
camera model being used. We are simulating the effect of looking at the object
being modeled through a pinhole camera as shown in Figure 15.3.

An object is imaged through a pinhole on to an imaging plane, upon which
an inverted version of the object will be projected. The screen of the computer
is then mapped logically to a region of the image plane of the logical camera.
Let us assume that all measurements are done in metres. The size of the image

Chapter 15 • 3D Graphics 285

+--- ----------- __......._ --- -........ ------------------------ ---- ..

1 metre · · zoffset metres
origin of the viewed object

·camera pinhole

projected image

Figure 1 5.3. The pinhole camera model.

that will be shown on the screen varies as follows:

1. The size will vary directly with the number of pixels per metre in the
imaging plane of the camera.

2. The size will vary directly with the distance between the pinhole and the
imaging plane.

3. The size will vary inversely with the distance between the pinhole and the
object being viewed.

We can simplify this by assuming that the image plane is at a fixed distance of
1 m from the pinhole, in which case there are only two factors influencing the
scale: the distance to the object and the pixels per metre of the imaging plane.
These are incorporated into the parameters zoom and zoffset in the projection
matrix. The matrix mimics the effect of the pinhole by inverting around the
x-axis, whilst scaling by zoom and shifting the object away from the pinhole by
zoffset.

15.3.2 SOL Initialisation

The next section of the program is concerned with setting up the SDL interface
that will display 2D images on to the screen once the 3D structure has been
rendered to 2D.

SOL_/ nit (SOL_/ NIT_ VIDEO);
screen+-- SDL_SetVideoMode (width,height,colourdepth,SDL_DOUBLEBUF);
if screen =nil then
begin

writeln ('Couldn' 't initialise video mode at', width, 'x',
height, 'x', co/ourdepth, 'bpp');

end
else
begin

{Set the window caption}

286 SIMD Programming Manual for Linux and Windows

new (caption);
string2pasciiarray ('Vector Pascal 3d Demo', caption);
SOL_ WM_SetCaption (caption,nil);
dispose (caption);

Create a buffer of unsigned bytes to hold the image for display purposes. This
has the colours packed into 32-bit pixels. We then copy the image into the
buffer, permuting the indices as we do so.

new (unsignedbackground,height - 1,width - 1);
unsignedbackgroundj ~ -1;

Create an SDL surface from the buffer passing in a description of its
dimensions and the location of the pixel fields.

bg := SDL_CreateRGBSurfaceFrom (@unsignedbackground A[O,O],
width
height
co/ourdepth
4 *width,
$ff,
$ff00,
$ff0000,
0
);
new (filename);

string2pasciiarray ('faceOO.bmp', filename);
for i ~ 0 to 3 do begin begin

Create rotations around the y- and x-axes. This is explained more fully in
Section 15.4. The rotations are selected to ensure that the images cycle with a
period of 16 frames.

rotmat e~1l" 1 1,t3);
rotmat C~; ,O,t4);

Compose the rotations into a single rotation matrix.

ts~ t3.t4;

Combine with the viewing transform, and draw the mesh (see Section 15.5.1).

t4~ t.tS;
draw (themesh,t4,0);

Copy the internal buffer to the screen.

SDL_BiitSurface (bg,@src,screen,@dest);

Make sure that the hardware display is updated.

SDL_UpdateRect (screen,O,O,O,O);
filenamej [5] ~ i + 49;
SDL_SaveBMP (bg,filename);

Chapter 15 • 30 Graphics

Clear the local display buffer.

unsignedbackgroundT +--- -1;
end;
SDL_FreeSurface (bg);
SOL_ Quit;

end;
end;

15.4 Create a Rotation Matrix

287

This function produces a rotation matrix in t which can be used to rotate a
homogeneous coordinate vector through the specified number of radians.

procedure rotmat (radians:rea/;d:integer;var t:transform);

d must be in the range 0-2 to specify the rotation axis

The matrix will be of the form

1

0 X aXIS

1 y axis
2 z axis

0 0
0 cosO -sinO
0 sin 0 cosO
0 0 0

for the x-axis rotations, of the form

cosO -sinO 0
sin 0 cos 0 0

0 0 1
0 0 0

for the z-axis and of the form

cos 0 0 sin 0
0 1 0

-sinO 0 cos 0
0 0 0

for rotations about the y-axis.

var
Let sint,cost E real;

function m3 (i:integer):integer; (see Section 15.4.1)
begin

sint +--- sin(radians);

0
0
0
1

0
0
0
1

0
0
0
1

288 SIMD Programming Manual for Linux and Windows

if d = 1 then sint<- -sint;
cost<- cos(radians);
t <-identity;
tm3(d),m3(d) <-cost;
tm3(d+l),m3(d+l) <-cost;
tm3(d),m3(d+l) <- -sint;
tm3(d+l),m3(d) <- sint;

end;

15.4.1 Calculate x mod 3

function m3 (i:integer):integer;
begin m3 : = (1 + 1) mod 3;
end;

15.5 2D Projection

The procedure draw performs the 3D to 2D rendering function. The process
involves taking the 3D coordinates of the vertices and determining the x andy
coordinates that these will be projected to by the combined rotation, translation
and viewing matrix passed into the draw function.

To do this we create a new vector of vertices dest to which the source
vertices will be mapped.

procedure draw (m:trimesh;t:transform;col:integer);
var

Let dest E"vervec;
tri: array [0 .. 2] of integer;
Let ij,k,l E integer;
newpos: array [0 .. 3] of real;

begin
with m do begin

new (dest,vertices" .topver);

Project to the screen coordinates using the composite transform matrix.
Multiplying each vertex by the matrix will rotate it and then move it zoffset
away from the pinhole and then scale the x and y coordinates from metres to
pixels. The resultant vector is stored in newpos. We then store in dest the x and
y coordinates of the point divided by the distance of the transformed point
from the pinhole. As Figure 15.4 shows, this has the effect of appropriately
scaling the x,y coordinates to take into account perspective.

for i <- 0 to verticesj .topver do begin
newpos <- t.(verticesj[i]);
destj [i,O .. 1] <- ::;:~~;
dest j [i,2] <- newpos2;

end;
for i <- 0 to trianglesj .toptri do
begin

Chapter 15 • 30 Graphics 289

q b

p

Figure 15.4. The projection triangles. p is a vector in object space and q is its image under pinhole
projection. We can treat p as either the x or y component of a point in camera coordinates. a is the
focal length of the virtual camera and b is the distance from the pinhole to the base of the vector. ~ = ~
by similarity of triangles, thus q = p E and where a = 1, then q = ~·

Look up the vertices to be drawn and store them locally.

j +- trianglesj[i,O];
k +- trianglesj [i, 1];

I+- trianglesj[i,2];

Check that everything to be drawn is in front of the pinhole and then draw the
three lines of the triangle using drawline (see Section 15.5.1).

if (destj[l,2] > 0) and (destjQ, 2] > O) and (destj[k,2] > 0) then
begin

drawline (destj Q,O],destj Q, l],destj [k,O],destj [k, 1],col);
drawline (destj[k,O],destj[k, l],destj[I,O],destj[l, l],col);
drawline (destj [I,O],destj [1, l],destj Q,O],destj Q, 1],col);

end;
end;
dispose (dest);

end;
end;

1 5.5.1 Entry Point to Line Drawing

procedure drawline (x1 ,y1 ,x2,y2:real;col:integer);

Take a pair of points specified in 2D real coordinates and draw the line with
the 2D origin centred on the middle of the screen. The actual drawing is done
using Bresenham's algorithm.

begin
x1 +- x7 + wigrh;

yt +- yl + herhr;

x2 +- x2 + wigrh;
yl +- yl + herht;

if (x7 2: O) and (y7 2: O) and (x2 2: 0) and (y2 2: 0) and

290 SIMD Programming Manual for Linux and Windows

then
BresenhamLine (round(x7),round(y7),round(x2),round(y2),col);

end;

15.6 Bresenham Line Drawing Procedure

We use a fast and efficient line drawing algorithm due to Bresenham. This
involves only adding and subtracting in its inner loop.

Consider drawing a line on a raster grid where we restrict the allowable
slopes of the line m to the range 0 ::::; m ::::; 1. We restrict the procedure so that
it always increments x as it goes. After drawing a point at (x,y), there are two
choices for the next point on the line:

1. point (x + 1,y)
2. point (x + 1,y + 1).

Hence, when working in the first positive octant of the plane, line drawing
becomes a matter of deciding between two possibilities at each step. Each time
we plot a point on the raster grid we make an error E in the y direction relative
to the real-valued point determined by the equation of the line. We will choose
to plot (x + 1,y) if E is less than 0.5, otherwise we will plot (x + 1,y + 1). This
will minimise the total error between the mathematical line and what is drawn.

let Dx = x1 - xO
let 8y = y2- yl
with Dx ~ Dy

All other types of lines can be derived from this type. First perform the
following initialisation:

x:=xO;
y:=yO;
d:=(2*deltay)-deltax:

Loop from xO to x1 and for each loop perform the following operations for
each x position: all multiplications are by 2. If we pre-multiply dx and dy by 2,
we can remove all multiplications from the inner loop. The complete
procedure is given in Alg. 67.

Putpixel(x,y); {Drawapixel atthecurrentpoint}
if d<O then
d:=d+(2*deltay)
else
d:=d+2*(deltay-deltax);
y :=y+l;
end;
x:=x+l;

= 2*dy- dx

procedure BresenhamLine (xO,yO,x1 ,y7 ,Color:integer);
var

Let dy,dx,stepx,stepy,fraction E integer;
begin

dy~y1- yO;
dx~x1-x0;

ifdy< Othen
begin

dy~ -dy;
stepy~ -1;

end
else stepy ~ 1;
ifdx< Othen
begin
dx~ -dx;
stepx~ -1;

end
else stepx ~ 1;
dy~dyx 2;
dx~dxX 2;
(* Set pixel at xO, yO*}
unsignedbackgroundi[yO,xO] ~ color;
if dx > dy then
begin

fraction ~ dy- (dx 1);
whilexO =t- x1 do
begin

if fraction ;:o: 0 then
begin

yO~ yO + stepy;
fraction ~ fraction - dx;

end;
xO ~ xO + stepx;
fraction ~ fraction + dy;
unsignedbackgroundi[yO,xO] ~ color;

end
end
else
begin

fraction~ dx - (dy 1);
while yO =t- y7 do
begin

if fraction ;:o: 0 then
begin

xO ~ xO + stepx;
fraction ~ fraction - dy;

end;
yO ~yO + stepy;
fraction ~ fraction + dx;
unsignedbackgroundi[yO,xO] ~ color;

end
end

end;

Algorithm 67. Bresenham's algorithm in Pascal.

292 SIMD Programming Manual for Linux and Windows

Table 15.1. Relative performance

Target processor

Pentium
P4

15.7 Performance

Time (ms)

3720
2650

Relative speed (%)

100
140

The relative performance of vectorised and sequential versions of the program
are given in Table 15.1.

The program was timed for 200 iterations of the main loop, using the model
shown in Figure 15.2. This model contains 706 vertices and 1326 triangles.
Timings were done on a 1.7 GHz P4. Thus all parameters other than the
instruction-set used were held constant. The use of SSE instructions does
appear to give some gain in performance, although, since these are not the only
instructions added by the P4 processor, some of the gains may be due to other
new opcodes. It should, of course, be remembered that a considerable part of
the program time will be taken up by line drawing and updating the screen
buffer, and will therefore not benefit from floating-point vectorisation.

Part IV

VIPER
Ken Renfrew

Introduction to VIPER

16.1 Rationale

When originally developed, Vector Pascal used a command line compiler operat­
ing in the classical Unix fashion. This interface is documented in Appendix C.
However it has been conventional, at least since the release of UCSD Pascal in
the late 1970s, for Pascal Compilers to be provided with an integrated develop­
ment environment (IDE). The Vector Pascal IDE provides the usual capabi­
lities of such environments, but with the additional feature of literate
programming support.

16.1.1 The Literate Programming Tool

Today's pace of technological development seems to be rising beyond anything
that could have been conceived only a few decades ago. It is a common "joke"
that any piece of modern technology is 6 months out of date by the time it
reaches the showroom.

Software development is one of the fastest moving areas of this techno­
logical stampede. With development happening at such a rate, documentation
is often at best a few steps behind the reality of the code of any system. Hence
anyone attempting to maintain a system is left to their own ingenuity and some
out -of-date documentation.

The constant updating of this documentation would in fact almost certainly
be a more time-consuming task than developing the program in the first place
and hence time spent in this area can often be regarded as non-productive time.

Several attempts have been made at automating this process. The automa­
tion process is often termed literate programming. The two most successful of
these are web (Knuth, 1984), a development of the T£X system which is the
forefather of 16f£X (Lamport, 1994) developed by Leslie Lamport that is so
widely used today, and JA V ADOC. The JA V ADOC system was developed by
Sun Micro-systems to document programs written in JAVA by including the
document details inside specially marked comments [Sch 1].

The Vector Pascal literate programming tool will combine these two
approaches by allowing the programmer to embed U'JEX commands within
special comment markers. These will still be able to be parsed by a conventional
Pascal compiler, allowing the system to be used for conventional Pascal
programming.

295

296 SIMD Programming Manual for Linux and Windows

The embedding of IMEX commands in the program is not compulsory for
those wishing to use the tool. There is a user-selectable scale of detail that will be
included automatically in documentation even from a normal Pascal program.

In addition, in an attempt to make the programs' idiosyncrasies more read­
able and to present the programs' arguments more conventionally, there is the
option of using a "mathematical syntax converter" which will change some of
the more impenetrable code into conventional mathematical symbolism, 1 the
finished document being written by the system in IMEX to allow straight
compilation into a postscript or .pdf document formats.

To aid further the documentation, the variables declared within the program
will be cross-referenced to their instantiation point, allowing a reader to cross­
reference a variable and thus remind themselves of its exact nature.

This brief description clearly shows the aids that a literate programming tool
would bring to the programmer, allowing documentation to be both kept up
to date and in fact created retrospectively from existing code.

16.1.2 The Mathematical Syntax Converter

A computer program by its very nature has a structure which allows it to be
read by a machine. Modern high-level languages have abstracted themselves
from this very successfully but nevertheless owing to this underlying require­
ment the syntax of a program language can hide the program's algorithm from
a human reader.

Programmers often use pseudo-code to explain algorithmic arguments.
Mathematical notation is usually the most clear and precise way of presenting
this argument. The mathematical converter allows a developer to use this system
to convert the Pascal syntax into something closer to mathematical notation2

and much more presentable to the human reader.
This feature is unique3 in a programming interface and provides a further

level of documentation. The documentation of the algorithms involved in the
program, which are arguably the program's most valuable assets.

16.2 A System Overview

As can be seen from the rationale above, the system breaks into three main
sections: the program editor with the compiler, the literate programming tool
and the mathematical syntax converter.

It is hoped that an improvement in performance of the supplied compiler
can be achieved by statically loading the compiler's class files for all target
processors4 at start-up rather than the dynamic loading currently employed.

The IDE will follow the traditional approach, offering similar facilities to
that of many other editors for different languages on the market.

1 Refer to separate section for the rationale of the maths syntax converter.
2Precise mathematical notation, although perhaps desirable, is a more complex operation than the
time allotted to the project would allow but none the less an interesting development for the future.
3Unique to the best of our knowledge at the time of writing.
4Processors currently supported are the Intel 486, Pentium P3 and Athlon K6.

Chapter 16 • Introduction to VIPER 297

Among these facilities are a syntax highlighting (for Vector Pascal, .ID'E,X and
HTML), a project manager with automatic make file facility, the ability to run
a program in the environment with redirected input and output, a function
and procedure finder linked to the source code, an error line highlighter for
compilation errors, an external process runner for .ID'E,X compilers, TE,X to
HTML converters and a mini browser to show approximate results of the Liter­
ate programming tool.

The Literate programming tool has been described in its rationale and
incorporates the unique mathematical syntax conversion allowing a program
to be converted to a mathematical argument literally at the touch of a button.

16.3 Which VIPER to Download?

VIPER is platform independent for the operating systems it supports. These
operating systems are

• Linux
• Windows 9x
• Windows NT/2000/XP.

The only decision to make on the VIPER download is whether the source code
is required. The source version, although much larger, contains the source
code for the VIPER IDE and the Vector Pascal compiler and all files required
for a developer to develop or adapt further any of the systems within VIPER.
The class file download provides the required files to have an operational
VIPER installation.

16.4 System Dependencies

VIPER depends on several pieces of software, all of which are freely available to
download from various sources. The vital dependencies are

• Java 1.3 or newer.
• The NASM assembler.
• The gee linker, included in Linux installations; for Windows use the cygwin

or DJGPP versions of the gee linker.

For full functionality the following systems are also required:

• A .ID'E,X installation . .ID'E,X usually comes with Linux installations. The total
MiKTE,X package is recommended for all Windows installations.

• A dvi viewer, usually included with a .ID'E,X installation. The YAP viewer
included with MiKTE,X is particularly recommended.

• A TE,X to HTML converter. TTH was used in the development of the system.

It is recommended that all of the above programs are set up according to
their own installation instructions and the appropriate class path established to
suit the host machine's operating system.

298 SIMD Programming Manual for Linux and Windows

16.5 Installing Files

Assuming that the VIPER files have been downloaded to a suitable place on
the host machine, the actual installation can begin. The only decision that
must be made is where to install VIPER. VIPER can be installed anywhere on
the host machine provided that there are no spaces in the directory path of the
target directory.

Once this decision has been made, the .zip file should be unzipped using a
proprietary zip tool (e.g. WinZip, zip magic) to the source directory.

When the .zip file has been unzipped, there will be a directory called Vector
Pascal in the target directory. Vector Pascal is the home directory of the VIPER
system.

VIPER may be launched by

• All installations. Open a shell/DOS window change to the VIPER home
directory and type the command j a v a v i p e r . V i p e r, taking care of the
capital letter.

• Windows installations. The batch file viper.bat is included in the VIPER
home directory; running this will start VIPER. A shortcut to this batch file
should be placed on the host machine's desktop for the easiest start-up.

• Linux installations. The shell script viper.sh is included in the VIPER home
directory; running this will start VIPER.

16.6 Setting Up the Compiler

VIPER detects the operating system installed at start-up and then moves a
suitable run time library into the ... /VectorPascal/ilcg/Pascal directory where
it will be available for the compiler. This is done automatically each time that
VIPER is started.

The compiler options will need to be set up along with the personal set-up
preferred for the installation (see Section 16.7.2). The file type for the linker
will need set-up. These options are

• for Linux or Windows using the Cygwin gee use "elf'
• for Windows using the DJGPP linker use "coff'.

It is important to read through the user guide to avoid learning the system the
painful way!

16.7 Setting Up the System

VIPER automatically sets the compiler flags to suit the operating system on the
host machine. For those who have used the Vector Pascal compiler with a
command line interface, this means that the -U flag is set for Windows 9x and
Windows NT installations, and not set for Linux/UNIX installations, the -o flag
is set to produce an exe file with the same name as the Pascal source file. The

Chapter 16 • Introduction to VIPER 299

.f ~orr .f lelf

Figure 16.1. File format entries in Compiler Options .

. asm file and .o files are similarly named. If these flags mean nothing then that
is not a problem: either ignore the preceding information or see the Vector
Pascal reference manual in the help files of the VIPER system.

VIPER cannot, however, detect the versions of the gee linker installed, this is
left for the user. The -f flag of the compiler tells the compiler the file format to
be used. To set this, go to Set-up/Compiler Options/Options, click the
-f button and enter the file format into the adjacent text field. The format
should be

• Linux Installations and Windows installations with Cygwin gee linker format
is elf.

• Windows with DJGPP linker format is coff.

The other options on the Compiler Options window are as follows:

• Smart serializes/de-serializes the code tree for the processor. This allows the
compiler to 'learn' how to respond quickly to a given code segment.

• S suppresses the assembly and linking of the program (an assembler file is
still produced).

• V causes the compiler to produce a verbose output to MyProg.lst when
compiling MyProg.pas.

• CPUtag. This option is used in conjunction with the -cpu option. It prefixes
the .exe file with the name of the CPU for which the compiler is set. when
this option is used the .exe cannot be run in the IDE.

• -cpu. This option allow the source file to be compiled to a range of pro­
cessors. To produce an .exe file for a range of processors the CPU tag should
be set. This prevents the .exe file from being overwritten by the next com­
pilation for a different processor. Subsequent compilations for the same
processor, however, will be overwritten. Select the CPU from the list in the
drop-down menu adjacent to the -cpu button.

• -ISO (not yet implemented on the Vector Pascal compiler). Compiles to
ISO Standard Pascal.

16.7 .1 Setting System Dependencies

VIPER depends on various other systems for full functionality. These are set in
Set-up/Compiler Options/Dependencies. The fields are as follows:

1. Source Compiler. This option is only editable if the Default Compiler
option is not set. This is the command that would run the compiler from
the Vector Pascal directory.

300 SIMD Programming Manual for linux and Windows

lamam-.-.-.............. ~~~
Dependencies) Options! oYJl~ril!iCPtiQnit<)) l

• Use Def11u" Compiler

Source Compler ~efaun Brows~

LaTeX Com~llor)oxi2Civl -· I
0\I!VIswer flap Browse I
Tex!OHTNL lttfl B~e I
TEX~POF l\8x2Pdf B~e I
OVIID PS jdVips I Browse I

Figure 16.2. Dependencies window.

2. This is the command required to run IMEX and is required for VPTE)(to
work. The recommended option for this field is t ex i 2 d v i .

3. DVI viewer. The dvi viewer that is to be used to view the IMEX recommended
option is YAP (Windows installations).

4. Tex to HTML. If a converter is installed on the host machine, then put the
command in this field.

5. Tex to PDF. Enter the command used to convert T£X to PDF.
6. DVI toPS. Command to convert DVI files to Post Script (usually dvips).

16.7 .2 Personal Set-up

Viper allows the user many options to cater for different tastes and programm­
ing styles. It is not crucial to the system to set these options but it does make
for a more comfortable programming environment.

If the VIPER installation is on a network, each user may have a different
personal set-up, provided that each user has a separate home directory. VIPER
installs a file called vi pe r . proper t i e s into this directory and updates this
file whenever a change is made to the system set-up.

Note: The individual set-up should not be attempted when multiple files are
open. If this is done then no harm comes to the system or any of the open files,
but users may experience difficulty in closing one or more files. The solution
is to use Window/Close All to close all the files. The system can then be used as
normal.

Viper Options

In the Set-up menu there is the Viper Options menu option. In this are all the
familiar IDE options such as font size and style, icon sizes, syntax colours, look
and feel, etc.

Chapter 16 • Introduction to VIPER

E<!IOfl C<tll>ole l P>ere<enoeo ls.rtax Coi..,~J

l.MJUQO• fllouor D;u:a iJ

Col:lr..-...c> l91d ComMent 3

Baca.oroiJI"'d CoJGui , •••••

~abt;pacto f'3 0 """' '"-'
LQ&r•J~

Figure 16.3. The Viper Option windows.

301

X

The different windows shown in Figure 16.3 allow the control of the VIPER
IDE. The individual windows control

• Editor. This controls the look and feel, the font size and style, the tab size
and auto indentation.

• Console. This controls the font style and size and the background colour of
the console window.

• Preferences. This allows the individual set-up of the menu icon sizes and
the toolbar sizes.

• Syntax Colours. This allows the syntax highlighting colours to be altered to
personal taste. These can be adjusted for each supported language (Vector
Pascal, NEX, HTML) independently.

16.7.3 Dynamic Compiler Options

Note: This is for advanced use only.
This feature is intended to allow VIPER to handle

• new processors as the class files become available (dynamic class loading
only)

• new options for the compiler/new versions of the compiler.

The dynamically created options pages are added in the form of a new tabbed
pane to the Compiler Options window (Figure 16.4). To create a new options
pane the user must:

1. Open the file ... /VectorPascal/viper/resources/dynamicOption.properties
2. Edit the file to suit the new options.
3. Save the file.

302 SIMD Programming Manual for linux and Windows

Compile-r UptU:J'\S . "(

Oapenaencies I o~~M$ I Oyni!"~J_PIIOns (1)l
·-TEST

-·

Figure 16.4. Dynamic Option window.

Editing to Add a Processor

X

In the file dynamicoptions.properties in the . . . /VectorPascal!viper/resources
directory there is a list of the current processors. This list can be extended
simply by adding another to the end of the list. It is best if the list ends with
"others".

Note: The appropriate code generator files must be written for the Vector
Pascal compiler and placed in the ... /VectorPascal!ilcg/tree directory.

Editing to Add Compiler Options

The dynamicoptions.properties file can be edited to produce a new compiler
option. This is done by entering a new line at the end of the file following the
line above. For example:

CPU FLAGS : P3: K6: Pent i urn: I A3 2
IF
#Thi s i s to se t fl ags for th e campi 1 er
#NB DO NOT EDIT THIS FILE BEFORE AFTER RE AD I NG THE HELP FIL E
#IT I S IMPORTANT THAT THE FIELDS COME IN THE FOLLOWING ORDER
#FLAG(Type :Str ing), DE SCRIPT I ON(Type:S tr ing),
TEX TFI ELD (Type :int),
#BROW SEBUTTON(Type : boolean)
#Any comments mu st be but in this a rea.

FLAG: DESCRIPTION: TEXTFI ELD: BROWSEBUTTON
- TEST:Te st descript ion: 20 : t rue:

Chapter 16 • Introduction to VIPER 303

16.7.4 VIPER Option Buttons

The VIPER options are set in their respective panels with the VIPER option
buttons. These have three states:

• Grey. The item is not selected.
• Red. The mouse is over the correct areas to select the item.
• Blue. The item is selected.

16.8 Moving VI PER

Ideally, VIPER should be installed from the downloaded zip file on any new
system. If this is not possible then it is still possible to move VIPER on to a
new system even if the new host machine has a different operating system.

Moving a VIPER installation from any Windows host to any other Windows
host, or from one Linux installation to another is straightforward:

1. Move the entire VectorPascal directory and all sub-directories to the new
system.

2. Run VIPER and in the File menu click clear recent files and then click clear
recent projects.

3. Import all projects that have been moved and are to be used on the new
system.

If the operating systems are different (i.e. moving from Linux to Windows or
vice versa), then the system must be reset:

1. Open a shell/DOS prompt window and change directories to the
VectorPascal directory.

2. Type java Vi perSystemReset in the console window.

The system is now reset and the new installation of VIPER can be used
normally.

16.9 Programming with VIPER

This section assumes that the IDE is now set up to the user's taste. To open a
file, click the open file menu option and use the dialogue box to open the file
in the usual way.

Familiarity with the basic editing functions of an IDE is assumed.

16.9.1 Single Files

The file will open with the syntax highlighter associated with the file suffix of the
target file. The file can be edited with all the usual IDE functions (Cut, Paste,
Copy, Save, Save As, Find and Replace, etc.).

304 SIMD Programming Manual for linux and Windows

Ctr1+X

Ctr1+C

Ctr1+V

ctri+D

Ctr1+A

Ctr1+F

Ctr1+F9

Ctr1+S

Alt+F4

Figure 16.5. The right click menu.

VIPER features a "right click menu" to offer another method of quickly
editing files (Figure 16.5).

Line numbers can be viewed either by using the statistics on the status bar at
the bottom right-hand corner of the IDE or by double clicking the dark-grey
panel on the left of the editor window; this line number panel can then be
adjusted in size to suit the user's needs.

A new file can be opened from the file menu. Clicking on the New Document
option allows the user to choose between the three types of file that VIPER
supports (Pascal, IM£X, HTML). A new file is then opened in the editor window.
The file is un-named until it has been saved.

When a file has been changed since it was last saved, the name tag at the top
of the editor window appears in red, otherwise it is black.

If the user attempts to close the editor before a file has been saved, the option
to save the file is offered before the IDE closes.

If a file has functions and/or procedures, the function finder automatically
displays these in the leftmost editor window. Clicking on the icon by a function
or procedure takes the editor to the start of that section.

16.9.2 Projects

The VIPER Project Manager allows the user to construct software projects in
Vector Pascal.

An existing project can be opened using the Project/Open Project menu
option or icon. The project will then appear in the project window. The file

Chapter 16 • Introduction to VIPER 305

Figure 16.6. The Project Properties window.

names are in a tree structure which can be clicked to open the file in the editor
window.

To create a new project, the user clicks on the new project icon and the
Project Properties dialogue box will appear (Figure 16.6).

The text fields are then filled in to create the empty project. The directory
path should be the parent directory for the project's home directory. This
home directory will be given the project's name.

Once the project has been created, the files can be added and removed as
required:

• Adding. Click the Add Files icon and enter or browse for the required file.
This copies the file to the project directory.

• Removing. Highlight the file to be removed and click the Remove Files icon.
Warning. This deletes the file from the project directory.

Other files may be placed in the project directory but if they are not added to
the project they will not be a member of the project.

The makefile for the project is automatically created as ProjectName.mke.
The user should not edit either this or the .prj file directly.

Importing Projects

Projects can be imported from other VIPER installations by the import project
facility. This can be found in Project/Import Project. Any project coming from
another VIPER must be imported via this facility.

306 SIMD Programming Manual for Linux and Windows

Backing-up Projects

The import project facility can be used to move an existing project to another
directory of the same machine. This Back-Up project is not just a copy of the
project but is fully functional with all the facilities of the VIPER system.

16.9.3 Embedding LATEX in Vedor Pascal

The special comment (*! comment body *) is used to embed IMEX in the
Vector Pascal source file. Anything within these comments will be treated as if
it were IMEX both by the VPTEX system and the syntax highlighter.

There is no need to put IMEX commands in the special comments unless a
specific result is required (see Section 16.15).

16.10 Compiling Files in VIPER

16.10.1 Compiling Single Files

Assuming the compiler has been set up, the compilation of a file is very simple.
Simply click the Compile icon (or menu option) and the compiler will compile
the file in the editor window with the options selected.

The resulting files are placed in the same directory as the source file and are
named the same as the source file with the corresponding suffix.

Compiling a File to Executable for Several Processors

If a file is to be compiled for several different processors, the CPUTAG and
-CPU options must be set in the Set-up/Compiler Options/Options panel. The
file MyProg.pas would then be compiled to ProcessorNameMyProg.exe. This
process can be done for each processor on the available processor list.

Note: A file compiled in this manner cannot be run within the IDE.

16.10.2 Compiling Projects

Projects can be compiled in two ways:

• Make a project. This compiles the files that are not up-to-date but does not
compile any file that is up-to-date.

• Build a project. This compiles all the files in the project regardless of
whether the files are up-to-date.

The Vector Pascal compiler used in the traditional command line interface
mode will check one level of dependency in a project. If there are more levels
of dependency the VIPER project manager will automatically make a m a kef i l e
and recursively check all levels of dependency in the project.

As VIPER compiles a file, the file is opened in the IDE and if an error is
found compilation stops and the error is highlighted.

Chapter 16 • Introduction to VIPER 307

16.11 Running Programs in VIPER

Note: Projects requiring input from the user must have the input redirected.
When a program has been compiled, the resulting executable can be run in

the IDE by clicking on the Run icon. A redirect input box then appears (Figure
16.7). If the program requires input from the user then an input file must be
set. This file should contain all the data that the program requires to run to
completion.

Similarly, the output may be redirected. This, however, is not compulsory; if
the output is not redirected, the output of the program appears in the console
window. Ifthe output is redirected then the output is written to the file set-up
in the run dialogue window.

16.12 Making VPTEX

Making VPT_EX is as simple as clicking the Build VPT_EX icon or menu option.
If a project is open then the VPT_EX is made for the whole project, otherwise
the VPT_EX is made for the file in the editor window.

16.12.1 VPTEX Options

The level of documentation is set by the user in the VPT_EX Options panel
(Figure 16.8). This panel can be found in the TEXJVPT_EX Options menu item.
There are five levels of detail that can be chosen:

• Function and Procedure headings only
• level 1 plus all special comments

Run Opt1ons 1 ~ • ,-, ... ~~

Figure 16.7. The Run Options panel.

308 SIMD Programming Manual for linux and Windows

Compiler-Options

Level1, Procedure & Function headings only

Level 2,Level1 + special comments

Level 3,Program bodies/interface

Level 4,Selected text

All

Use maths converter

Create Contents Page

Cancel I

Figure 16.8. The VPTEX Options panel.

• program bodies and interfaces
• selected text
• all source code.

In addition to the above options, the user can choose whether a contents page
is to be included or not. This is set by clicking the Create Contents Page button.

16.12.2 VPMath

The VPMath system converts Vector Pascal code to mathematical syntax. This
makes the program more human readable and in general more concise.

The VPMath system is invoked automatically when the VPT_EX is made if the
Use Math Converter is set in the Tex/VPT_EX Options menu item.

16.13 LATEX in VI PER

Most of the features of the VIPER editor used in the creation/ editing of Vector
Pascal files can also be used for creating/editing 16I'_EX documents.

Opening a 16I'_EX document in VIPER automatically invokes the 16I'_EX syntax
highlighter and the Function Methods finder automatically changes to a
Section/Sub-section finder.

This allows the user to click on a Section icon in the left-hand window and
the editor will jump to that section.

Chapter 16 • Introduction to VIPER 309

16.14 HTML in VIPER

VIPER allows the user to edit/write HTML pages. The system for HTML is
very straightforward. Create a new HTML file or open an existing file to be
edited. Once the file has been altered, click on the run button just as if to run a
Vector Pascal executable.

When a new HTML file is created or an existing one opened, the HTML
syntax highlighter is automatically loaded.

The default browser that is installed on the host machine will open with the
HTML page displayed.

16.15 Writing Code to Generate Good VPTEX

VPT_E)C is a tool included in the VIPER IDE for Vector Pascal. It automatically
produces and formats a ID'_EX listing of the source file or files on which it is
called. By defining three distinct types of comments, VPT_E)C also allows the
programmer to add extensive descriptions of their code to the listing, creating
full ID'_EX documentation for their Vector Pascal programs or projects.
Mathematical translation can also be performed on the source code listing to
produce a more generic and succinct description of the program's algorithms
and structures.

The three types of comments available are as follows:

Special Comments: A special comment is started in the source code with the
comment command (*! and terminated with *). Special comments appear
in the ID'_EX as running prose and are of most use in giving extensive
comments and descriptions of the program. Special comments can include
16f£X commands, with some limitations, to improve further the readability
of the documentation.

Margin Comments: Normal Pascal{ ... } comments which appear immediately
at the end of a line of code are placed in the left-hand margin adjacent to
their source code line in the ID'_EX documentation. These are of principal
use when a small description of the content of a single line is required.

Normal Comments: Normal Pascal { ... } comments which appear on a line of
their own will appear in the ID'_EX in typewriter font.

16.15.1 Use of Special Comments

As outlined above, special comments are the principal means of describing a
program in the documentation. To maximise the effectiveness of the literate
programming facility, source code should be written with large amounts of
special comments and with the program's documentation in mind. The ability
to include ID'_EX commands within special comments allows the programmer
to affect directly the look of the ID'_EX documentation, but there are some

310 SIMD Programming Manual for linux and Windows

limits to the use of IMEX commands within special comments:

• Do not include any preamble within special comments. The preamble for
the IMEX documents is automatically produced by VPTEX.

• Always use full text series altering commands such as \ text b f { . . . } rather
than their shorthand equivalents such as \ b f { . . . } .

• Bear in mind that any text entered in special comments must be compilable
IMEX for the documentation to compile. This means that the following
characters are control characters and should not be entered verbatim into
special comments: & $ o/o _ { } A - \.

Special comments can be particularly useful for controlling the structure of
a IMEX document. The following are guidelines as to how to structure the
documentation.

• For an individual program or unit file, the IMEX document produced by
VPTEX will be an article, so sections are the highest level description that can
be applied to a block of text.

• It is usually useful to include an introduction to the program at the start of
the Pascal source file using the \ s e c t i on { I n t rod u c t i on } command at
the start of an opening special comment.

• A special comment containing just a structure command (\sect i on,
\ s u b s e c t i on, etc.) can be extremely useful in sectioning off different parts
of the source code to add structure to the code listing. For example, the
declarations could be prefaced with (* ! \ s e c t i on { Dec l a r a t i on s } *) or
the main program could be prefaced with a similar command. Each proce­
dure or function is automatically placed within its own section by VPTEX, so
do not add structuring special comments to these sections of code.

To produce a well-documented program, it is important that special
comments are regularly employed to add verbose descriptions of the source
code. It is not uncommon for a IMEX documentation file to contain many pages
of special comments split into sections and subsections between small sections
of code. VPTEX also automatically creates a contents page so the structure of the
special comments will be reflected in the contents page.

Note: With the current release of the Vector Pascal compiler, special
comments containing *s other than at the opening(*! and dosing*) tags will
not compile.

16.15.2 Use of Margin Comments

Margin comments are useful for providing short descriptions of the purpose of
individual lines of code. If the meaning of a particular code line is especially
cryptic, or the significance of the line needs to be emphasised, a margin
comment stating the purpose of that line may be useful. It should be noted
that because margin comments necessarily reside in the left-hand margin of
the finished document, lengthy comments will spill on to many lines and break
up the flow of the code. It is advised that margin comments should not be

Chapter 16 • Introduction to VIPER 311

more than 10 or so words, with the other types of comments available if a
longer description is required.

The VPTEX tool automatically breaks lines following the var and const
keywords. Therefore, the declaration following these keywords will be placed
on a new line, but any margin comment for this line will not. It is recom­
mended that the programmer takes a new line after the var and const
keywords.

16.15.3 Use of Ordinary Pascal Comments

The function of normal Pascal comments has been superseded in most cases
by VPTE)C's Special Comments. However, normal comments can still be useful
in a number of circumstances. The following list details the recommended
usage of normal Pascal comments, but the user is, of course, free to make use
of them in any particular circumstances.

• First, because normal comments are displayed in typewriter font, any spacing
within these comments set out by the programmer will be preserved in the
documentation. This is not the case for special comments which are displayed
in a serifed, variable-width font. This property of normal comments makes
them particularly suitable for laying out tables and arrays simply, although a
special comment can make use of I!ITE)C's ability to typeset tables for a more
advanced layout.

• Second, normal comments do not break up the flow of a code listing to the
same extent as special comments and so are more useful for offering a
running commentary on code lines, without the space limitations of margin
comments.

• If a comment is reasonably short, the programmer may find that a normal
comment will have a better appearance than a special comment. Since special
comments are offset from the program, listing a small special comment may
constitute a waste of the space set aside for it.

16.15.4 Levels of Detail Within Documentation

Depending on the sort of documentation required, VPTEX allows the
programmer to specify the detail of the program documentation. The five
levels are:

1. Procedure and Function Headings Only: For documentation of ADTs it
is often useful simply to provide a list of the functions and procedures by
which a programmer may make use of the ADT. VPTEX supports this by
providing the option to create documentation consisting of only function
and procedure headings. It is advised that a contents page is not included
with this level of detail.

2. Special Comments with Function and Procedure Headings: To add
commentary and descriptions to the above level of detail, option 2 will add
any special comments to the documentation. This allows the programmer

312 SIMD Programming Manual for linux and Windows

to provide descriptions of their procedures and functions and to add
structure to the documentation. A contents page is advised for this level of
detail.

3. Program Bodies and Unit Interfaces: This level of detail includes all
comments. It is again very useful for documenting ADTs as the interfaces
provided by units will be documented, but none of the implementation will
be included. A contents page is recommended.

4. Selected Text: Special VPTEX comments commands have been defined to
allow the programmer to select which sections of the program to document.
The commands are (* ! beg i n *) to mark the start of a selected region, and
(* ! end*) to mark the end. Any text, including special comments, not
contained within these tags will be ignored by VPTEX if this level of detail is
selected. The start and end of the main program file will always be included
in the documentation regardless of selection. This feature is of particular use
when preparing reports regarding particular sections of code within long
projects as only the sections of interest will be documented. Again, a con­
tents page is recommended.

5. All Code and Comments: For a completely documented code listing, of
particular use for system maintenance, VPTEX can produce a complete
listing of a program or project's source code, including special and normal
comments. A contents page is strongly recommended, particularly for long
programs or projects.

Note: All levels of detail support margin comments.

16.15.5 Mathematical Translation: Motivation and Guidelines

VPTEX has the option of automatically translating the program code into con­
ventional mathematical notation. Complex VectorPascal expressions such as

x: =if (iota 0 d i v 2 pow (dim-iota 1)) mod 2=0 then 1 e l s e -1 ;

are translated into more tidy and comprehensible mathematical representa­
tions such as

x +-- { 1 if (~)mod 2 = 0;
0 otherwise

No action is required to obtain mathematical translation, provided that it is
turned on (VPTEX Options). However, the benefits of using it increase with
the number of mathematical structures in the document. In particular, the
following will benefit from mathematical translation:

• array indexing/slicing, e.g thisArrayi,jlthatArray1ow ... high
• assignments, e.g. myVariable +-- yourVariable
• reduction operations on arrays, e.g. myVariable +-- L:oneDArray
• conditional updates (as shown above)
• a number of standard mathematical function such as V

Chapter 16 • Introduction to VIPER 313

• mathematical operations, e.g. xY, ~' i x j
• English names of Greek letters (lower-case only), e.g. a, /3, "(, 8.

Mathematical translation is particularly useful if the documentation is for
people without knowledge of Pascal or a similar language. The only time when
mathematical translation is not advisable is when the reader is maintaining the
code itself, in which case the need for cross-reference will usually dominate the
need for clarity and conventional notation.

16.1 5.6 LATEX Packages

All VPTEX documents only include packages g rap hi c x and e p sf i g. These
packages are included to allow the programmer to include graphics and
diagrams to help document their programs. Any IMEX commands that the
programmer may wish to use which are specific to other packages cannot be
included in VPTEX special comments.

Appendix A:
Compiler Porting Tools

Vector Pascal is an open-source project. It aims to create a productive and
efficient program development environment for SIMD programming. In order
to validate the concepts it has been developed initially for the Intel family of
processors running Linux and Microsoft Windows. However, it has been
intended from the outset that the technology should be portable to other
families of CPUs. This Appendix addresses some of the issues involved in
porting the compiler to new systems.

A.1 Dependencies

The Vector Pascal compiler tool-set can be divided along two axes as shown in
Figure A.l.

1. Tools can be divided into (a) those provided as part of the release and (b)
those provided as part of the operating environment.
(a) These are mainly written in Java, the exceptions being a small run-time

library in C, a Pascal System unit and several machine descriptions.
(b) These are all available as standard under Linux, and Windows versions

are freely downloadable from the web.
2. Tools can further be divided into (a) those required for program prepara­

tion and documentation, (b) those for code translation tools and (c) those
for code generator preparation.
(a) The program preparation tools are the VIPER IDE described in

Chapter 16, along with the standard IM_EX document preparation
system, DVI viewers and the TTH tool to prepare web-enabled versions
of Vector Pascal program descriptions.

(b) The program translation tools are:
i. The i l c g . p a s c a l Java package which contains the Pascal

compiler itself and classes to support Pascal-type declarations.
This carries out the first stage of code translation, from Pascal to an
ILCG tree (Cockshott, 2000).

ii. A set of machine-generated code generators for CPUs such as the
Pentium and the K6. These carry out the second phase of code
translation - into an assembler file.

iii. The i l cg. tree Java package, which supports the internal
representation of ILCG trees (see Section A.3).

315

316

Program preparation tools

VIPER

VP\ TeX

Provided as part of
the Vector Pascal
system

Provided as part of
the operating
environment

Latex

DV!viewer

TTH

SIMD Programming Manual for Linux and Windows

Code translation tools

ilcg.Pascal
java package

Pentium.java
K6.java etc.

il cg. tree
java package

Java system

Assembler e.g., NASM

C compiler e.g., GCC

Jlex lexical analyser
generator *

Figure A.1. Vector Pascal toolset.

Code generator preparation tools

ILCG CodeGenerator

Machine
files

Pentium.m4
MMX.m4
K6.m4 etc.

m4 macro processor

Sable compiler
generator

iv. The Java system, which is needed to run all of the above.
v. An assembler, which is necessary to carry out the third phase of

code translation, from an assembler file to a relocatable object file.
vi. A C compiler and linkage system is needed to compile the C run-time

library and to link the relocatable object files into final executables.
vii. In addition, if one wants to alter the reserved words of Vector

Pascal or make other lexical changes, one needs the JLex lexical
analyser generator.

A.2 Compiler Structure

The structure of the Vector Pascal translation system is shown in Figure A.2. The
main program class ofthe compiler i l c g . P a s c a l . P a s c a l Com p i l e r . j a v a
translates the source code of the program into an internal structure called
an ILCG tree (Cockshott, 2000). A machine-generated code generator then
translates this into assembler code. An example would be the class ilcg. tree.IA32.
An assembler and linker specified in descendent class of the code generator then
translate the assembler code into an executable file.

Consider first the path followed from a source file. The phases that it goes
through are

• The source file (1) is parsed by a Java class PascalCompiler.class (2), a
hand-written, recursive descent parser (Watt and Brown, 2000), and results

Appendix A • Compiler Porting Tools 317

1. HLL program

In this case PascaiCompiler.class

3. ILCG program

5. ILCG semantics

6. Optimisation rules

7. Transformed ILCG program S.ILCG for CPU

(for example Pentium.ilc)

11. Machine code for CPU

Figure A.2. The translation of Vector Pascal to assembler.

in a Java data structure (3), an ILCG tree, which is basically a semantic tree
for the program.

• The resulting tree is transformed (4) from sequential to parallel form and
machine-independent optimisations are performed. Since ILCG trees are
Java objects, they can contain methods to self-optimise. Each class contains,
for instance, a method eva l which attempts to evaluate a tree at compile
time. Another method, simplify, applies generic machine-independent
transformations to the code. Thus the s i m p l i f y method of the class For
can perform loop unrolling, removal of redundant loops, etc. Other
methods allow tree walkers to apply context-specific transformations.

• The resulting ilcg tree (7) is walked over by a class that encapsulates the
semantics of the target machine's instruction-set (10), for example
Pentium.class. During code generation the tree is further transformed, as
machine-specific register optimisations are performed. The output of this
process is an assembler file (11).

• This is then fed through an appropriate assembler and linker, assumed to
be externally provided to generate an executable program.

A.2.1 Vectorisation

The parser initially generates serial code for all constructs. It then interrogates
the current code generator class to determine the degree of parallelism possible

318

var i;

SIMD Programming Manual for linux and Windows

var i ;
for i=1 to 9 step 1 do {

v 1[1\ i J : =+(1\ (v 2 [1\ i J) ' 1\ (v 3 [1\ i J)) ;
} ;

Figure A.3. Sequential form of array assignment.

for i=1 to 8 step 2 do {
(ref int32 vector (2))mem(+(@vl,*(-(Ai,ll,4))):=

+(A((ref i nt32 vector (2))mem(+(@v2, *(-(Ai, 1) ,4)))),

A((ref int32 vector (2))mem(+(@v3,*(-(Ai ,1),4)))));

} ;

for i=9 to 9 step 1 do {
v1[/\i]:=+(A(v2[Ai]),A(v3[/\i]));

} ;

Figure A.4. Parallelised loop.

for the types of operations performed in a loop, and if these are greater than
one, it vectorises the code.

Given the declaration

var vl,v2,v3: array[l..9] of integer;

then the statement

vl := v2+v3;

would first be translated to the ILCG sequence shown in Figure A.3. In the
example above, variable names such as v 1 and i have been used for clarity. In
reality i would be an addressing expression such as

(refint32)mem(+(/\((refint32)ebp), -1860))

which encodes both the type and the address of the variable. The code
generator is queried as to the parallelism available on the type i n t 3 2 and,
since it is a Pentium with MMX, returns 2. The loop is then split into two, a
portion that can be executed in parallel and a residual sequential component,
resulting in the ILCG shown in Figure A.4. In the parallel part of the code, the
array subscriptions have been replaced by explictly cast memory addresses.
This coerces the locations from their original types to the type required by the
vectorisation. Applying the s i m p l i f y method of the For class, the following
generic transformations are performed:

1. The second loop is replaced by a single statement.
2. The parallel loop is unrolled twofold.
3. The For class is replaced by a sequence of statements with explicit gotos.

Appendix A • Compiler Porting Tools

var i;
i :=1;
leb4afl1b47e:
if >(2,0) thenif)(Ai ,8) thengoto leb4af11b47f

else null
fi

else if ((Ai ,8) thengoto leb4af11b47f
else null
fi

fi;
(ref int32 vector (2))mem(+(@v1,*(-(Ai ,1),4))):=

+(A((ref int32 vector (2))mem(+(@v2,*(-(Ai,1),4)))),
A((ref int32 vector (2))mem(+(@v3, *C- (Ai ,1) ,4)))));

i :=+(Ai ,2);
(ref int32 vector (2))mem(+(@v1,*(-(Ai ,1),4))):=

+(A((ref int32 vector (2))mem(+(@v2,*(-(Ai ,1),4)))),
A((ref int32 vector (2))mem(+(@v3,*(-(Ai ,1),4)))));

i:=+(Ai,2);
goto leb4af11b47e;
l eb4afl1b47f:
i :=9;
V1[Ai]:=+(A(V2[Ai]),A(V3[Ai]));

Figure A.S. After applying simp l ify to the tree.

mov DWORD ecx,1
leb4b08729615:

cmp DWORD ecx,8
jg near leb4b08729616
lea edi ,[ecx-(1)]; substituting in edi with 3 occurrences
movq MM1,[epb+edi*4+-1620]
paddd MM1,[epb+edi*4+-1640]
movq [epb+edi*4+-1600J.MM1
lea ecx. [ecx+2J
lea edi ,[ecx-(1)]; substituting in edi with 3 occurrences
movq MM1,[epb+edi*4+-1620J
padd MM1,[epb+edi*4+-1640]
movq [epb+edi*4+-1600J.MM1
lea ecx. [ecx+2J
jmp leb4b08729615

l eb4b08729616:

319

Figure A.6. The result of matching the parallelised loop against the Pentium instruction-set.

320 SIMD Programming Manual for Linux and Windows

The result is shown in Figure A.S. When the eva l method is invoked,
constant folding causes the loop test condition to be evaluated to

if>("i ,8) thengotoleb4afllb47f

A.2.2 Porting Strategy

To port the compiler to a new machine, say a GS, it is necessary to

1. Write a new machine description G5. i l c in ILCG source code.
2. Compile this to a code generator in java with the ilcg compiler generator

using a command of the form

java ilcg.ILCG cpus/G5.ilc ilcg/tree/G5.java G5

3. Write an interface class i l cg/tree/G5CG which is a subclass of G5 and
which invokes the assembler and linker. The linker and assembler used will
depend on the machine but one can assume that at least a g c c assembler
and linker will be available. The class G 5 C G must take responsibility to
handle the translation of procedure calls from the abstract form provided in
ILCG to the concrete form required by the G5 processor.

4. The class G 5 C G should also export the method get p a r a l l e l i s m which
specifies to the vectoriser the degree of parallelism available for given data
types. An example for a P4 is given in Figure A.7. Note that although a P4 is
potentially capable of performing 16-way parallelism on 8-bit operands,
the measured speed when doing this on is less than that measured for 8-way
parallelism. This is due to the restriction placed on unaligned loads of
16-byte quantities in the P4 architecture. For image processing operations,
aligned accesses are the exception. Thus, when specifying the degree of
parallelism for a processor, one should not simply give the maximal degree
supported by the architecture. The maximal level of parallelism is not
necessarily the fastest.

public int getParallelismCString elementType)
{ if(elementType.equalsCNode.int32)) return 2;

if(elementType.equalsCNode.intl6)) return 4;
ifCelementType.equalsCNode.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
ifCelementType.equalsCNode.uint16)) return 4;
if(elementType.equalsCNode.uint8)) return 8;
if(elementType.equalsCNode.ieee32)) return 4;
if(elementType.equalsCNode.ieee64)) return 1;
return 1;

Figure A.7. The method getParall eli sm for a P4 processor.

Appendix A • Compiler Porting Tools 321

Sample machine descriptions are given on the Vector Pascal website to help
those wishing to port the compiler. These are given in the ILCG machine
description language, an outline of which follows.

A.3 ILCG

The purpose of ILCG (Intermediate Language for Code Generation) is to
mediate between CPU instruction-sets and high-level language programs.
It both provides a representation to which compilers can translate a variety
of source-level programming languages and also a notation for defining the
semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by an HLL compiler are input to an automati­
cally constructed code generator, working on the syntax matching princi­
ples described by Graham (1980). This then generates equivalent sequences
of assembler statements.

2. Machine descriptions written as ILCG source files are input to code­
generator-generators, which produce java programs that perform function
(1) above.

So far, one HLL compiler producing ILCG structures as output exists: the
Vector Pascal compiler. There also exists one code-generator-generator, which
produces code generators that use a top-down pattern matching technique
analogous to Prolog unification. ILCG is intended to be flexible enough to
describe a wide variety of machine architectures. In particular, it can specify both
SISD and SIMD instructions and either stack-based or register-based machines.
However, it does assume certain things about the machine: that certain basic
types are supported and that the machine is addressed at the byte level.

In ILCG, all type conversions, dereferences, etc., have to be made absolutely
explicit. In what follows we will designate terminals of the language in bold,
e.g. octet, and non-terminal in italics, e.g. wordB.

A.4 Supported Types

A.4.1 Data Formats

The data in a memory can be distinguished initially in terms of the number of
bits in the individually addressable chunks. The addressable chunks are assumed
to be the powers of two from 3 to 7, so we thus have as allowed formats wordB,
wordl6, word32, word64, word128. These are treated as non-terminals in the
grammar of ILCG.

When data are being explicitly operated on without regard to their type,
we have terminals which stand for these formats: octet, halfword, word,
doubleword, quadword.

322 SIMD Programming Manual for Linux and Windows

A.4.2 Typed Formats
Each of these underlying formats can contain information of different types,
either signed or unsigned integers, floats, etc. ILCG allows the following
integer types as terminals: int8, uint8, int16, uint16, int32, uint32, int64,
uint64, to stand for signed and unsigned integers of the appropriate lengths.

The integers are logically grouped into signed and unsigned. As non-terminal
types they are represented as byte, short, integer, long and ubyte, ushort, uinteger,
ulong.

Floating-point numbers are assumed to be either 32- or 64-bit with 32-bit
numbers given the non-terminal symbols float, double. If we wish to specify a
particular representation of floats of doubles we can use the terminals ieee32,
ieee64.

A.4.3 ref Types
ILCG uses a simplified version of the Algol-68 reference typing model. A value
can be a reference to another type. Thus an integer when used as an address
of a 64-bit floating-point number would be a ref ieee64. Ref types include
registers. An integer register would be a ref int32 when holding an integer, a
ref ref int32 when holding the address of an integer, etc.

A.S Supported Operations
A.5.1 Type Casts
The syntax for the type casts is C style so we have for example (i eee64)
i nt32 to represent a conversion of a 32-bit integer to a 64-bit real. These type
casts act as constraints on the pattern matcher during cod~ generation. They
do not perform any data transformation. They are inserted into machine
descriptions to constrain the types of the arguments that will be matched for
an instruction. They are also used by compilers to decorate ILCG trees in order
both to enforce, and to allow limited breaking of, the type rules.

A.S.2 Arithmetic
The allowed dyadic arithmetic operations are addition, saturated addition,
multiplication, saturated multiplication, subtraction, saturated subtraction,
division and remainder with operator symbols +, +:, *• *:, - , - :, div, mod.

The concrete syntax is prefix with bracketing. Thus the infix operation
3 + 5 + 7 would be represented as +(3, div (5, 7)).

A.S.3 Memory
Memory is explicitly represented. All accesses to memory are represented by
array operations on a predefined array mem. Thus location 100 in memory is
represented as mem(IOO). The type of such an expression is address. It can be cast
to a reference type of a given format. Thus we could have (ref int32)mem(IOO).

Appendix A • Compiler Porting Tools 323

A.5.4 Assignment

We have a set of storage operators corresponding to the word lengths
supported. These have the form of infix operators. The size of the store being
performed depends on the size of the right-hand side. A valid storage state­
ment might be (ref octet)mem(299) :=(int8) 99.

The first argument is always a reference and the second argument a value of
the appropriate format.

If the left-hand side is a format, the right-hand side must be a value of the
appropriate size. If the left-hand side is an explicit type rather than a format,
the right-hand side must have the same type.

A.5.5 Dereferencing

Dereferencing is done explicitly when a value other than a literal is required.
There is a dereference operator, which converts a reference into the value that
it references. A valid load expression might be (octet)i((ref octet)mem(99)).

The argument to the load operator must be a reference.

A.6 Machine Description

Ilcg can be used to describe the semantics of machine instructions. A machine
description typically consists of a set of register declarations followed by a set
of instruction formats and a set of operations. This approach works well only
with machines that have an orthogonal instruction set, i.e. those that allow
addressing modes and operators to be combined in an independent manner.

A.6.1 Registers

When entering machine descriptions in ilcg, registers can be declared along
with their type, hence

register word EBX assembles['ebx'];
reserved register word ESP assembles['esp'];

would declare EBX to be of type ref word.

Aliasing

A register can be declared to be a sub-field of another register, hence we could
write

alias register octet AL = EAX(0:7) assembles['al'];
alias register octet BL = EBX(0:7) assembles['bl'];

to indicate that BL occupies the bottom 8 bits of register EBX. In this notation
bit zero is taken to be the least significant bit of a value. There are assumed to
be two pregiven registers FP, GP that are used by compilers to point to areas of

324 SIMD Programming Manual for Linux and Windows

memory. These can be aliased to a particular real register:

register word EBP assembles['ebp'];
alias register word FP = EBP(0:31) assembles['ebp'];

Additional registers may be reserved, indicating that the code generator
must not use them to hold temporary values:

reserved register word ESP assembles['esp'];

A.6.2 Register Sets

A set of registers that are used in the same way by the instruction-set can be
defined:

pattern reg means [EBPIEBXl ESll EDll ECXlEAXIEDXl ESP];
pattern breg means [ALIAHIBLIBHICLICHIDLIDH];

All registers in an register set should be of the same length.

A.6.3 Register Arrays

Some machine designs have regular arrays of registers. Rather than have these
exhaustively enumerated, it is convenient to have a means of providing an
array of registers. This can be declared as

register vector(S)doubleword MM assembles['MM'i];

This declares the symbol MMX to stand for the entire MMX register set. It
implicitly defines how the register names are to be printed in the assembly
language by defining an indexing variable i that is used in the assembly lan­
guage definition.

We also need a syntax for explicitly identifying individual registers in the
set. This is done by using the dyadic subscript operator subscript(MM,2),
which would be of type ref doubleword.

A.6.4 Register Stacks

Whereas some machines have registers organised as an array, another class of
machines, those oriented around postfix instruction-sets, have register stacks.

The ilcg syntax allows register stacks to be declared:

register stack (8)ieee64 FP assembles[' '];

Two access operations are supported on stacks:

• PUSH is a void dyadic operator taking a stack of type ref t as first argu­
ment and a value of type t as the second argument. Thus we might have
PUSH(FP, jmem(20)).

• POP is a monadic operator returning t on stacks of type t. So we might
have mem(20) := POP(FP). In addition, there are two predicates on stacks
that can be used in pattern preconditions.

Appendix A • Compiler Porting Tools 325

• FULL is a monadic Boolean operator on stacks.
• EMPTY is a monadic Boolean operator on stacks.

A.6.5 Instruction Formats

An instruction format is an abstraction over a class of concrete instructions.
It abstracts over particular operations and types thereof whilst specifying how
arguments can be combined:

instruction pattern
RR(operator op, anyreg rl, anyreg r2, int t)
means[rl := (t) op(j((ref t) rl}, j((ref t) r2))]
assembles[op ' ' rl ',' r2];

In the above example, we specify a register to register instruction format that
uses the first register as a source and a destination whereas the second register
is only a destination. The result is returned in register r 1.

We might, however, wish to have a more powerful abstraction, which was
capable of taking more abstract specifications for its arguments. For example,
many machines allow arguments to instructions to be addressing modes that
can be either registers or memory references. For us to be able to specify this in
an instruction format we need to be able to provide grammar non-terminals as
arguments to the instruction formats.

For example, we might want to be able to say

instruction pattern
RRM(operator op, reg rl, maddrmode rm, int t)
means [rl := (t) op(j((ref t) rl), j((ref t) rm))]
assembles[op ' ' rl ',' rm];

This implies that addrmode and reg must be non-terminals. Since the non­
terminals required by different machines will vary, there must be a means of
declaring such non-terminals in ilcg.

An example would be

pattern regindirf(reg r)
means[j(r}] assembles[r];
pattern baseplusoffsetf(reg r, signed s)
means[+(j(r),const s)] assembles[r'+'s];
pattern addrform means[baseplusoffsetflregindirf];
pattern maddrmode(addrform f)
means[mem(f)] assembles['[f]'];

This gives us a way of including non-terminals as parameters to patterns.

A.7 Grammar of ILCG

The following grammar is given in Sable (Gagnon, 1998} compatible form.
The Sable parser generator is used to generate a parser for ILCG from this

326 SIMD Programming Manual for Linux and Windows

grammar. The ILCG parser then translates a CPU specification into a tree
structure which is then walked by an ILCG-tree-walk-generator to produce an
ILCG-tree-walk Java class specific to that CPU.

If the ILCG grammar is extended, for example to allow new arithmetic
operators, then the ILCG-tree-walk-generator must itself be modified to
generate translation rules for the new operators.

I*

A.S ILCG Grammar

This is a definition of the grammar of ILCG using the Sable grammar
specification lanaguage. It is input to Sable to generate a parser for machine
descriptions in ilcg.

*I
Packageilcg;

I*

A.8.1 Helpers

Helpers are regular expressions macros used in the definition of terminal
symbols of the grammar.

*I
Helpers

letter=[['A' .. 'Z']+['a' .. 'z']];
digit=['O' .. '9'];
alphanum=[letter+['O' .. '9']];
cr=l3;
lf=lO;
tab=9;

digit_sequence=digit+;
fractional_constant=digit_sequence?'. 'digit_sequencel
digit_sequence '. ';
sign='+' I'-';
exponent_pa rt=('e ·I 'E ·)sign? di git_sequence;
floating_suffix='f'I'F' l'l' I'L';

I I This eol definition takes care of different platforms
eol=cr lf I cr llf:
not_cr_lf=[[32 .. 127]- [cr+lf]];
exponent=(' e' I 'E');
quote=''';
all=[0 .. 127];
schar=[all -'' '];
not_star=[all- '*'];
not_star _sl ash=[not_star- 'I' J;

I*

Appendix A • Compiler Porting Tools

A.8.2 Tokens

The tokens section defines the terminal symbols of the grammar.

*I
Tokens

fioating_constant=
fractional_constantexponent_part?fioating_suffix?l
digit_sequenceexponent_partfioating_suffix?;

I*

Terminals specifying data formats:

*I
void='void':
octet=' octet': int8='int8': uint8='uint8':
halfword='halfword': int16='int16': uintl6='uint16':
word='word': i nt32=' i nt32':
uint32='uint32': ieee32='ieee32':
doubleword='doubleword': int64='int64':
uint64='uint64': ieee64='ieee64':
quadword='quadword';

I*

Terminals describing reserved words:

*I
function='function':
fiag='fiag';
location='loc':
procedure='instruction':
returns=' returns';
l a bel=· l a bel ' :
goto='goto';
for=· for·;
to='to';
step=' step·;
do=' do';
ref='ref';
const='const':
reg=' register';
operation='operation':
alias='alias';
instruction='instruction':
address='address';
vector='vector';
stack=' stack':
sideeffect='sideeffect';
if=. if.;
reserved=' reserved':

327

328 SIMD Programming Manual for Linux and Windows

precondition='precondition';
instructionset='instructionset';

I*

Terminals for describing new patterns:

*I
pattern='pattern';
means='means';
assembles='assembles';

I*

Terminals specifying operators:

*I
colon=':';
semi col on=';';
comma='.';
dot='.';
bra='(';

ket=')';
plus='+';
satpl us='+:·;
satmi nus='-:·;
map='->·;
equals='=';
l e=' <=';
ge=' >=';
ne='<>';
lt='<';
gt='>.;
minus='-';
times='*';
exponentiate='**';
d i vi de=' d i v • ;
and=' AND';
or='OR';
xor=' XOR';
not=' NOT';
sin=' SIN' ;
cos=' COS';
abs='ABS';
tan='TAN';
remainder='MOD';
store=':=';
deref='"';
push='PUSH';
pop=' POP';
call=' APPLY';

Appendix A • Compiler Porting Tools

full='FULL';
empty=' EMPTY';
subscript=' SUBSCRIPT';
intl it=digit+;
vba r=' I ' ;
sket=' J';
sbra='[';
end='end';
typetoken='type';
mem='mem';
string=quoteschar+quote;

/*

Identifiers come after reserved words in the grammar:

*I
identifier=letteralphanum*;
blank=(' 'I cr llf I tab)+;
comment='/*' not_star*'*'+

Ignored Tokens
blank,comment;
I*

Cnot_star_slashnot_star*'*'+)*'/';

A.8.3 Non-terminal Symbols

*I
Productions

program=statementlistinstructionlist;
instructionlist=instructionsetsbraalternativessket;

I*

Non-terminals specifying data formats:

*I
format={octet} octet!
{halfword} halfwordl
{word} word I
{doubleword} doublewordl
{ quadword} quadword I
{tformat}tformat;

I*

Non-terminals corresponding to type descriptions:

*I
reference=ref type ;
a rray=vector bra number ket;

329

aggregate={ stack} stack bra number ket I {vector} array 1 {non};
type={format} format! {typeid} typeidl {array}typearrayl

330 SIMD Programming Manual for Linux and Windows

{cartesi an}sbra type cartesian* sket I
{map} bra [a rg]: type map [result]: type ket;

cartesian=commatype;

I*

tformat={signed} signed I
{unsigned}unsignedl
{ieee32}ieee32l
{ieee63}ieee64;

signed=int32l
{int8} int8J
{int16l int16l
{int64l int64;

unsigned=uint32l
{uint8} uint81
{ ui nt16 lui nt16l
{uint64l uint64;

Non-terminals corresponding to typed values:

*I

I*

value={refval }refvall
{rhs}rhsJ {void}voidl
{cartval }cartvalJ
{dyadic l dyadic bra [l eft J :val ue comma [right J :val ue ket I
{monadic lmonadi c bra value ket;

Value corresponding to a cartesian product type, e.g. record initialisers:

*I
cartval=sbra value carttail* sket;
carttail=comma value;

I*

Conditions used in defining control structures:

*I
condition=
{dyadic} dyadic bra[left]:condition comma[right]:condition
ketl
{monadic }monadic bra condition ket I
{ i d l identifier I
{number}number;

rhs={number}numberl
{cast}bra type ket val uel
{const}constidentifierl
{deref}deref bra refval ket;

refval=l oc I { refcast} bra reference ket l oc;

Appendix A • Compiler Porting Tools

loc={id}identifierl
{memory}mem bra value ket;

number={reallit} optional sign reallitl
{integer} optional sign intlit;

optionalsign=l {plus}plusl {minus}minus;
reallit=fioating_constant;

I*
Operators

*I
dyadic={plus} plus I
{minus} minus I
{identifier} identifier I
{ exp} exponentiate I
{times} times I
{divide} divide!
{lt}ltl
{gt}gtl
{call}calll
{le}lel
{ge}gel
{eq}equalsl
{ne}nel
{push}pushl
{subscript}subscriptl
{satplus}satplusl
{satminus}satminusl
{remainder}remainderl
{or}orl
{and}andl
{xor}xor;
monadic={not}notl
{full}fulll
{empty}emptyl
{pop} pop I
{sin}sinl
{cos}cosl
{tan}tanl
{abs}abs;
I*

Register declaration:

*I
regi sterdecl =reservati on reg aggregate format identifier
assembles sbra string sket;
reservation={reserved}reservedl {unreserved};
aliasdecl=

alias reg aggregate format [child]:identifierequals

331

332 SIMD Programming Manual for Linux and Windows

[parent]:identifierbra [lowbit]:intlitcolon
[hi ghbi tJ: i ntl it ket assembles sbra string sket;

opdecl=operation identifier means operator assembles sbra
string sket;
operator={plus}plusl

I*

{minus}minusl
{times}timesl
{lt}ltl
{gt}gtl

{le}lel
{ge}gel
{eq}equalsl
{ne}nel
{divide}dividel

{remainder}remainderl
{or}orl
{and}andl
{xor}xor;

Pattern declarations:

*I
assign=refval storevalue;
meaning={value}valuel

{assign}assignl
{goto}gotovaluel
{if} if bra value ket meaning I

{for} for refval store [start] :value
to [stop J :val ue step [increment J :val ue do me ani n g I

{loc}locationvalue;
patterndecl =pattern identifier pa raml i st means sbra
meaning sket
assemblesto
sideeffects
precond

l{alternatives}patternidentifiermeanssbraalternatives
sket;

par am l is t=b r a pa ram par amt ail* ket I {null pa ram} bra ket;
param=typeididentifierl
{typeparam}typetokenidentifierl
{label} 1 abel identifier;
typeid=identifier;
paramtail=commaparam;
alternatives=typealts*;
a 1 ts=vba r type;
precond=precondi ti on sbra condition sket I

{unconditional};

Appendix A • Compiler Porting Tools

asideeffect=sideeffect returnval;
sideeffects=asideeffect*;
assemblesto=assemblessbraassemblypatternsket;
assemblypattern=assemblertoken*;
assemblertoken={string} string I

{identifier} identifier;
returnva l =returns identifier;
/*

Statements:

*I
statement={ ali asdecl} ali asdecl 1

{ regi sterdecl} regi sterdecl I
{addressmode} address patterndecll
{instructionformat}procedurepatterndecl I
{ opdecl l opdecll
{flag} flag identifier equal s i n t l it 1

{typerename}typetoken format equals identifier I
{ patterndecl l patterndecl;

statementlist=statementsemicolonstatements*;
statements=statement semicolon;
II

333

Appendix B:
Software Download

The software is available for downloading from the website associated with this
book:

www.dcs.gla.ac.uk/~wpc/SIMD.html

It can be downloaded in two possible versions, both of which are distributed
as .jar files:

1. Source form: this is a compressed directory tree snapshot containing the
Java, C, Pascal and ILCG sources required to build the compiler.

2. Binary version, which contains the mm p c . j a r and vi per . j a r files
necessary to run the compiled version of the compiler and Viper, along
with the run-time library as a C source file, and the Pascal source of the
system unit.

If the binary is downloaded, it should be unpacked into a directory and one
should set up a shell variable mmpcd i r to point to this directory. This shell
variable is used by the compiler to locate the directory containing the system
unit and run-time library. One should then place the directory pointed to by
mmpcd i r on the path.

The binary version utilises Java, Nasm, gee and latex, all of which are either
installed or readily available for Linux systems. If one compiles with garbage
collection enabled, it should be ensured that the gee system includes the
Boehm garbage collector. For Windows environments these utilities may have
to be downloaded. They are available from multiple websites.

The website for this book also contains the sources for the example programs
and units used in the book.

335

Appendix C:
Using the Command Line Compiler

C.1 Invoking the Compiler

The compiler is invoked with the command

vpc filename

where filename is the name of a Pascal program or unit. For example,

vpc test

will compile the program test. pas and generate an executable file t e s t,
(test. exe under windows).

The command vpc is a shell script which invokes the Java run-time system
to execute a . j a r file containing the compiler classes. Instead of running vpc,
the Java interpreter can be directly invoked as follows:

java -jarmmpc.jarfilename

The v p c script sets various compiler options appropriate to the operating
system being used.

C.1.1 Environment Variable

The environment variable mm p c d i r must be set to the directory which contains
the mmpc. jar file, the run-time library rt l . o and the sys tern. pas file.

C.1.2 Compiler Options

The following flags can be supplied to the compiler:

-A fi l en a me Defines the assembler file to be created. In the absence ofthis
option, the assembler file is p . a s m •

- D d i r n am e Defines the directory in which to find r t l . o and
system.pas.

- V Causes the code generator to produce a verbose diagnostic
listing to foo .l st when compiling foo. pas.

-oexefil e Causes the linker to output to exefil e instead of the default
output of p. exe.

337

338

-U

-s

CGFLAG

IA32
Pentium
K6
P3
P4

-fFORMAT

-cpuCGFLAG

SIMD Programming Manual for Linux and Windows

Table C.1. Code generators supported

Description

Generates code for the Intel 486 instruction-set
Generates code for the Intel P6 with MMX instruction-set
Generates code for the AMD K6 instruction-set, use for Athlon
Generates code for the Intel Pill processor family
Generates code for the Intel PIV family and Athlon XP

Defines whether references to external procedures in the
assembler file should be preceded by an under-bar, _. This
is required for the coff object format but not for elf.
Suppresses assembly and linking of the program. An
assembler file is still generated.
Specifies the object format to be generated by the assembler.
The object formats currently used are elf when compiling
under Unix or when compiling under Windows using the
cygwin version of the gee linker, or coff when using the
djgpp version of the gee linker. For other formats, consult
the NASM documentation.
Specifies the code generator to be used. Currently the code
generators shown in Table C.l are supported.

C.1.3 Dependencies

The Vector Pascal compiler depends upon a number of other utilities which are
usually pre-installed on Linux systems, and are freely available for Windows
systems.

• NASM

• gee

• Java

The net-wide assembler. This is used to convert the output of
the code generator to linkable modules. It is freely available
on the web for Windows.
The GNU C Compiler, used to compile the run-time library
and to link modules produced by the assembler to the run­
time library.
The Java virtual machine must be available to interpret the
compiler. There are a number of Java interpreters and just­
in-time compilers are freely available for Windows.

C.2 Calling Conventions

Procedure parameters are passed using a modified C calling convention to
facilitate calls to external C procedures. Parameters are pushed on to the stack
from right to left. Value parameters are pushed entirely on to the stack and var
parameters are pushed as addresses.

Appendix C • Using the Command line Compiler

Example

unit callconv;
interface
type intarr = array[l .. 8] of integer;
procedure foo(var a:intarr;b:intarr;c:integer);
implementation
procedure foo(var a:intarr;b:intarr;c:integer);
begin
end;
var x,y:intarr;
begin

foo(x,y,3);
end.

This would generate the following code for the procedure foo:

: procedure generated by code generator class i 1 cg. tree.
PentiumCG
le8e68de10c5:

foo
enter spaceforfoo-4*1,1

:8
1 e8e68de118a:

spaceforfoo equ 4
: code for foo goes here
fooexit:
1 eave
ret 0

and the calling code is

push DWORD 3
1 ea esp, [esp-32]
mov DWORD[ebp-52] ,0
le8e68de87fd:

cmp DWORD [ebp-52], 7

j g near 1 e8e68de87fe
movebx,DWORD[ebp-52]

:push rightmost argument
:create space for the array
:for 1 oop to copy the array
: the 1 oop is
: unrolled twice and
: parallelisedtocopy
: 16 bytes per cycle

imul ebx,4
movqMM1,[ebx+le8e68dddaa2-48]
movq[esp+ebx],MM1
mov eax,DWORD[ebp+ -52]
1 ea ebx, [eax+2]
imul ebx,4
movqMM1,[ebx+le8e68dddaa2-48]
movq[esp+ebx],MM1
1 ea ebx, [ebp+- 52]

339

340 SIMD Programming Manual for linux and Windows

add DWORD[ebx],4
jmp le8e68de87fd
le8e68de87fe: :end of array

: copying 1 oop
push DWORD 1 e8e68dddaa2-32 :push the address of the

: var parameter
EMMS
call 1 e8e68de10c5

addesp,40

Function Results

: clearMMXstate
:call the 1 ocal
: 1 abel for foo
:free space on the stack

Function results are returned in registers for scalars following the C calling
convention for the operating system on which the compiler is implemented.
Records, strings and sets are returned by the caller passing an implicit parameter
containing the address of a temporary buffer in the calling environment into
which the result can be assigned. Given the following program:

program
type tl = set of char;
var x,y:tl;
function bar:tl;begin bar : = y;end;
begin

x:=bar;
end.

The call of bar would generate

push ebp
add dword[esp],-128
call 1 e8eb6156ca8

addesp,4
mov DWORD[ebp+ -132] ,0

le8eb615d99f:

cmp DWORD[ebp+ -132] ,31
jg near 1 e8eb615d9910
mov ebx,DWORD[ebp+ -132]
movq MM1, [ebx+ebp+ -128]
movq[ebx+ebp+-64],MM1
moveax,DWORD[ebp+-132]
leaebx,[eax+8]
movq MM1. [ebx+ebp+ -128]
movq[ebx+ebp+-64],MM1
1 ea ebx, [ebp+ -132]

: address of buffer on stack
:call bar to place
: result in buffer
:discard the address
: forlooptocopy
:the set 16 bytes
: atatimeintoxusingthe
: MMX registers

Appendix C • Using the Command Line Compiler

add DWORD[ebx],l6
jmp le8eb615d99f
le8eb615d9910:

C.3 Array Representation

341

A static array is represented simply by the number of bytes required to store
the array being allocated in the global segment or on the stack.

A dynamic array is always represented on the heap. Since its rank is known
to the compiler, what need to be stored at run time are the bounds and the
means to access it. For simplicity we make the format of dynamic and
conformant arrays the same. Thus for schema

s(a,b,c,d:integer) = array[a .. b,c .. d] of integer

whose run-time bounds are evaluated to be 2 ... 4,3 ... 7, we would have the
structure shown in Table C.2.

The base address for a schematic array on the heap will point at the first byte
after the array header show. For a conformant array, it will point at the first data
byte of the array or array range being passed as a parameter. The step field
specifies the length of an element of the second dimension in bytes. It is included
to allow for the case where we have a conformant array formal parameter:

x:array[a .. b:integer ,c .. d:integer] of integer

to which we pass as actual parameter the range

p[2 .. 4,3 .. 7]

as actual parameter, where

p:array[I..IO,I..IO] of integer.

In this case the base address would point at @p[2,3] and the step would be
40, the length of 10 integers.

C.3.1 Range Checking

When arrays are indexed, the compiler plants run-time checks to see if the
indices are within bounds. In many cases the optimiser is able to remove these

Address

X

x+4
x+B
x+ 12
x+ 16
x+20

Table C.2. Structure of an array

Field

Base of data
a
b
Step
c
d

Value

Address of first integer in the array
2
4

40
3
7

342 SIMD Programming Manual for Linux and Windows

checks, but in those cases where it is unable to do so, some performance
degradation can occur. Range checks can be disabled or enabled by the
compiler directives.

{ $r-} {disable range checks}
{ $r+} {enable range checks}

Performance can be further enhanced by the practice of declaring arrays to
have lower bounds of zero. The optimiser is generally able to generate more
efficient code for zero-based arrays.

References

3L Limited (1995). Parallel C V2.2, Software Product Description. 3L Limited.
Advanced Micro Devices (1999). 3DNOW! Technology Manual. Advanced

Micro Devices.
Aho, AV, Ganapathi, M and TJiang, SWK (1989). Code generation using tree

matching and dynamic programming. ACM Trans. Programming Lang.
Syst., 11, 491-516.

Blelloch, GE (1995). NESL: A Nested Data-Parallel Language. Carnegie Mellon
University, CMU-CS-95-170, September 1995.

Burke, C (1995). I User Manual. lSI, Toronto.
Cattell, RGG (1980). Automatic derivation of code generators from machine

descriptions. ACM Trans. Programming Lang. Syst., 2, 173-190.
Chaitin, G (1997). Elegant Lisp Programs, in The Limits of Mathematics,

Springer, New York, pp. 29-56.
Cheong, G and Lam, M (1997). An optimizer for multimedia instruction sets,

presented at the 2nd SUIF Workshop, Stanford University, August 1997.
Cherry, GW (1980). Pascal Programming Structures. Reston Publishing,

Reston, VA.
Cockshott, P (2000). Direct Compilation of High Level Languages for Multi­

media Instruction-sets. Department of Computer Science, University of
Glasgow.

Cole, M (1989). Algorithmic Skeletons: Structured Management of Parallel
Computation. Research Monographs in Parallel and Distributed Comput­
ing. Pitman, London.

Ewing, AK, Richardson, H, Simpson, AD and Kulkarni, R (1999). Writing
Data Parallel Programs with High Performance Fortran, Ver. 1.3.1.
Edinburgh Parallel Computing Centre, Edinburgh.

Gagnon, E (1998). SABLECC, An object-oriented compiler framework. School of
Computer Science, McGill University, Montreal.

Graham, SL (1980). Table driven code generation. IEEE Comput., 13(8), 25-37.
Hennessy, JL and Patterson, DA (2003). Computer Architecture. A Quantitative

Approach, 3rd edn. Morgan Kaufmann, San Francisco.
Intel (1999). Intel Architecture Software Developer's Manua~ Vols 1 and 2. Intel.
Intel (2000). Willamette Processor Software Developer's Guide. Intel.
ISO (1991a). Extended Pascal. ISO 10206:1990.
ISO (1991b). Pascal. ISO 7185:1990.
Iverson, KE (1962). A Programming Language. Wiley, New York, p. 16.

343

344 References

Iverson, KE (1980). Notation as a tool of thought. Commun. ACM, 23,444-465.
Iverson, KE (1991). A personal view of APL. IBM Syst.]., 30(4).
Iverson, KE (2000).] Introduction and Dictionary. Iverson Software Inc. (lSI),

Toronto, 1995. 4, pp. 347-361.
Jensen, K and Wirth, N (1978). PASCAL User Manual and Report. Springer,

New York.
Johnston, D (1995). C++ Parallel Systems. ECH: Engineering Computing

Newsletter, No. 55. Daresbury Laboratory/Rutherford Appleton Laboratory,
Daresbury, pp. 6-7.

Knuth, D (1994). Computers and Typesetting. Addison Wesley, Boston.
Krall, A and Lelait, S (2000). Compilation techniques for multimedia pro­

cessors. Int.]. Parallel Programming, 28, 347-361.
Lamport, L (1994). U'IEX a Document Preparation System. Addison Wesley,

Boston.
Leupers, R (1999). Compiler optimization for media processors, presented at

EMMSEC 99, Sweden.
Marx, K (1976). Das Kapital, Vol. I. Penguin/New Left Review, Harmonds­

worth.
Metcalf, M and Reid, J (1996). The F Programming Language. Oxford

University Press, Oxford.
Michaelson, G, Scaife, N, Bristow, P and King, P (2001). Nested algorithmic

skeletons from higher order functions. Special Issue on High Level Models
and Languages for Parallel Processing. Parallel Algorithms Applications, 16,
181-206.

Peleg, A, Wilke, S and Weiser, U (1997). Intel MMX for multimedia PCs.
Commun. ACM, 40(1).

Schwartz, JT, Dewar, RBK, Dubinsky, E and Schonberg, E (1986).
Programming with Sets: an Introduction to SETL. Springer, New York.

Shannon, C (1948). A mathematical theory of communication. Bell Syst. Tech.].,
27, 379-423 and 623-656.

Snyder, L (1999). A Programmer's Guide to ZPL. MIT Press, Cambridge, MA.
Srereman, Nand Govindarajan, G (2000). A vectorizing compiler for multi­

media extensions. Int.]. Parallel Programming, 28, 363-400.
Strachey, C (1967). Fundamental Concepts of Programming Languages. Lecture

Notes from the International Summer School in Programming Languages,
Copenhagen.

Tannenbaum, AS (1976). A tutorial on ALGOL 68. Comput. Surv., 8, 155-190.
Texas Instruments (1998). TMS320C62xx CPU and Instruction Set Reference

Guide. Texas Instruments.
Turner, D (1986). An overview of MIRANDA. SIGPLAN Notices, December.
van der Meulen, SG (1977). ALGOL 68 might have beens. SIGPLAN Notices,

12(6).
Watt, DA and Brown, DF (2000). Programming Language Processors in Java.

Prentice Hall, Englewood Cliffs, NJ.
Wirth, N (1996). Recollections about the development of Pascal, in History of

Programming Languages- II. ACM Press, New York, pp. 97-111.

3D 279
3DNow 39, 279
3DNOW 19-20
64-bit 42
8-bit 270

abstractions 109
addition 4, 130
ADDPS 27
address 13, 18, 30, 32
ah 31
al 31
Algol 68 113
algorithm(s) 6, 8, 22, 212
algorithmic 8
all 114
Alpha 119
AltiVec 22
AMD 9, 24, 30, 42, 45, 118, 279, 338
Amdahl's Law 7, 276
AND 212
and 31
any 114
APL 109, 114, 116, 148
Append 189
Apple 118, 119
applicative 148
Apply-to-Each 113
architectural 28
Architecture 13
arithmetic 5, 8, 14, 130, 183
array(s) 6, 115, 193

arguments 110
assignment 147
expression 148

artifacts 245
as 28
ASCII 126, 217, 223, 266
aspect ratio 247
assembler 30, 118
assign procedure 188-189

345

Athlon 9, 46
atomic operation 283
average 272
ax 31
axes 39
axis 40

bandwidth 220
base 125
basic block 25
BEGIN 127
bh 31
binary 4, 187, 190

digit 265-266
trees 213

bit 5, 231, 265
bitmap 212, 220
bl 31
block 25
blockread 196
blockwrite 196
bmp 251
Boehm 182
Boolean 129, 183, 212
Borland 9, 34, 119, 182
bp 31
Bresenham's 289
buffer(s) 148, 283
bx 31
byte 32, 129

Index

c 23, 28, 33, 35, 45, 113, 118, 223
C** 116
C++ 15, 28, 116-117

compiler 34
cache line 17-18
cache(s) 6, 12, 18

occupancy 148
calculators 5
cardinality 221
categorizer 276

346

CC++ 116
ch 31
char 129
characters 126, 191
chdir 224
checks 216
Chinese 126
Chip(s) 3, 18
circuits 3
CISC 32
cl 31
clock(s) 3, 5-6, 9

speed 5
clockwork 3
cmplx 126
code 15, 30, 212

generator 119
codebook 267, 270-271, 277
CODEC 265
coff 34
colon 129, 192
colour 229, 277

plane 229
column 191, 233
compact 212, 220
compile 24
compiler(s) 6, 8, 15, 27-28, 35, 109, 110,

118, 182, 188, 212
directive 216
technology 118
287 9
486 9
486 See table [convperf] 118

Complex 126, 129
complexity 8
compression 265-266,272-273, 277
computer(s) 4-5, 181
concatenation 130, 145
conductor 4
configurations 266
CONST 127
Constant 30-31
constructor 179
contrast 230, 233
control characters 266
convolution 14, 114
corruption 266
CPU 6, 8, 12, 18, 28, 31

386 5
4004 5
8080 5
8086 5

CR 217
crash 181
Crusoe 270
crystals 3
CSP 116
cursor 187, 189-190
ex 31
cycle 4
Cygwin 34
Cyrix 13

data parallel 117, 120
database(s) 218, 219
data-flow 148
data type(s) 11, 15
db 33
DCT 266
dd 33
DEC Pascal 188
decibels 273
decimal 125, 192
declarations 127
decode 270
Delphi 9
deprecated 218
detail 276
dh 31
di 31
digit(s) 4, 192
direction 143
directory 220
disjoint 273
disk 187, 220
display 251
dispose 181-182
division 31, 130
Djgpp 34
dl 31
DMA 220
dot product 9, 142, 145
double 129
Doublewords 33
dq 33
drawline 289
DSP 11
dual buffer 283
duplicate 39
dw 33
dword 32
dynamic 31

loading 119
sets 213

Index

Index

eax 31
EBCDIC 188
ebp 31, 33
ebx 31
ecx 31, 36
edges 266
edi 31, 36, 38
edx 31
efficiency 212
efficient 8, 212
element(s) 111, 193
elimination 183
emms 42
energy 273
enter 33
entryname 224
epb 35
epsreal 126
equality 180
error(s) 245, 272
esi 31
esp 31
estimate 272
estimators 272
etern 34
Euclidean 17
evaluated 147
evaluation 130
exponent 126
expressions 190
Extended Pascal 188
extern 34

F[Metcalf96] 109-110
false 125

positive 221-222
field 181, 193
file(s) 181, 187-190, 219, 220

binary 187
.bmp 251
.zip 265

filepos 195
filter 233
filtering 231
Flags 18
floating point 13, 20, 30, 33, 126, 128
format 32
Formating 191
Fortran 109, 111, 116--117
Fortran 90 109, 114-115, 148
FPU 13, 21
Free-Pascal 119

frequency 247-248
function(s) 8, 110-111
functional language 109

G4 22, 23, 119
galactic 280
garbage 182

collection 182
collector 182

gee 23, 34, 119, 228
generic 213

set 213
geometric 142
getmem 181-182
GHz 3
global 34
graphics 251
grep 219, 228

H261 266
hash 220
hashing 221
hazards 147-148
hexadecimal 125

347

High Performance Fortran 109-110, 116
hole 284, 289
horizontally 233
HPF 117-118
HVQ 268

IA32 13, 22, 338
ICL 11
identifiers 127
identity matrix 282
ILCG 119
image(s) 11, 229, 233, 251, 265,

267, 272
plane 285
processing 111, 276

imperative 182
languages 148

implementation(s) 126, 212
indexfiles 228
index-sets 220, 222
indices 197, 199

implicit 197, 199
induction 38
inflection 266
information 265

theory 265
Inner Product 142
instructions 6, 9, 15

348

instructionset 270
int64 129
integer(s) 125, 182, 193
Intel 13, 20, 23, 45, 118, 187,

270, 279, 338
language 148

ioresult 216
iota 199
ISO 188
iteration 6
Iverson 110, 114

J 111, 114, 116
Java 118-119
jumps 6

K6 9, 338
kernel 14, 114, 232

labels 30, 218
language 119
lea 37
leave 33
length 142-143
letters 266
lexeme 213
library 213
Linux 28, 34, 119, 188, 222-223
literal 128
literature 272
load 22
loading 13
locations 31
logarithmically 273
loop(s) 15, 17, 19, 25, 38, 197
lossless 265
lossy 265
LZW 265

mantissa 126
Map 110
mask 244
MASM 28
matrices 142
matrix 42, 111, 273

calculation 41
multiplication 41
product 142

maxdims 136
maximum 114
maxint 125
maxreal 126

MAXVAL 114
mean(s) 272
memorised 4
memory 12, 18, 30, 32, 181

leaks 182, 213
Metadata 270
meters 280
MHz 3
Microsoft 34, 119
MIMD 110
minchar 126
minimum 114
MINVAL 114
MIRANDA 111
ML 117
mmO 31

Index

MMX 13, 15, 22, 23, 27, 31, 109, 118,
212-213, 230, 265, 270

modulus 31
Moire 248
motor 266
Motorola 118, 187
MOVNTPS 21
MOVNTQ 21
movq 43
MOVSS 21
MPEG 265-266
MS-DOS 119
multiplication 130
multiply 31

Nasm 29, 31, 34
nervous 266
Nesl 111, 113, 116-117
neurons 266
NIAL 148
n-tuple 187
NUL 217
numbers 30
numeric 183
Nyquist 248

obj 34
observations 272
Occam 116-117
occurence 219
offsets 35
opendir 224
OpenGL 279
operating system 187
operation-code 30
operation(s) 14, 39

Index

operator 31, 109, 114, 183
& 31
<< 31
>> 31
+ 31
* 31
I 31
II 31
:= 129

optimisations 212
optimised 228
OR 212
or 31
ordered 213
ordering 219
ordinal 182-183, 213, 220-221
orthogonal 39
oscillator 3
output 192
overflows 145

P3 37, 338
P4 5, 9, 12, 20, 22, 37
packed 15
padded 193
palette 277
parallel 118, 147, 235, 248

c 117
code 117
machines 109

parallelised 248
parallelism 12, 109
parameter 181
Partition 273
Pascal 9, 23, 118, 119, 182, 187-188,

190-191, 193, 212, 218-219
Prospera 212
Standard 182
Turbo 188
Vector 9, 117-118, 148, 182,

188, 212, 279
patch 267
patterns 276

recognizer 276
PC 109, 117, 118, 119
pC++ 116
pchar 223
pdir 223
pdirentry 223
Pentium 5-6, 12, 19, 26, 279, 338
performance 11
persistent 18 7

perspective 288
pi 128
pipeline 5, 15
pixel(s) 111, 129, 233, 229, 245
Pointer 180
polymorphism 204
portable 119
precision 145
PREFETCH 21, 29
primary keys 219
prime 211
printed 193
procedure(s) 189-190, 191
processor(s) 6, 11-12
PRODUCT 114
program(s) 9, 181
projection 143
Prospera Pascal 212
PSNR 272
push 35
PXOR 37
Pythagoras 142

quadwords 33
quartz 3
query 219
qword 32

RAM 181, 187
randomised 247
range checking 235
rank 114
readdir 224
real 190, 192

numbers 126
output 192

reciprocals 17
record 175, 180, 187, 218
reduction 114, 144
redundancy 266
redundant 265
region 233
regions of interest 111
register(s) 3, 9, 11, 13, 22, 24,

25, 30-31, 33
remainder 35, 38
rendering 247
repetition 145
resb 33
reshape 115
resize 247
ret 33

349

350

retina 266
Rewrite 189
ringing 235
ruse 22
root 5
rotation(s) 40, 42, 287
Russell's paradox 182

sample 248
saturated 15
scalar(s) 6, 24, 39, llO, 144, 193,

272, 273
code l17
expression 148
output 193

scaled 39
scaling 42
schema 203
school 4
screen buffer 279, 283
SDL 251, 253, 283, 285
search 219
searchindex 228
searching 8
SECTION 32
seek 195, 220
semantics 28, 148, 183
sequence(s) 111, 113
SETL l11
set(s) 182, 212, 220, 228

type 182
shaded 279
sharpened 234
sharpening 233
shortint 129
shrinking 24 7
si 31
signal 273
SIMD ll-12, 17, 21-22, 23, 25, 28-29,

109-llO, l13, l16-l18, 129,
248, 265, 267

instruction-set 118
singleton 219
SISD l18
sorted 213
source 148
sp 31
space 39
SPARC 23, l19
spatial frequency 235, 248
speed 6, 212
spoken word 266

SQRT llO
square 5, 272
square root 5
SSE 23, 44, 276
stO 31
stack 35
stalls 15
Standard Pascal 119
state machine 218
statically allocated 148
stimulae 266
storage efficiency 228
store 22, 187
Strachey l18
string(s) 126, 129, 130, 181, 224
strpas 224
structured programming 218
sub-atomic 280
subranges 182
subtract 31
subtraction 130, 212
SUIF 23
SUM l14
SUN 23
super-computers 109
Surfaces 39
system 189

technology 12
temporary 193
text 188, 190

retrieval 228
TMT 9

Pascal 23, l19
training 272-273
trans 199
transform 282
translate 39
translation 42
Texas 12
Trans-Meta Crusoe 213
Transputer l16
tree 213
triangle 39
triples 39
true 125
tuple 187
Turbo Pascal l19, 181-182, 188
type system 181

Unicode 126, 223
unicodestring2ascii 224

Index

Index

unit vector 143
units 219-220
unrolling 25
uses 254

variable(s) 127, 129, 181, 187, 189
variant 177
vector 22,24-25,35,37,41-42, 114, 117,

144, 193, 273
basis 40
column 41
quantisation 266
quantizers 271
row 41
unit 40

Vector Pascal 9, 117-118, 148, 182, 188,
212, 279

VectorC 24-25
vectorised 35, 144
vertex 39
vertical 14, 248
vibrations 3
video 268
Visual C 15

visual cortex 266
voice 266
volatile 187
vqdecode 271
vqencode 271
VRML 280

weights 233
WHERE 113-114
win32 34
Windows 20, 28, 34, 223
wireframe 279
WITH 181
word 32
write 191
writeln 191

XMM 20-22
xmmO 31
xor 37

ZF Ill
ZPL 110

351

