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Introduction

A number of widely used contemporary processors have instruction-set
extensions for improved performance in multi-media applications. The aim is
to allow operations to proceed on multiple pixels each clock cycle. Such
instruction-sets have been incorporated both in specialist DSPchips such as the
Texas C62xx (Texas Instruments, 1998) and in general purpose CPU chips like
the Intel IA32 (Intel, 2000) or the AMD K6 (Advanced Micro Devices, 1999).

These instruction-set extensions are typically based on the Single Instruc-
tion-stream Multiple Data-stream (SIMD) model in which a single instruction
causes the same mathematical operation to be carried out on several operands,
or pairs of operands, at the same time. The level or parallelism supported ranges
from two floating point operations, at a time on the AMD K6 architecture to
16 byte operations at a time on the Intel P4 architecture. Whereas processor
architectures are moving towards greater levels of parallelism, the most widely
used programming languages such as C, Java and Delphi are structured around
a model of computation in which operations take-place on a single value at a
time. This was appropriate when processors worked this way, but has become
an impediment to programmers seeking to make use of the performance
offered by multi-media instruction-sets. The introduction of SIMD instruction
sets (Peleg et al., 1997; Intel, 1999) to personal computers potentially provides
substantial performance increases, but the ability of most programmers to
harness this performance is held back by two factors:

1. The first is the limited availability of compilers that make effective use of
these instruction-sets in a machine-independent manner. This remains the
case despite the research efforts to develop compilers for multi-media
instruction-sets (Cheong and Lam, 1997; Leupers, 1999; Krall and Lelait,
2000; Srereman and Govindarajan, 2000).

2. The second is the fact that most popular programming languages were
designed on the word at a time model of the classic von Neumann
computer.

Vector Pascal aims to provide an efficient and concise notation for
programmers using multi-media enhanced CPUs. In doing so it borrows
concepts for expressing data parallelism that have a long history, dating back
to Iverson’s work on APL in the early 1960s (Iverson, 1962).

Define a vector of type T as having type T|]. Then if we have a binary
operator w: (T ® T) — T, in languages derived from APL we automatically

XXV
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have an operator w: (T[] ® T[]) — T[]. Thus, if x,y are arrays of integers
k = x + y is the array of integers where k; = x; + y;.

The basic concept is simple; there are complications to do with the
semantics of operations between arrays of different lengths and different
dimensions, but Iverson provides a consistent treatment of these. The most
recent languages to be built round this model are J, an interpretive language
(Iverson, 1991, 2000; Burke, 1995), and F (Metcalf and Reid, 1996) a
modernised Fortran. In principle, though, any language with array types can
be extended in a similar way. Iverson’s approach to data parallelism is machine
independent. It can be implemented using scalar instructions or using the
SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to data parallelism. Its aim is
to provide a notation that allows the natural and elegant expression of data
parallel algorithms within a base language that is already familiar to a con-
siderable body of programmers and combine this with modern compilation
techniques.

By an elegant algorithm is meant one which is expressed as concisely as
possible. Elegance is a goal that one approaches asymptotically, approaching
but never attaining (Chaitin, 1997). APL and ] allow the construction of very
elegant programs, but at a cost. An inevitable consequence of elegance is the
loss of redundancy. APL programs are as concise as or even more concise than
conventional mathematical notation (Iverson, 1980) and use a special
character set. This makes them hard for the uninitiated to understand. J
attempts to remedy this by restricting itself to the ASCII character set, but still
looks dauntingly unfamiliar to programmers brought up on more conven-
tional languages. Both APL and ] are interpretive, which makes them ill suited
to many of the applications for which SIMD speed is required. The aim of
Vector Pascal is to provide the conceptual gains of Iverson’s notation within a
framework familiar to imperative programmers.

Pascal (Jensen and Wirth, 1978) was chosen as a base language over the
alternatives of C and Java. C was rejected because notations such as x+y for x
and y declared as int x[41, y[4], already have the meaning of adding the
addresses of the arrays together. Java was rejected because of the difficulty of
efficiently transmitting data parallel operations via its intermediate code to a
just in time code generator.
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Computer Speed,
Program Speed

1.1 Clocks

Since their invention in the 1940s, the speed of electronic computers has
increased exponentially. Their raw speed is usually measured in MHz or
millions of cycles per second. In the last few years, MHz have been replaced
by GHz, or thousands of millions of cycles per second. These figures describe
what is called the clock speed of the computer.

Since the invention of escapement mechanisms in the Middle Ages, all
clocks have had at their heart a device that oscillates, the regularity of whose
cycles determines the clock’s accuracy. In mechanical clocks the oscillator was
typically a pendulum or a balance wheel bound by a spring, which might
oscillate once per second. The clockwork mechanism then used toothed wheels
to count these cycles and show the result in terms of seconds, minutes and
hours. Such clocks were, in a sense, the first computers.

Nowadays, clocks use quartz crystals which vibrate rapidly when a voltage is
placed across them. The crystals used in modern watches typically vibrate some
30000 times per second. The vibrations produce as a side effect electronic
pulses; digital circuits or registers count these vibrations and show or register
the time on the face of the watch.

When we talk about the clock speed of a computer, we are referring to the
rate of a similar sort of crystal-controlled oscillator. The pulses produced by it
are used to synchronise all of the internal operations of the processor chip.
Like a clock, the chip contains registers which hold the numbers on which
calculations are performed. The registers are designed so that they can change
their values only when a pulse arrives from the oscillator.

In between the registers are arithmetic circuits which perform the actual
calculations, as shown in Figure 1.1. Register A feeds information into a
calculation circuit and the result is registered in B. It takes a small but definite
time for these calculation circuits to operate, and chip designers have to ensure
that the results will arrive at B before the next clock pulse. As the components
making up the arithmetic circuits are made smaller and smaller, the time taken
for electrical pulses to propagate through them declines, allowing designers to
shorten the intervals between successive clock pulses. In a modern computer
the parts are so small that delays between pipeline stages are less than a
nanosecond, a billionth of a second.

3
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—O

Register A ¢

5 : Clock

Figure 1.1. The use of clocked pipelines.

The first computer to operate with a 1 MHz clock was built in the mid-
1950s. By 2000, clocks were 1000 times faster. The driving force in all of this
has been the ability of the semiconductor industry to make transistors smaller
and smaller, reducing the time it takes for electrons to pass through them. This
reduction in size has also made computers far cheaper. Twenty years ago Cray
mainframe computers had clock speeds of over 100 MHz, but they were so
expensive that only major national laboratories could afford them. Two
decades later we have computers with 2 GHz clocks so cheap that they are used
to amuse children.

1.2 Width

Clock speeds sell computers and, historically, improvements in clock speeds
have been by far the most important factor in increasing the power of
computers. Clock speeds have gone up 1000-fold since the mid-1950s but
individual computers are probably some 100000 times faster than they were
then. The remaining factor of 100 stems from improvements in the internal
design or architecture.

Consider the problem of adding together two four-digit numbers, 1204 +
1801. If you were to do this by hand you would proceed as follows: 1 +4 =5
and carry 0,0+ 0=0and carry 0,2+8=0and carry 1, 1 + 14+ 1 =3, so
the answer is 3005. We have done this working on at most three digits at a
time. At primary school we memorised the addition tables of all the pairs of
digits, knowing these we can perform the calculation in four steps.

We do pencil and paper arithmetic a single digit at a time, but using the
methods of long addition, long multiplication, etc., people can perform sums
on numbers of arbitrary length. A single decimal digit can be stored in a 4-bit
binary number, so a computer capable of adding together two numbers each
4 bits long would be a emulate our paper and pencil methods. In one cycle it
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could add a single pair of digits, in the next another pair, etc., taking four
cycles to do 1204 + 1801. Indeed, this is exactly how most cheap pocket
calculators work, they add pairs of digits at a time. When you press the square
root key of a pocket calculator a software subroutine is invoked that calculates
the square root by a laborious process involving repeated single digit
arithmetic, but, since the cycle time is very short compared with humans, it
appears to perform the operation instantaneously.

However, if you compare a 4-bit computer with a 16-bit computer then the
addition 1204 + 1801 can now be performed in a single operation. Thus, aside
from clock frequency, the 16-bit machine will be four times faster than the
4-bit machine. However, this only holds so long as the calculations are four
digits long. Leaving aside considerations of clock speed, a 4-bit machine will be
just as efficient as a 16-bit machine on single digit arithmetic.

Taking into account both clock speed and data width, we get a measure of
CPU speed s as

cb
s=—

w
where ¢ is the clock speed, b the bit width of the machine’s arithmetic and
w the bit width of the operands on which the program is working.

1.3 Instructioh Speed

A further complication is that the number of clock cycles required to perform
an instruction varies.

Different designs of CPUs take varying numbers of clock cycles to perform
an instruction. If you look at Table 1.1, you can see that the number of clocks
per instruction has gone down over the years with successive models of Intel
CPUs. The factors entering into this are the speed of memory relative to the
clock and the depth of the data processing pipeline. Early processors took
several clock cycles to access memory. On newer processors, this has been cut
thanks to the ability of the CPU to fetch several instructions in one memory

Table 1.1. Intel processors

CPU Year Register Clock MHz Clocks per Throughput
width instruction MIPS

4004 1971 4 0.1 8 0.0125

8080 1974 8 2 8 0.25

8086 1978 16 5 8 0.33

386 1985 32 16 3 5.0

Pentium with MMX 1997 64 200 0.5 400

P4 2001 128 1600 0.5 3200

The first Intel microprocessor, the 4004, was targeted at pocket calculators. It had a 4-bit accumulator, just enough to
hold a decimal digit. Subsequent processors have seen the widths of their registers increase by successive factors of two.
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access and to the use of caches, small auxiliary high-speed memories, to reduce

the mean time to read a memory location. The most recent processors are

super-scalar, meaning that they can execute more than one instruction each

clock cycle. A Pentium class processor can issue two instructions per clock.
This modifies our speed equation to

s=—

where i is the number clocks per instruction. On a given processor, the most
important factor determining the number of clocks per instruction is memory
access. Since memory speeds have consistently lagged behind processor speeds,
an algorithm with many load and store instructions will be slower than one
with fewer. Since the main technique used by CPU designers to reduce i has
been the use of caches, another crucial determinant of speed is the extent to
which the data used by an algorithm will fit into the cache. If the dataset is
small enough, memory fetches will execute in one or two instructions. If not,
they can take 10 times as long.

1.4 Overhead Instructions

When we consider an algorithm in the abstract, we can determine the
minimum number of basic arithmetic operations required to perform a task. If
we want to form the total of an array of four numbers, then we know that we
need at least three additions. On most designs of CPU, however, it would be
hard to code this with so few instructions.

If the addition is performed using a for loop (see Alg. 1), then there will be
additional instructions to increment the iteration variable, to test it against
limits and to perform jumps. Even the basic addition step t:=t+a[i] can
involve several instructions. In Alg. 1, a total of 36 instructions are required to
perform the three basic additions.

If we unroll the loop and express it in a single statement as shown in Alg. 2,
then the compiler is able to make a better job of translating the code, so we
end up with only five instructions to perform the three adds that are required.

The number of overhead instructions needed depends on:

e the sophistication of the compiler used
e the coding style used by the programmer
o the expressive power of the CPU’s instruction-set.

We can summarise the effects of these factors in a number u, which is defined as

useful instructions

" total instructions

In the program fragment in Figure 1.1 we get u = {5 and for the unrolled
code we obtain u = 3.
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High Level Code Resulting machine code
t:=0;
XOR AX, AX
MOV T,AX
for i:=1 to 4 do t:=t+al[il;
MOV 1,0001
JMP 0020
INC I
MOV AX,T -+
MOV DI,I |
SHL DI,1 | t:=t+al[i]
ADD AX,[DI+A] |
MOV T,AX -+
CMP 1,4
JNZ 001C
Instructions executed 36

Note that the high-level code generates many more lines of assembler. Even the basic stage of
computing each step of the total t :=t+a[1i] requires five instructions.

Algorithm 1. Forming a total with a for loop.

t:=a[ll+al2]+al3]+al4];
MOV AX,[A]
ADD AX, [A+2]
ADD AX, [A+4]
ADD AX,[A+6]
MOV T,AX

Instructions executed 5

Note that in this case the compiler is able to optimise access to the array elements and to dispense
with the loop code, giving a much better efficiency.

Algorithm 2. Forming a total with an unrolled loop.

Taking overhead instructions into account, we obtain a new equation for
program speed:
_uch

§=—

wi

Another factor that one has to consider is Amdahl’s law, which states that
the effective speedup of a program due to parallelisation will be constrained by
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the fraction of the program that cannot be executed in parallel:

_Y+p

A=
Y+E

where A is the acceleration achievable, 1) is the number of inherently serial
instructions in the program, p is the potentially parallel instructions and # is
the number of processing units available to perform the operations. This
means that for real programs the effective speedup tends to be less than that
which might appear to be possible simply by looking at the parallelism of the
instruction-set. For instance, assume we have a computer capable of perform-
ing four operations in parallel, and a program in which 8 million of the dynam-
ically executed operations are potentially parallelisable, with a residuum of
2 million that are inherently serial:

Serial Parallel Parallelism Total
instructions instructions
Problem 2000000 8000000

Machine 1 2000000 8000000 1 10000 000
Machine 2 2000000 2000000 4 4000000
Speedup 150%

1.5 Algorithm Complexity

The factors described so far relate to the speed and architecture of the CPU
and to the compiler’s effectiveness in using it. However, for large programs
these factors are dominated by the algorithmic complexity of the program.
This describes how the number of basic arithmetic operations required by the
program grows as a function of the size of the problem. Thus a naive searching
algorithm would require of the order of n basic operations to search a table
of n elements, but a better algorithm can achieve the same function with of
the order of log n basic operations. We use the notation C(n) to denote the
complexity of the algorithm. C(n) gives the minimum number of basic
arithmetic operations that are required by the algorithm assuming that u =1,
i.e. that we have a perfectly efficient compiler. We call this minimum number
of operations the base operations. Thus our final model for determining the
speed of a program is given by
uch
s=C(n) >

where wi < b, and a modified versions of Amdahl’s equation in other cases:

s = C(n)uc (:ﬁi%)
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Table 1.2. Performance on vector kemels

w b
16 (BP) 32 (DevP) 32 (TMT) 32 (DP) 32 (VP 486) 64 (VP K6) test

8 46 71 80 166 333 2329 unsigned byte +

8 38 55 57 110 225 2329 saturated unsigned byte +
8 23 49 46 98 188 2330 pixel +

8 39 67 14 99 158 998 pixel x

16 39 66 74 124 367 1165 short integer +

32 47 85 59 285 349 635 long integer +

32 33 47 10 250 367 582 real +

32 32 47 10 161 164 665 real dot prod

32 33 79 58 440 517 465 integer dot prod

In these tests the clock speed ¢ = 1GHz is held constant, and the number of base operations is known
for each row of the table. Al figures are in terms of millions of base operations per second measured on
a 1GHz Athlon. Different rows of the table have different effective data type widths w. Variations in
speed going down a column show the effects of w, and also measure the relative efficiency, u, of the
compilers for different data types.

The rows measuring dot product also potentially show variations in i because there are opportunities
in the dot product operation for caching operands in registers. Where these are taken, the effect is to
reduce the mean number of clocks to access an operand, thus giving higher performances.

The bit width of the registers available varies between the columns since one compiler was targeted
on the 286 instruction-set giving b = 16, another was targeted on the K6 instruction-set with b = 64
and the others on the 486 instruction-set with b = 32. The resulting variations in performance along
the rows measure the effect of b and u varying between the compilers.

It can be seen that the combined effects of variations in bu can amount to a performance variation of
100 to 1 along the rows.

The following compilers were used: BP = Borland Pascal compiler with 287 instructions enabled range
checks off, b = 16, release of 1992; DevP = Dev Pascal version 1.9, b = 32; TMT = TMT Pascal version
3, b = 32, release of 2000; DP = Delphi version 4, b = 32, release of 1998; VP 486 = Vector Pascal
targeted at a 486, b = 32, release of 2002; VP K6 = Vector Pascal targeted at an AMD K6, b = 64,
release of 2002.

Clearly the most important factor here is C(n), since, despite gains in clock
speed, etc., for sufficiently large n an On algorithm will run faster on an old
8086 than an On? algorithm on a P4.

However, if we assume that the complexity of the algorithm C(n) is
unchanged and that we have a particular processor to work with, thus fixing c,
then changes to the remaining factors can still produce dramatic changes in
program speed.

If we select our numeric precision w to be no greater than required, use
large register widths b and produce few overhead instructions, some programs
can be speeded up by more than an order of magnitude (see Tables 1.2 and
13.1). Vector Pascal improves program performance by concentrating on these
factors. To understand how this is possible we have to look at how Intel and
AMD have widened the registers on their latest processors, and introduced
new data-types targeted at image processing problems. This is the subject
matter of the next chapter.



SIMD Instruction-sets

In the performance model presented in Chapter 1, we identified two crucial
factors to be b the bit width of the machine’s registers and w the width in bits
of the numbers being used in the program. We examined the situation where
w > b, taking the example of a 4-bit machine doing 16-bit arithmetic. In this
case we saw that performance would vary as b/w.

In this chapter, we look at how processor manufacturers have attempted to
deal with the opposite case, b > w, where the register widths are substantially
wider than the data types being operated on. This occurs frequently when
dealing with images and sound, which are typically represented by 8- or 16-bit
discrete samples. Modern processors tend to have at least some 64-bit
registers, since these are required for floating point operations. The challenge
has been to keep performance increasing as a function of b/w whilst b > w.

2.1 The SIMD Model

A number of widely used contemporary processors have instruction-set exten-
sions for improved performance in multi-media applications. The aim is to allow
operations to proceed on multiple pixels each clock cycle. Such instruction-
sets have been incorporated both in specialist DSP chips such as the Texas C62xx
(Texas Instruments, 1998) and in general-purpose CPU chips such as the Intel
1A32 (Intel, 1999, 2000) or the AMD K6 (Advanced Micro Devices, 1999).
These instruction-set extensions are typically based on the Single Instruction-
stream Multiple Data-stream (SIMD) model in which a single instruction causes
the same mathematical operation to be carried out on many operands, or pairs
of operands, at the same time. The SIMD model was originally developed in
the context of large-scale parallel machines such as the ICL Distributed Array
Processor or the Connection Machine. In these systems, a single control pro-
cessor broadcast an instruction to thousands of single-bit wide data processors
causing each to perform the same action in lockstep. These early SIMD pro-
cessors exhibited massive data parallelism but, with each data processor having
its own private memory and data-bus, they were bulky machines involving
multiple boards each carrying multiple memory chip, data-processor chip pairs.
Whilst they used single bit processors, the SIMD model is not dependent on
this. It can also be implemented with multiple 8-, 16- or 32-bit data processors.

1
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The incorporation of SIMD technology in modern general-purpose
microprocessors is on a more modest scale than were the pioneering efforts.
For reasons of economy the SIMD engine has to be included on the same die as
the rest of the CPU. This immediately constrains the degree of parallelism that
can be obtained. The constraint does not arise from the difficulties of incorpo-
rating large numbers of simple processing units. With contemporary feature
sizes, one could fit more than 1000 1-bit processors on a die. Instead, the degree
of parallelism is constrained by the width of the CPU to memory data path.

The SIMD model provides for all data processors to transfer simultaneously
words of data between internal registers and corresponding locations in their
memory banks. Thus with 7 data processors each using w-bit words one needs
a path to memory of nw bits. If a CPU chip has a 64-bit memory bus then it
could support 64 1-bit SIMD data processors, or eight 8-bit data processors,
two 32-bit processors, etc.

For bulk data operations, such as those involved in image processing, the
relevant memory bus is the off-chip bus. For algorithms that can exploit some
degree of data locality, the relevant bus would be that linking the CPU to the
on-chip cache, and the degree of parallelism possible would be constrained by
the width of the cache lines used.

Whilst memory access paths constrain the degree of parallelism possible, the
large numbers of logic gates available on modern dies allow the complexity of
the individual data processors to be raised. Instead of performing simple 1-bit
arithmetic, they do parallel arithmetic on multi-bit integers and floating point
numbers.

As a combined result of these altered constraints we find that SIMD instruc-
tions for multi-media applications have parallelism levels of between 32 bits
(Texas C62xx) and 128 bits (Intel P4), and the supported data types range
from 8-bit integers to 64-bit floating point numbers.

2.2 The MMX Register Architecture

The MMX architectural extensions were introduced in late models of the
Pentium and subsequent processors from Intel and exist in compatible chips

32 64
«—> < >
€ax mmx0
ebx mmx1
ecx mmx2
edx mmx3
ebp mmx4
esi mmx5
edi mmx6
esp mmx7

Figure 2.1. The Intel I1A32 with MMX register architecture.
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produced by AMD, Cyrix and others. They can now be considered part of the
baseline architecture of any contemporary PC.

The data registers available for computational purposes on processors
incorporating the MMX architecture are shown in Figure 2.1. The original
IA32 architecture had eight general-purpose registers and an eight-deep stack
of floating point registers. When designing the multi-media extensions to the
instruction-set, Intel wanted to ensure that no new state bits were added to the
process model. Adding new state bits would have made CPUs with the exten-
sions incompatible with existing operating systems, as these would not have
saved the additional state on a task switch. Instead, Intel added eight new
virtual 64-bit registers which are aliased on to the existing floating point stack.
These new multimedia registers, mm0 ... mm7, use state bits already allocated to
the Floating Point Unit (FPU), and are thus saved when an operating system
saves the state of the FPU.

The MMX instructions share addressing mode formats with the instructions
used for the general-purpose registers. The 3-bit register identification fields
inherited from the previous instructions are now used to index the eight multi-
media rather than the eight general-purpose registers. The existing addressing
modes for memory operands are also carried over, allowing the full gamut of
base and index address modes to be applied to the loading and storing of
MMX operands.

2.3 MMX Data-types

The MMX registers support four data formats as shown in Figure 2.2. A
register can hold a single 64-bit QWORD, a pair of 32-bit DWORDS, four 16-bit
WORDS or eight BYTES. Within these formats the data types shown in Table 2.1
are supported.

| . 88bitBYTES |

| 416-bit WORDS |

| 232-bitDWORDS |

} 164-bitQWORD |

Figure 2.2. The MMX data formats.

Table 2.1. MMX data types

Format Signed Unsigned Signed saturated Unsigned saturated

BYTE Yes Yes Yes Yes
WORD Yes Yes Yes Yes
DWORD Yes Yes No No
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The saturated data types require special comment. They are designed to
handle a circumstance that arises frequently in image processing when using
pixels represented as integers: that of constraining the result of some arithmetic
operation to be within the meaningful bounds of the integer representation.

Suppose we are adding two images represented as arrays of bytes in the range
0.255 with 0 representing black and 255 white. It is possible that the results may
be greater than 255. For example, 200 + 175 =375 but in 8-bit binary

11001000
+ 10101111

= 1 01110111

Dropping the leading 1, we get 01110111 =119, which is dimmer than either
of the original pixels. The only sensible answer in this case would have been
255, representing white.

Consider the problem of applying the following vertical edge sharpening
convolution kernel to an image represented as signed bytes:

—-0.25 0.75 —0.25
—-0.5 1.5 -0.5
—0.25 0.75 —0.25

Since the kernel is unitary, that is, its elements sum to 1, it produces no overall
change in the contrast of the image. The image, being represented in signed
bytes, will have pixels in the range —128 .. .127, with —128 representing black
and 127 representing white. The effect of the convolution should be to
enhance the contrast on any vertical lines or vertical edges.

Now consider the effect of applying the kernel to the 3 x 4 pixel pattern

0 -70 —70 0
0 -70 —70 0
0 -70 -70 0

which represents a 2 pixel wide dark-grey vertical line on a mid-grey
background. The intended effect should be to enhance the contrast between
the line and the background.

If we perform the calculations for the convolution using real arithmetic,
the pixels p representing the dark-grey line (the —70s) are mapped to p’ = 3x
—70 + (=1 x —70) = —140. The snag is that —140 is less than the smallest
signed 8-bit integer. The only ‘sensible’ value that can be assigned to p’ would
be —128 =black. If we simply converted —140 to an 8-bit signed value by

IFor speed we might use 16-bit integers representing the convolution as

-1 3 -1
-2 6 -2
-1 3 -1

followed by a shift right two places to normalise the result, but the argument above would
still hold.
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truncation, we would obtain 01110011 binary or 115 decimal. The dark line,
would have been mapped to a light line, contrary to intention.

To avoid such errors, image processing code using 8-bit values has to put in
tests to check if values are going out of range, and force all out-of-range values
to the appropriate extremes of the ranges. This inevitably slows the computa-
tion of inner loops. In addition to introducing additional instructions, the
tests involve conditional branches and pipeline stalls.

The MMX seeks to obviate this by providing packed saturated data types
with appropriate arithmetic operations over them. These use hardware to ensure
that the numbers remain in range.

The combined effect of the use of packed data and saturated types can be to
produce a significant increase in code density and performance.

Consider the C code in Alg. 3 to add two images pointed to by v1 and v2,
storing the result in the image pointed to by v3. The code includes a check to
prevent overflow. Compiled into assembler code by the Visual C ++ compiler
the resulting assembler code has 18 instructions in the inner loop. The poten-
tial acceleration due to the MMX can be seen by comparing it with the hand-
coded assembler inner loop in Alg. 4.

The example assumes that v1, v2, v3 are indexed by es i for the duration of
the loop. Only five instructions are used in the whole loop, compared with 18
for the compiled C code. Furthermore, the MMX code processes eight times as
much data per iteration, thus requiring only 0.625 instructions per byte
processed. The compiled code thus executes 29 times as many instructions to
perform the same task. Although some of this can be put down to the
superiority of hand-assembled versus automatically compiled code, the
combination of the SIMD model and the saturated arithmetic is obviously a
major factor.

2.4 3DNow!

The original MMX instructions introduced by Intel were targeted at increasing
the performance of 2D image processing, giving their biggest performance
boost for images of byte-pixels. The typical operations in 3D graphics, pers-
pective transformations, ray tracing, rendering, etc., tend to rely upon floating
point data representation. Certain high 2D image processing operations requir-
ing high accuracy such as high-precision stereo matching can also be imple-
mented using floating point data. Both Intel and AMD have seen the need to
provide for these data representations. AMD responded first with the 3DNow!
instructions, then Intel introduced the Streaming SIMD instructions which we
discuss in the next section.

The basic IA32 architecture already provides support for 32- and 64-bit
IEEE floating point instructions using the FPU stack. However, 64-bit floating
point numbers are poor candidates for parallelism in view of the data-path
limitations described in Section 2.1.

AMD provided a straightforward extension of the MMX whereby an addi-
tional data type, the pair of 32-bit floats shown in Figure 2.3, could be operated
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main()
{
unsigned char v1[LEN],v2[LEN],Vv3[LEN];
int i,j.t;
for(j=0;J<LEN;j++){
t=v2[j1+v1[jl;
v3[jl=(unsigned char)(t>2552255:t);
}
}

ASSEMBLER
xor edx, edx ; 9.8
$B1$3: ; Preds $B1$5 $B1$2
mov eax, edx ; 10.9
Tea ecx, DWORD PTR [esp] ; 10.6
movzx ecx, BYTE PTR [eax+ecx] ; 10.6
mov DWORD PTR [esp+192001, edi ;
Tea edi, DWORD PTR [esp+6400] ; 10.12
movzx edi, BYTE PTR [eax+edi] ; 10.12
add ecx, edi ; 10.12
cmp ecx, 255 ; 11.26
mov edi, DWORD PTR [esp+19200] ;
jle $B1$5 ; Prob 16% ; 11.26
$B1$4: ; Preds $B1$3
mov ecx, 255 ; 11.26
$B19$5: ; Preds $B1$3 $B13%4
inc edx ; 9.18
cmp edx, 6400 ; 9.3
mov DWORD PTR [esp+19200]1, edi ;
lea edi, DWORD PTR [esp+12800] ; 11
mov BYTE PTR [eaxtedi], cl ; 11.
mov edi, DWORD PTR [esp+19200] ;
J1 $B13$3 ; Prob 80% ; 9.3
\end{verbatim}

Algorithm 3. C code to add two images and corresponding assembler for the inner loop. Code
compiled on the Intel C compiler version 4.0.

11: movg mmO, [esi+ebp-LEN] ; load 8 bytes
paddusb mmO, [esi+ebp-2*LEN] ; packed unsigned add bytes
movq [esi+ebp-3*LEN],mm0 ; store 8 byte result
add esi,8 ; inc dest pntr
Toop 11 ; repeat for the rest

Algorithm 4. MMX version of Alg. 3.
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Real Real

32 bit

Figure 2.3. The AMD 3DNOW! extensions add 32-bit floating point data to the types that can be
handled in MMX registers.

on. Type conversion operations are provided to convert between pairs of
32-bit integers and 32-bit floats.

The range of operators supported includes instructions for the rapid
computation of reciprocals and square roots — relevant to the computation of
Euclidean norms in 3D space.

2.4.1 Cache Handling

A significant extension with 3DNow, copied in the Streaming SIMD exten-
sions, is the ability to prefetch data into the cache prior to its use. This is pot-
entially useful in any loop operating on an array of data. For instance the loop
in the previous section could be accelerated by inserting the marked prefetch
instructions.

The instruction count rises; despite this, performance goes up since loads
into the cache are initiated prior to the data being needed. This allows the
loading of the cache to be overlapped with useful instructions rather than
forcing calculations to stall whilst the load takes place.

To understand why this is useful, it is worth taking a closer look at how the
cache on amodern processor works. We will describe the P4 cache as an example;
the Athlon cache differs only in details. The account we give is simplified but
sufficient to understand how the prefetch instructions work.

The P4 has an 8kb level 1 cache with 64-byte cache lines and four-way set
associativity (see Figure 2.4).

This means that it has four banks of memory each of which contains
32 lines. When a memory fetch occurs, the CPU generates a 32-bit store
address. The address is split into three fields as shown. The bottom 6 bits select
a byte offset within a cache line. The next 5 bits are used to select one of 32 lines
in each bank. The remaining 21 bits constitute the tag field of the address. This
is compared in parallel to the tag fields of each four selected cache lines. In
addition to checking the tag fields for identity, validity flags associated with the
lines are validated. If the tag field of one of the lines is found to match with the
tag field of the address, then a cache hit occurs, otherwise a cache miss occurs.

In the event of a hit, the word in the line indicated by the byte select bits is
returned as the operand of the instruction. In the event of a cache miss then a
cache load is initiated to the next level of the store hierarchy — the level 2 cache.
Here a similar process is repeated except that here the cache is larger and the
access time longer. A miss on the level 2 cache causes a line of the level 2 cache
to be loaded from main memory.

When a fetch percolates down to the main store, the processor will fetch a
whole cache line as a single transaction, spread over several clock cycles. There
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Figure 2.4. The cache structure.

is an initial memory setup time during which the address is transfered to the
dynamic ram chips and an appropriate page within the dynamic ram chips is
selected. Following this, eight memory cycles each transfering 8 bytes are used
to fill the cache line. The reason for having relatively long cache lines is that it
enables the cost of address setup to be amortised over multiple fetched memory
words. This runs the risk that some of the data fetched into the cache will not be
used, and will therefore show its greatest advantage either when an algorithm
moves sequentially through adjacent memory locations or when a small group
of frequently accessed variables can be loaded into a single cache line.

In parallel with the fetching of a new line’s worth of data from memory, the
CPU selects one of the four cache banks to receive the data. The mechanism
used to choose which bank will get the data varies. Some caches use a pseudo
random number generator to select a bank, others select the bank containing
the oldest cache line to be replaced (Hennessy and Patterson, 2003). The block
being replaced has its tag field replaced with the tag field of the requested word
and the line is marked as invalid. Once the data has been loaded into the cache,
the flags are set to indicate that it is now valid.

A moment’s consideration will show that with a four-bank cache it is pos-
sible to store data from four distinct areas of memory which share the same low
order address bits. As soon as a fifth block is accessed sharing these addresses,
then one of the previous blocks must be discarded. However, as Figure 2.5
shows, it is still possible to perform many useful loops without such clashes
occurring.

2.4.2 Cache Line Length and Prefetching

Since entire cache lines are fetched at a time, we can see that if the processor
has 64-byte cache lines, Alg. 5 will issue unnecessary prefetch instructions. We
only need to issue a single prefetch instruction for each use of a new cache line,
that is, once every 64 bytes processed. Alg. 6 illustrates this, having two nested
loops. Immediately prior to entering the inner loop, it prefetches the data that
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Figure 2.5. With four banks of cache it is possible for a loop using two source and one destination array
to stream data in distinct banks whilst reserving one bank for local variables.

11:

mov ecx, LEN
shr ecx, 3

movq mm0, [esi+ebp-LEN]
prefetch [esi+ebp-LEN+8]

paddusb mm0, [esi+ebp-2*LEN] ;

prefetch [esi+ebp-2*LEN+8]
movq [esi+ebp-3*LEN],mm0

prefetchw [esi+ebp-3*LEN+8]

add esi,8
Toop 11

; ecx gets

number of times
round loop

; lToad 8 bytes

’

’

>

; get next 8 into cache

packed unsigned add bytes

; store 8 byte result

; set up cache to write
; 8 bytes of data
; inc dest pntr

’

; repeat for the rest

Algorithm 5. A simple example of prefetching.

will be need for the following iteration of the outer loop. It does this by
prefetching data that is 64bytes on from the data to be accessed on the

following iteration of the inner loop.

2.5 Streaming SIMD

Intel produced their own functional equivalent to AMD’s 3DNOW! instruction-
set with the Pentium III processor. They called the new instructions Streaming
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mov eax,LEN ; eax gets
shr eax,6 ; number of times

; round outer Toop
prefetch [esi+ebp-LEN+64] ; get next line to cache

prefetch [esi+ebp-2*LEN+64] ; ditto
prefetchw [esi+ebp-3*LEN+64] ; set up cache to write

10: mov ecx,8 ; times round inner loop

11: movq mmO, [esi+ebp-LEN] ; load 8 bytes
paddusb mm0, [esi+ebp-2*LEN] ; packed unsigned + bytes
movq [esi+ebp-3*LEN],mm0 ; store 8 byte result
add esi,8 ; inc dest pntr
Toop 11 ; repeat for the rest
dec eax ; decrement outer Tloop count
jnz 10

Algorithm 6. An example that makes more effective use of prefetching than Alg. 5.

2 by 64bit reals

I |
4 by 32 bit reals

L I l | |
4 by 32 bit integers

I | ]
8 by 16 bit integers
C I [ [ [ T 1]

16 by 8 bit integers

LTI T T I lTd

Figure 2.6. The Streaming SIMD extensions add additional 128-bit vector registers, with multiple
formats.

SIMD. As with 3DNOW!, the Streaming SIMD instructions combine cache
prefetching techniques with parallel operations on short vectors of 32-bit
floating point operands. With the P4 these were extended to allow operations
on other data types as shown in Figure 2.6.

The most significant difference is in the model of machine state. Whilst the
original MMX instructions and 3DNOW! add no new state to the machine
architecture, Streaming SIMD introduces additional registers. Eight new 128-
bit registers (XMMO...7) are introduced. The addition of new state means
that operating systems have to be modified to ensure that XMM registers are
saved during context switches. Intel provided a driver to do this for Microsoft
Windows NT 4.0; Windows 98 and subsequent Windows releases have this
support built in.

The default format for the XMM registers is a 4-tuple of 32-bit floating point
numbers. Instructions are provided to perform parallel addition, multi-
plication, subtraction and division on these 4-tuples. Other formats are:

1. A set of Boolean operations are provided that treat the registers as 128-bit
words, useful for operations on bitmaps.
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Table 2.2. The XMM registers support both scalar and
vector arithmetic

Vector addition
ADDPS xmmO,xmm1

xmm0 12 13 14 15
xmm1 20 4.0 6.0 80 +
xmm0 3.2 53 74 9.5

Scalar addition
ADDSS xmmO0,xmm1

xmm0 1.2 13 14 1.5
xmm1 2.0 40 6.0 80 +
xmmO 1.2 13 14 9.5

2. Scalar floating operations are provided that operate on the lower 32 bits
of the register. This allows the XMM registers to be used for conventional
single-precision floating point arithmetic. Whereas the pre-existing Intel
FPU instructions support single-precision arithmetic, the original FPU is
based on a reverse Polish stack architecture. This scheme does not fit well
with the register allocation schemes used in some compilers. The existence
of what are effectively eight scalar floating point registers can lead to more
efficient floating point code.

The scalar and vector uses of the XMM registers are contrasted in Table 2.2.
A special move instruction (MOVSS) is provided to load or store the least
significant 32 bits of an XMM register.

From the introduction of the P4 processor the following data types became
available:

1. The registers can hold two double-precision floating point numbers.

2. The low 64bits of the registers can be treated as scalar double-precision
floating point numbers.

3. The registers can be treated as holding four integers of length 32 bits.

4. They can hold eight integers of length 16 bits.

5. They can hold 16 integers of length 8 bits.

2.5.1 Cache Optimisation

The Streaming side of the Streaming SIMD extensions is concerned with
optimising the use of the cache. The extensions will typically be used with large
collections of data, too large to fit into the cache. If an application were adding
two vectors of a million floating point registers using standard instructions,
the 4 MB of results would pollute the cache. This cache pollution can be avoided
using the non-temporal store instructions, MOVNTPS and MOVNTQ, operat-
ing on the XMM and MM registers, respectively.

A family of prefetch instructions is provided to pre-load data into the cache.
This is more sophisticated than the equivalent 3DNOW! instruction described
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above. The AMD instruction applies to all cache levels. The Intel variant allows
the programmer to specify which levels of cache are to be preloaded.
Whereas all previous IA32 load and store instructions had operated equally
well on aligned and unaligned data, the Streaming SIMD extensions introduces
special load and store instructions to operate on aligned 128-bit words. General-
purpose load and store instructions capable of handling unaligned data are
retained. However, these are much slower than the aligned loads and stores. For
algorithms which cannot guarantee that operands will be 16-byte aligned, this
can lead to significant performance penalties. For unaligned accesses to integer
types it is generally more efficient to process data 64 bits at a time using the
MMX registers than to process it 128 bits at a time using XMM registers.

2.6 The Motorola Altivec Architecture

Motorola have a vector extension, called AltiVec, on their G4 processor that is
functionally similar to the SIMD instructions of the P4. The AltiVec unit con-
tains 32 128-bit vector registers identified as vO through v31. Data is represented
in vector registers as either integer (byte, half, word size) or single-sized (32-
bit) floating point data. The operations supported on these registers are broadly
similar to those provided by Intel in the P4 with the following significant
restrictions and extensions.

Restrictions

1. As a RISC processor the G4 requires all operands of arithmetic or logical
instructions to be in registers. There are no memory to register instructions.

2. The alignment rules are even stricter than the P4 alignment rules. There is

no unaligned load or store instruction. If an unaligned address is supplied
to a load or store, the bottom 4 bits of the address are ignored.

. Double-precision floating point numbers are not supported.

4. When using altivec instructions, a special register, the VRSAVE register, is
used to indicate to the operating system which vector registers are in use. A
bit set in the register indicates that your program is using the corresponding
V register. The application is responsible for setting these bits and, if they are
not set, the registers will not be saved during a context switch.

w

Extensions

1. Multiply accumulate instructions are provided.
2. Instructions are provided to produce scalar sums over vector registers.

Motorola also claim to obtain better floating point performance on their
parallel single-precision instructions than Intel do. This claim, which the author
has been unable to validate, must be set against the markedly slower clock speed
of Motorola CPUs.



SIMD Programming
in Assembler and C

There is little exploitation of the SIMD instructions described in the previous
chapter because of relatively poor compiler support. When the MMX and SSE
instructions became available, Intel supplied a C compiler that had low-level
extensions allowing the extended instructions to be used. Intel terms these
extensions ‘assembler intrinsics’. Syntactically these look like C functions but
they are translated one for one into equivalent assembler instructions. The use
of assembler intrinsics simplifies the process of developing MMX code, in that
programmers use a single tool — the C compiler, and do not need to concern
themselves with low-level linkage issues. However, the other disadvantages of
assembler coding remain. The Intel C compiler comes with a set of C++ classes
that correspond to the fundamental types supported by the MMX and SIMD
instruction sets. The SIMD classes do a good job of presenting the underlying
capabilities of the architecture within the context of the C language. The code
produced is also efficient. However, although the C++ code has a higher level
of expression than assembler intrinsics, it is not portable to other processors.
The same approach of essentially allowing assembler inserts into a high-level
language was adopted by other compilers: TMT-Pascal, Free-Pascal and a
release of gcc for the G4 processor used in the iMac.

3.1 Vectorising C Compilers

There has been recent interest in the application of vectorisation techniques to
instruction level parallelism. Thus, Cheong and Lam (1997) discuss the use of
the Stanford University SUIF parallelising compiler to exploit the SUN VIS
extensions for the UltraSparc from C programs. They report speedups of around
4 on byte integer parallel addition. Krall and Lelait’s compiler (Krall and Lelait,
2000) also exploits the VIS extensions on the Sun Ultra-SPARC processor from
C using the CoSy compiler framework. They compare classic vectorisation tech-
niques with unrolling, concluding that both are equally effective, and report
speedups of 2.7 to 4.7. Sreraman and Govindarajan (2000) exploit Intel MMX
parallelism from C with SUIF, using a variety of vectorisation techniques to
generate in-line assembly language, achieving speedups from 2 to 6.5. All of
these groups target specific architectures. Finally, Leupers (1999) has reported a
C compiler that uses vectorising optimisation techniques for compiling code
for the multimedia instruction sets of some signal processors, but this is not
generalised to the types of processors used in desktop computers.

23
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Tools of this sort have recently become commercially available with the
launch of version 6 of the Intel C compiler and also the VectorC compiler
from Codeplay. These allow unmodified C source programs to be compiled to
the MMX and SSE instructions. The compilers are able to spot vectorisable
for-loops and compile them into sequences of vector instructions.

The code generator analyses inner loops and those which have the general
form

for (i=low;i<=high;i++)
alil=b[i]1Qc[i1Qd[i].....

are vectorised if vector instructions to perform operations €, §2,, etc. exist.
The resulting code takes the form of two loops, the quotient loop and the
remainder loop. The quotient loop is executed in parallel up to the parallelism
factor defined by the machine vector registers, the remainder loop is then
serialised.
Suppose low = 0 and high = 10 and the type of a[i], b[i], etc., is 32-bit float
and that the machine is P4, then the quotient loop translates to

for(i=0;i<=7;1i+=4)
ali..i+31=bli..i+31Qcli..i+310d[i..1+3]....

the remainder loop translates to

for(i=8;i<=10;i++)

alil=blilQclildlil....

The absence of scalar to vector arithmetic instructions on the Intel and
AMD processors means that the gains from vectorisation are more limited if
any of the operands in the assignment statement are scalars rather than
vectors. The code generator will attempt to vectorise these, but in doing so it is

forced to make multiple copies of scalars prior to loading them into vector
registers, which is relatively costly.

3.1.1 Dead for Loop Elimination

The above transformations give rise to many null loops or loops with a single
iteration, so the vectorisation is combined with algorithms to eliminate null
loops. Given

for(i=el;i<=e2;i++)cl

then if we know at compile time that el will always be greater than e2, we can
remove the entire for statement.
In the loop

for(i=el;i<=eZ2;i++)cl
If we know that e I=¢e/2, then we can substitute it with

i:=el;cl;
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3.1.2 Loop Unrolling

It is advantageous to unroll loops to some degree. Unrolling loops has the
advantages that:

1. Since the size of basic block is increased, the chances of pipeline stalls are
reduced. This may be less significant with the very latest processors.

2. The total number of instructions executed can be reduced since in simple
an inner loop the comparison and branch instructions can make up around
30% of the instructions executed. If we perform 5-fold unrolling we reduce
this overhead, allowing the loop to execute about 25% faster.

A for loop of the form
for(i=1;i<=10;i++) x[i]=j[i1+1;
can be expanded to

for(i=1;1<=10;1i++){
x[11=j011+1;
i=1+1;
x[i1=3011+1;
i=1+1;
x[11=3[11+1;
i=i+1;
x[il=j[1]1+1;
i=i+1;
x[11=j[11+1;
}
resulting in a loop that is only gone round twice.
Since vectorisation and loop unrolling are performed prior to dead loop
removal and unitary loop handling, the net effect is that:

1. Many loops are replaced with vectorised straight line code.
2. In the case of loops whose length modulo the vector register length is zero,
the remainder loop is elided, giving a fully vectorised loop.

Although the VectorC and Intel C compilers do provide a means by which
unmodified C code can take advantage of SIMD instructions, the compilers are
expensive: several thousand dollars for VectorC, somewhat less for the Intel one.

3.2 Direct Use of Assembler Code

With instruction-sets as complex as those incorporated into the latest Intel and
AMD processors, careful hand-written assembler language routines produce the
highest quality machine code.

Microsoft’s MASM assembler supports the extended instruction-set, as does
the free assembler Nasm. The latter has the advantage of running on both
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section .text;
global _main
LEN equ 6400
_main: enter LEN*3,0
mov ebx,100000 ; perform test 100000 times
10:
mov esi,0 ; set esi registers to
; index the elements
mov ecx,LEN/8 ; set up the count byte
11: movq mmO, [esi+ebp-LEN] ; load 8 bytes
paddb mm0, [esi+ebp-2*LEN] ; packed unsigned add
movq [esi+ebp-3*LEN],mm0 ; store 8 byte result
add esi,8 ; inc dest pntr
Toop 11 ; repeat for the rest
dec ebx
jnz 10
mov eax,0
leave
ret

Algorithm 7. Assembler version of the test program.

Linux and Windows, and provides support for MMX, 3DNOW! and SIMD
instructions.

If one either cannot obtain or cannot afford better tools, then it can be
worth directly coding inner loops as assembler routines. The disadvantages of
using assembler are well known:

1. It is not portable between processors. A program written in assembler to
use the AMD extensions will not run on an Intel processor nor, a fortiori,
on a G4.

2. It requires the programmer to have an in-depth knowledge of the underly-
ing machine architecture, which only a small proportion of programmers
now have.

3. Productivity in terms of programmer time spent to implement a given
algorithm is lower than in high-level languages.

4. The programmer must further master the low-level linkage and procedure
call conventions of the high-level language used for the rest of the application.

5. Programmers have to master additional program development tools.

All of these militate against widespread use.

3.2.1 The Example Program

The assembler version of the example program is shown in Alg. 7. It runs in
4.01 s on the test machine, a 233 MHz Pentium II, a throughput of 160 million
byte arithmetic operations per second.
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jtdefine LEN 6400
Jidefine CNT 100000
main()
{
unsigned char v1[LEN],v2[LEN],v3[LEN];
int i,j,t;
for(i=0;1<CNT;i++)
for(j=0;j<LEN;j++) v3[jl=v2[jl+vl[jl;

Algorithm 8. C version of the test program.

The C version is shown in Alg. 8. When compiled with the Intel C compiler
(Version 4.0) it runs in 72 s on the test machine, a performance of around 8.9
million arithmetic operations per second. Thus the assembler version using
MMX is about 20 times faster than the C version.

3.3 Use of Assembler Intrinsics

Intel supply a C compiler that has low-level extensions allowing the extended
instructions to be used. Intel terms these extensions ‘assembler intrinsics’. For
example, the ADDPS instruction which adds four packed single-precision
floating point numbers is mirrored by the Intel C/C++ Compiler Intrinsic
Equivalent

_m128_mm_add_ps(__ml28a, __ml28b)

which adds the four single-precision floating point values of a and b.
Syntactically these look like C functions but they are translated one for one
into equivalent assembler instructions. The use of assembler intrinsics simpli-
fies the process of developing MMX code, in that programmers use a single
tool, the C compiler, and do not need to concern themselves with low-level
linkage issues. However, the other disadvantages of assembler coding remain:

1. It is still not portable between processors.

2. It still requires the programmer to have an in-depth knowledge of the
underlying machine architecture.

3. Productivity is unlikely to be higher than with assembler.

3.4 Use of C++ Classes

The Intel C compiler comes with a set of C++ classes that correspond to the
fundamental types supported by the MMX and SIMD instruction-sets. For
instance, type Iu8vec8 is a vector of eight unsigned 8-bit integers, Is32vec2 a
vector of two signed 32-bit integers, etc. The basic arithmetic operators for
addition, subtraction, multiplication and division are then overloaded to
support these vector types.
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{idefine LEN 800

fkdefine CNT 100000

ffinclude “ivec.h”

main()

{

TuBvec8 VvI[LEN],v2[LEN],v3[LENT;

int 1,3,t;

for(i=0;i<CNT;i++)
for(j=0;j<LEN;j++)
v3[jI=v2[j1+v1[jl;

Algorithm 9. C-++ version of the test program.

Alg. 9 shows the example program implemented in C++ using the Intel
SIMD class Iu8vec8. The SIMD classes do a good job of presenting the under-
lying capabilities of the architecture within the context of the C language. The
code produced is also efficient; the example program in C++ runs in 4.56 s on
the test machine, a performance of 140 million byte operations per second.
However, it has to be borne in mind that the C4++ code is not portable to
other processors. The compiler always generates MMX or SIMD instructions
for the classes. If run on a 486 processor, these would be illegal. The C++ code
built around these classes, although it has a higher level of expression than
assembler intrinsics, is no more portable.

There are many disadvantages to these approaches. First, programmers
must have deep knowledge both of low-level architectural behaviour and of
architecture-specific compiler behaviour to integrate assembly language with
high-level code. Second, effective use of libraries depends on there being a
close correspondence between the intended semantics of the application
program and the semantics of the library routines. Finally, use of architecture-
specific libraries inhibits program portability across operating systems and
CPU platforms.

3.5 Use of the Nasm Assembler

The Nasm assembler is an open source project to develop a Net-wide
Assembler. The assembler is included as standard in most Linux distributions
and is available for download to run under Windows. It provides support for
the full Intel and AMD SIMD instruction-sets and also recognises some extra
MMX instructions that run on Cyrix CPUs. Nasm provides support for
multiple object module formats from the old MS-DOS com files to the obj and
elf formats used under Windows and Linux. If one is programming in
assembler, Nasm provides a more complete range of instructions, in association
with better portability between operating systems than competing assemblers.
Microsoft’s MASM assembler is restricted to Windows. The GNU assembler,
as, runs under both Linux and Windows, but uses non-standard syntax which
makes it awkward to use in conjunction with Intel documentation.
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It is beyond the scope of this book to provide a complete guide to assembler
programming for the Intel processor family. Instead, we will concentrate on
those features of the assembly language that are needed to write SIMD subrou-
tines that can be called from high-level languages. We document the Intel SIMD
instructions in Chapter 4 and the 3DNow instructions in Chapter 5. Readers
wanting a general background in assembler programming should consult
appropriate text books in conjunction with the processor reference manuals
published by Intel (1999, 2000) and AMD (Advanced Micro Devices, 1999).

3.5.1 General Instruction Syntax

Assembler programs take the form of a sequence of lines with one machine
instruction per line. The instructions themselves take the form of an optional
label, an operation code name conditionally followed by up to three comma
separated operands. For example:

11: SFENCE ; Ooperand instruction
PREFETCH[100] ; Loperandinstruction
MOVQ MMO, MM1 ; 2operand instruction

PSHUFD XMM1,XMM3,00101011b; 3 operandinstruction

As shown above, a comment can be placed on an assembler line, with the com-
ment distinguished from the instruction by a leading semi-colon. The label, if
present, is separated from the operation code name by a colon.

Case is not significant either in operation code names or in the names
of registers. Thus prefetch is equivalent to PREFETCH and mm4 is equivalent
to MM4.

In the Nasm assembler, as in the original Intel assembler, the direction of
assignment in an instruction follows high-level language conventions. It is
always from right to left,! so that

MOVQ MMO , MM4
is equivalent to

MMO : =MM4
and

ADDSS XMMQ, XMM3
is equivalent to

XMMO : =XMMO+XMM3

3.5.2 Operand Forms

Operands to instructions can be constants, register names or memory locations.

'If you chose to use the GNU assembler instead of Nasm you should be aware that this follows
the opposite convention of left to right assignment. This is a result of as having originated as a
Motorola assembler that was converted to recognise Intel opcodes. Motorola follow a left to right
assignment convention.



30

SIMD Programming Manual for Linux and Windows

Constants

Constants are values known at assembly time, and take the form of numbers,
labels, characters or arithmetic expressions whose components are themselves
constants.

The most important constant values are numbers. Integer numbers can be
written in base 16, 10, 8 or 2.

moval,0azh ; basel6 Teading zerorequired
mov bh, $0a2 ; basel6alternatenotation
mov cx,0xa2 ; basel6Cstyle

addax,101 ; base 10

mov b1,76q ; base8

xorax,11010011b; base?2

Floating point constants are also supported as operands to store allocation
directives (see Section 3.5.3):

dd3.14156
dq9.2e3

It is important to realise that due to limitations of the AMD and Intel
instruction-sets, floating point constants can not be directly used as operands
to instructions. Any floating point constants used in an algorithm have to be
assembled into a distinct area of memory and loaded into registers from there.

Constants can also take the form of labels. As the assembler program is
processed, Nasm allocates an integer value to each label. The value is either the
address of the operation-code prefixed by the instruction or may have been
explicitly set by an EQU directive:

Fseekequ 23
Freadequ 24

We can load a register with the address referred to by a label by including the
label as a constant operand:

mov esi, sourcebuf
Using the same syntax, we can load a register with an equated constant:

mov cl, fread

Constant Expressions

Suppose there exists a data-structure for which one has a base address label, it
is often convenient to be able to refer to fields within this structure in terms of
their offset from the start of the structure. Consider the example of a vector of
four single-precision floating point values at a location with label myvec. The
actual address at which myvec will be placed is determined by Nasm, we do
not know it. We may know that we want the address of the third element of
the vector:

mov esi, myvec+3*4
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to place the address of this word into the esi register. Nasm allows one to
place arithmetic expressions whose sub-expressions are constants wherever a
constant can occur. The arithmetic operators are written C style as shown in
Table 3.1.

Registers

Operands can be register names. The available register names are shown in
Table 3.2. In the binary operation codes interpreted by the CPU, registers are
identified using 3-bit integers. Depending on the operation code, these 3-bit
fields are interpreted as the different categories of register shown in Table 3.2.

One should be aware that in the Intel architecture a number of registers are
aliased to the same state vectors, for example, the eax, ax, al, ah registers all
share bits. More insidiously, the floating point registers STO... ST7 not only
share state with the MMX registers, but also their mapping to these registers is
dynamic and variable.

Memory Locations

Memory locations are syntactically represented by the use of square brackets
around an address expression, thus [100], [myvec], [esi] all represent

Table 3.1. Nasm constant operators

Operator Means Operator Means

| or + add

A xor - subtract

& and * multiply

<< shift left / signed division
>> shift right / unsigned division
% modulus %% unsigned modulus

Table 3.2. Register encodings

Number Aliased dword reg Aliased sse reg
byte reg word reg float reg nnx reg
0 al ax eax st0 mmO xmm0
1 cl bx ecx stl mm1 xmm1
2 d1 cX edx st2 mm2 Xxmm2
3 b1 bx ebx st3 mm3 xmm3
4 ah sp esp st4 mm4 xmmé
5 ch bp ebp sth mm5 xmmb
6 dh si esi sté mmé xmmé
7 bh di edi st7 mm7 xmm7
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memory locations. The address expressions, unlike constant expressions, can
contain components whose values are not known until program execution.
The final example above refers to the memory location addressed by the value
in the es1 register and, as such, depends on the history of prior computations
affecting that register. Address expressions have to be encoded into machine
instructions, and since machine instructions, although of variable length on a
CISC are nonetheless finite, so too must the address expressions be. On Intel
and AMD machines this constrains the complexity of address expressions to
the following grammar:

memloc::= address | format address
format :=byte | word | dword | qword
address ::= [ const] | [aexp] | [aexp + const]

aexp u=reg | reg+ iexp

iexp  u=reg| reg * scale

scale ==21418

reg u=eax |l ecx |l ebx l edx |l esplebplesiledi
const = integer | label

The format qualifiers are used to disambiguate the size of an operand in
memory where the combination of the operation code name and the other
non-memory operands are insufficient so to do.

3.5.3 Directives

Directives look like operation code names, but instead of being translated into
operation codes, they are used by the assembler itself to define the way in
which data that follows it is to be interpreted.

Sectioning

Programs running under Linux have their memory divided into four sections:

text is the section of memory containing operation codes to be executed.
It is typically mapped as read only by the paging system.

data isthe section of memory containing initialised global variables, which
can be altered following the start of the program.

bas is the section containing uninitialsed global variables.

stack is the section in which dynamically allocated local variables of sub-
routines are located.

The section directive is used by assembler programmers to specify into
which section of memory they want subsequent lines of code to be assembled.
For example, in the listing shown in Alg. 10 we divide the program into three
sections: a text section containing myfunc, a bss section containing 64
undefined bytes and a data section containing a vector of four integers.

The label myfuncbase can be used with negative offsets to access locations
within the bss, whereas the label myfuncglobal can be used with positive
offsets to access elements of the vector in the data section.
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section .text
global myfunc
myfunc:enter 128,0
; body of function goes here
leave
ret 0
section .bss
alignb 16
resb 64 ; reserve 64 bytes
myfuncBase:
section .data
myfuncglobal: ; reserve 4 by 32-bit integers
dd 1 -
dd 2
dd 3
dd 5

Algorithm 10. Examples of the use of section and data reservation directives.

Data Reservation

Data must be reserved in distinct ways in the different sections. In the data
section, the data definition directives db, dw, dd and dq are used to define
bytes, words, doublewords and quadwords. The directive must be followed by
a constant expression. When defining bytes or words the constant must be an
integer. Doublewords and quadwords may be defined with floating point or
integer constants as shown previously.

In the bss section the directive resb is used to reserve a specified number of
bytes, but no value is associated with these bytes.

Data can be allocated in the stack section by use of the enter operation
code name. This takes the form

enter space, level

It should be used as the first operation code name of a function. The level
parameter is only of relevance in block structured languages and should be set
to 0 for assembler programming. The space parameter specifies the number of
bytes to be reserved for the private use of the function. Once the enter
instruction has executed, the data can be accessed at negative offsets from the
ebp register.

The last two instructions in a function should, as shown in Alg. 11, be

leave
ret 0

The combined effect of these is to free the space reserved on the stack by enter,
and pop the return address from the stack. The parameter to the operation
code name ret is used to specify how many bytes of function parameters
should be discarded from the stack. If one is interfacing to C this should
always be set to 0.
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Label Qualification

The default scope of a label is the assembler source file containing the line it
prefixes. However, labels can be used to mark the start of functions that are to
be called from C or other high-level languages. To indicate that they have
scope beyond the current assembler file, the global directive should be used
as shown in Alg. 10.

The converse case, where an assembler file calls a function exported by a C
program, is handled by the etern directive:

extern printreal
call printreal

In the above example we assume that printreal is a C function called from
assembler.

3.5.4 Linking and Object File Formats

There are four object file formats that are commonly used on Linux and
Windows systems, as shown in Table 3.3. This lists the name of the format, its
file extension — which is often ambiguous and the combination of operating
system and compiler that makes use of it. A flag provided to Nasm specifies
which format it should use. We will only go into the use of the gcc compiler,
since this is portable between Windows and Linux.

Assume we have a C program called c2asm.c and an assembler file
asmfromc.asm. Suppose we wish to combine these into a single executable
module c2asm. We issue the following commands at the console:

nasm-felf -oasmfromc.oasmfromc.asm
gcc -oc2asmc2asm.casmfromc.o

This assumes that we are working either under Linux or under Cygwin. If we
are using djgpp, we type

nasm-fcoff -oasmfromc.oasmfromc.asm
gcc -oc2asmc2asm.casmfromc.o

Leading Underbars

If working with djgpp, then all external labels in your program, whether
imported with extern or imported using global, must have a leading
underbar character. Thus to call the C procedure printreal, one would write

Table 3.3. Object file formats and compilers that use them

Format Extension Operating system C++ compiler
win32 .obj Windows Microsoft C++
obj .obj Windows Borland C++
coff 0 Windows Djgpp gcc

elf 0 Windows Cygwin gcc

elf .0 Linux gce
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extern printreal
call _printreal

whereas to export myfunc one would write

global _myfunc
_myfunc:enter 128,0

3.5.5 Summing a Vector

We will now put all this together with a simple example of calling a SIMD
assembler routine from C. As an example, we take the problem of summing the
elements of an integer array. If we use 32-bit integers, an MMX routine is in
principle capable of doing this two words at a time, and so should outperform
C code for the same purpose. Timing indicates that this is the case. Algorithm
11 runs between three and four times faster than an equivalent C function.

The example illustrates a problem which has to be addressed in many
vectorised algorithms. We have to add up vectors of arbitrary length, but if we
are to vectorise this we need to use vector registers of fixed size. If we divide
through the vector length by the size of the vector registers, 2 in this case, we
may be left with a remainder that cannot be vectorised. This imposes a
standard structure on vectorised MMX algorithms:

1. A parallel section that operates on the start of the array using the MMX
registers.

2. A conditionally executed section that, in the presence of an odd number of
elements in the array, does the rest.

The C function prototype to our array totalising routine is
int pmyfunc(int *v, intlen);

The C prototype is important because it defines the configuration of
parameters on the stack. Given this prototype, the C compiler will push two
32-bit words on to the stack when pmyfunc is called. The C convention is to
push parameters on to the stack from right to left. As a result, after executing
the enter instruction at the start of the function the local stack environment
is as represented in Figure 3.1.

The epb register can be used to access the parameters to the function.
Positive offsets from the register address parameters whereas negative offsets
address local variables.

We are going to remap the one-dimensional array of integers as a two-
dimensional array, whose second dimension has the range 0. . . 1. Each row of
the vector will fit into an MMX register. This is illustrated by Figure 3.2. The
algorithm starts by using the 1en parameter to calculate the upper bound of

20n arrays of length 100, it takes 35% and 25% of the time taken for C code on Crusoe and
Athlon processors, respectively. The Crusoe implements the MMX architecture only by
emulation and so does not show the full gains.
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section .text

global pmyfunc
pmyfunc: enter 8,0
tvec equ -8

mov edi,DWORD[ebp+12]
shr edi,1
lea ecx,[edi-1]

movg MM4,[dnull]
xor edi,edi
mov esi,DWORD[ebp+8]
lTooptop: cmp edi,ecx
jg near loopstop
paddd MM4,[esi+edi*8]
lea edi,[edi+l]
jmp Tooptop
loopstop: movg [ebp+tvec],MM4
mov ebx,DWORD[ebp+12]
mov edi,DWORD[ebp+tvec+4]
mov eax,DWORD[ebp+8]
mov esi,ebx
and DWORD esi,1
imul esi,[eax+ebx*4-4]

lea edx,[edi+esi]
mov edi,DWORD[ebp+tvec]
lea eax,[edi+edx]
leave
emms
ret 0
section .data
dnull: dd 0
dd 0

s

>

>

s

’

>

; a temporary location

on stack to hold a 2
element vector
edi=len

ecx=(len/2-1)

ecx holds number of vector

adds to perform

clear MM4

clear edi as induction variable
set esi -> the array

add two elements at a time

; save the result
; ebx=Tlen

esi=1 if len odd

; esi holds last element

if Ten odd
add to tvec[1]
get Oth of tvec
form total

; vector of two zeros

Algorithm 11. Use of MMX instructions to sum a vector of integers.

this two-dimensional array:

mov edi,DWORD [ebp+12]; edi=1len

shredi,1
leaecx,[edi-1]

The result is stored in the ecx register. Suppose that the vector length was 7;
if we shift this right, we lose the least significant bit, giving 3 in edi. Since the
vector is assumed to be zero-based, we want to iterate from 0...2 so we
subtract 1 to get 2 in the ecx register. The subtraction is done by using the
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len

\

return address 12

ebp ——— | dynamic link

tvecl

esp———» tvecO

Figure 3.1. Stackframe on entry to pmyfunc.
Two-dimensional map of the vector

Original 1-dimensional vector v

Figure 3.2. Mapping a one-dimensional array to a two-dimensional array suitable for vectorisation.

1ea instruction. This stands for Load Effective Address; it loads the address of
memory location [edi-1] into ecx, which in practice means ecx=edi-1.
Intel recomend using lea rather than increment and decrement operations on
the P3 and P4 processors, since 1ea is executed in fewer micro-ops. Next, we
set up the other registers that will be used to go through the loop. We clear
MM4 by loading it with the null vector:

movqMM4, [dnull]

This could have been done by xoring MM4 with itself using the PXOR instruc-
tion, but we have chosen to load a constant vector to illustrate how this is
done. The constant vector itself is allocated store and initial values in the data
segment. We then clear the edi register which will be used as the induction
variable for our loop. In this case we do use an xor instruction to clear it:

xor edi,edi

Finally, we set the esi register to point to the base address of the array, by
fetching the address parameter from the stack:

mov esi,DWORD [ebp+8]

The algorithm then loops round adding two elements at a time to the pairs of
totals in the MM4 register. It uses base plus scaled index addressing to do this,
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fHinclude <stdio.h>
int pmyfunc(int *v,int len);
main(int argc, char **argv)
{ int al101;
int 1;
for(i=0;i<10;i++) alil=i;
for(i=1;i<10;i++) printf(*%d %d\n”,i,pmyfunc(a,i));

Algorithm 12. lllustration of calling pmyfunc from C.

multiplying the loop induction register edi by eight to get the relative starting
position of each row of our mapped two-dimensional array:

looptop:cmpedi,ecx
jgnear loopstop
padddMM4,[esi+edi* 8] ; addtwoelementsatatime
leaedi,[edi+l]
jmp Tooptop

loopstop:movq [ebp+ttvec],MM4; savetheresult

At the end of the loop we have the total of the even words in MM4[ 0] and the
total of the odd words in MM4 [ 1 ]. We want to add these together along with any
possible remainder word. This will be handled by scalar arithmetic, so we save
the two totals in the two-element vector tvec. If the original array was of odd
length, we want to form the sum tvec[0]+tvec[1]+v[1en-1], otherwise we
want simply to add the two elements of tvec together. This could be done by
testing len and branching, but it is more efficient to multiply the last element of
the array by the least significant bit of the length. If the length is even, the least
significant bit will be zero so that the last element is not included in the total.

mov ebx,DWORD [ebp+12]; ebx=1en

mov edi,DWORD [ebp+tvec+4]; edi=tvec[1]
mov eax,DWORD [ebp+8]; eax=array base
MOV esi,ebx

and DWORD esi,1

imul esi,[eax+tebx*4-4]

leaedx,[edi+esi] ; add totvec[1]
mov edi,DWORD[ebp+tvec] ; get Othof tvec
leaeax,[edi+edx] ; formtotal

The total is returned in the eax register, since this is the C convention for
integer-returning functions.

3.6 Coordinate Transformations Using 3DNow!

For a second example we will look at some basic 3D graphics operations. As its
name implies, one of the main aims of the AMD SIMD extensions is to accelerate
3D graphics operations. To understand the rationale for these instructions, a
little background information about 3D graphics operations is necessary.
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Figure 3.3. Translation. The triangle a,b,c with coordinates [1,1],[1,2],(2,2] is translated to the
triangle d,e,f with coordinates [3,0.5],[3,1.5],[4,1.5] by adding [2,—0.5] to each vertex.

Points in three-dimensional space can be represented as triples of real
numbers [x,y,z] encoding position with respect to three orthogonal axes.
Surfaces in three-space are typically represented as a set triangles, each of
whose vertices is such a triple [x,y,z]. Manipulations of simulated solid objects
break down into the primitive operations:

Translate move all of the points in an object some common distance in
three-space.

Scale make the object larger or smaller.

Rotate around one or other of the axes, an arbitrary rotation being
decomposable into rotations about the axes.

Let us consider each of these in turn as abstract operations before going to
look at how they can be implemented in the 3DNow instructions.

Translate

We can see in Figure 3.3 how we can translate a triangle by adding a constant
vector to each vertex. For ease of illustration we use 2D drawings, but the
principle extends to higher dimensions. The basic data-type used by 3DNow is
a two-element vector of reals. Translation in two dimensions would obviously
be very efficient; three-dimensional operations would at first sight seem less
efficient, given that only the first two elements can use vector arithmetic, with
the last requiring scalar instructions. However, when we look at the other
object manipulation primitives, we shall see that this is not the case.

Scale

As Figure 3.4 shows, an object can be scaled by simply multiplying each vertex
by a scalar. Thus a = [1,1] — d = [2,2] and b = [1,2] — e = [2,4], etc. Again
for two dimensions, this is relatively easy to achieve, one duplicates the scalar to
a two-element vector and performs parallel element by element multiplication.
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Rotate

Figure 3.5 illustrates the effect of rotating unit vectors aligned with the x- and
y-axes by 45°. Any point in the plane P = [x,y] can be treated as the sum
of two vectors, [x,0]+[0,y] with one aligned with the x-axis and the other with
the y-axis. These in turn are scalar multiples of the unit vectors [1,0], [0,1]
aligned the axes. These unit vectors provide the basis of the 2D vector space.
We can thus decompose P into x[1,0]+ y[0,1]. The numbers x,y specify
the amplitude of the point P with respect to these basis vectors.

We know what the effect of the rotation of these unit vectors by 45° will be,
namely [1,0] —» R = [\/Li,iz] whereas [0,1] » S = [\‘/—%,%] We can therefore
achieve the effect of rotaf/i;lg P by first rotating the unit vectors, multiplying
them by their original amplitudes in P and summing the result: P — xR + yS.
So it follows that a rotation by 45° will map a point P = [x,y] > Q=

5+ a5

€ f
3 |
2 b ‘/C
d
19 a
T I T T T I T T
1 2 3 4

Figure 3.4. Scaling. Triangle d.e,f is obtained by multiplying the vertices of a,b,c by 2.

x Yo"

Figure 3.5. lllustration of the effect of rotations by % on the unit vectors x = [1,0], y = [0,1]. The
result is that x — [a,b] = [\/Li' %} and y — [—a,b] = [3‘3, 715]
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We can express this as a matrix calculation TP = Q with

1 =1 x A 4
V2 V2 V2 V2

More generally, we can express any 2D rotation of a point P in terms of
operating on P with an appropriate transformation matrix T. This generalises
to 3D points and higher.

Note that the above describes the matrix multiplication using the conven-
tions of paper mathematics which distinguishes between row and column
vectors. Computer memory is basically a one-dimensional array of words.
Groups of words can be viewed as two-dimensional arrays, but the distinction
between a row vector and a column vector does not make sense. Figure 3.6
shows how T, P and Q would be represented in memory. Once loaded into
3DNow registers, their rows of individual row vectors of T have the same
representation as the column vector P. This means that the matrix multiplica-
tion can be performed by doing parallel vector multiplications between the
rows of T and the register form of P, followed by a summation along the rows.

Generalised Transformations

We have used two-dimensional pictures in our examples, and in consequence
our rotation matrix T has been 2 x 2. Rotations in three dimensions would
require a 3 X 3 matrix.

Suppose we want both to rotate and to scale a series of points in three-
dimensional space, for example the vertices of a set of triangles. One approach
is to mutliply each vertex by a rotation matrix and then multiply each vertex
by a scalar. This would require 12 multiplications per vertex. If instead we
premultiplied our rotation matrix by the scalar and then simply performed the
matrix to vector multiplications, we would achieve the same result at a cost of
nine multiplications per vertex.

T(0,0] T[0,0] T[0,1]

T[O,1] T01,0] 1l

T01,0]

0,11

PL0] or P[0,0] B2 [ Pr1] |
P[1] or P[1,0]

Q[o] or QI0,0] Qo] Qi) }
Ql1] or Q[1,0]

Memory layout Register layout

Figure 3.6. Contrast between the linear layout of the matrix and vectors in memory and the layout
once loaded into 3DNow registers.
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Can this technique be extended to handle translations also?

Yes, it can, but for it to do so we have to move to vectors of length 4.
Consider a four-dimensional point P of the form [x,y,z,1]. Multiply this by a
matrix T of the form

(3.2)

S O O =
S O = O
S = O O
- o SR

The result is a vector [x + a,y + b,z + ¢,1]. The effect has been to translate P
by the vector [a,b,c,0]. More generally, given a 3 x 3 rotation and scale matrix
d e f

g h 1| and a translation vector [a, b, c], then we can form a combined

j k1
rotation, scaling and translation matrix M of the form
d e f a
_|g h i b
M= ik e (3.3)
0 0 01

All of our 3D graphics transforms can be expressed in terms of the same
basic operation, multiplication of a four-element vector by a 4 x 4 matrix. In
this light, the purpose of the 3DNow instructions becomes clear. They allow
pairs of reals to be multiplied or added with a single instruction. A row of the
transformation matrix M can be multiplied by a vector of four reals in just two
steps. Alg. 13 gives an AMD assembler routine to perform multiplication of a
four-element vector by a 4 x 4 matrix.

The C template of the function is

voidmvmul (float *m, float *v)

where m is the start address of a 4 x 4 matrix of floats and v is the start address
of a four-element vector of floats. This implies that the matrix address will be
found at an offset of 8 from the ebp register and the vector address at an offset
of 12 on entry to mvmul. The routine caches these addresses in the esi and
ebx registers, respectively. The routine has a single loop that steps through the
four rows of the matrix, using edx as the loop induction variable. On each
iteration the inner product between the edxth row of the matrix and the
vector v is computed. Register MM3 is used as a parallel accumulator, allowing
the sum of the odd and even products to be formed with two multiplications
and one add instruction. Prefetching is used on the matrix but not the vector
fetches, since there is no next row for the vector. The 64-bit result is stored in
in a local two-element vector vtmp, and the elements are added using scalar
arithmetic instructions.

Between the vector arithmetic instructions and the scalar ones, it is
necessary to plant an emms instruction to clear the MMX registers. Were this
not done, a floating point exception would be reported. The floating point
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stack, which is aliased to the same state bits as the MMX registers, would be
found to have been corrupted.

As the elements of the transformed vector are computed, they are stored in
a temporary local four-element result vector, rtmp, to prevent the source
vector being corrupted. At the end, rtmp is copied into v using MMX movq
instructions.

GLOBAL mvmul
section .text
mvmul:enter 100,0
vtmp:equ -80
ttmp:equ -32
xor edx,edx
mov esi,DWORD[ebp+8] ; esi gets addr of matrix
mov ebx,DWORD[ebp+12] ; ebx gets addr of vector
mvlooptop:cmp DWORD edx,3
jg near mvloopend
imul eax,DWORD edx,16
lea eax,[eax+8]
prefetch [esi+teax+8]
movg MM3,[esi+eax]
PFmul MM3, [ebx+8]
imul eax,DWORD edx,16
prefetch [esi+eax+8]
movq MM2,[esi+eax]
PFmul MM2,[ebx]
PFadd MM3,MM2
movq [ebp+vtmp],MM3 ; store pair in vtmp
emms
f1d dword[ebp+vtmp]
fadd DWORD[ebp+vtmp+4]
fstp dword[ebp+edx*4+rtmp] ; dot product to rtmpledx]

Tea edx,[edx+1] ; inc edx
jmp mvlooptop
mvloopend:
mov edi,DWORD[ebp+12] ; copy rtmp
movqg MM2, [ebp+rtmp] ; tov

movq [edi],MM2

movq MM2,[ebp+8+rtmp]
movq [edi+8],MM2
leave

emms

ret 0

Algorithm 13. 3DNow routine to multiply a vector by a matrix.
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3.7 Coordinate Transformations Using SSE
Instructions

The SSE instructions were Intel’s equivalent of 3DNow. Because new state bits
were introduced to the CPU architecture, the 64-bit limit on vector registers
was relaxed. SSE supports 128-bit long vector registers, sufficient to contain a
four-element vector of floats. By way of contrast, let us look at how these
instructions might be applied to the task of coordinate transformation per-
formed by 3DNow code in Alg. 13.

The SSE variant closely parallels the 3DNow version. It is shown in Alg. 14.
Since the assembly language uses the same mnemonic for a 128-bit vector
register and for the 32-bit floating point scalar register, the listing distinguishes
them by giving vector registers in capitals, XMM3, and scalar variants in lower

global mvmul
section .text
mvmul :enter 72,0
vtmp equ -64
rtmp equ -32

mov ecx,0

mov edi,DWORD[ebp+12]

movups XMM4, [edi]
mvll: cmp ecx,3

jg near mvl12

mov edi,DWORD[ebp+8]

imul esi,ecx,16

movups XMM2,[edi+esi]

mulps XMM2, XMM4

movups [ebp+vtmpl, XMM2

movss xmmO, [ebptvtmp]l  ; sum the vector using

movss xmml,[ebp+vtmp+4] ; scalar SSE instructions

movss xmmZ2, [ebp+vtmp+8]

addss xmm2, [ebp+vtmp+12]

addss xmml,xmm2

addss xmm0, xmml ; dot product in xmm0
movss [ebp+ecx*4+rtmp], xmmO

inc ecx

Jjmp mv1l

mv12: mov edi,DWORD[ebp+12]
movups XMM3, [ebp+rtmp]
movups [edi],XMM3
leave
ret 0

Algorithm 14. Matrix-vector multiplication using SSE code.
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case, xmm3. The significant differences between the AMD and Intel variants are
that in the Intel case:

1. The entire vector v can be cached in a register.

2. Only one multiply instruction is needed per row of the vector.

3. The scalar summation of the vector takes more instructions because of the
vector register length.

4. No emms instructions have to be planted.

One might have expected that the SSE variant of the algorithm, using as it
does a higher level of parallelism, would be faster. In fact, it is considerably
slower than the AMD version. This is illustrated in Table 3.4, which shows
their comparative performance. Despite the Intel code being run on a faster
processor, it runs at only about half the speed of the AMD code. The difference
is even more marked when we normalise for the effect of differences in clock
speed. The AMD processor achieves three times as many floating point
operations per cycle.

Another comparison is provided by the C version of mvmu1, given in Alg. 15.
This was compiled using gcc version 3.2 and the code produced uses no vector
instructions. It can be seen that the Athlon is again markedly faster than the P4
when running the C code. Running C code, the Athlon achieved twice as many

Table 3.4. Comparative performance of the 3DNow and SSE versions of coordinate transformation

CPU Clock (GHz) C time Assembler time Relative gain FOPs per cycle
Athlon 1.0 4.23 1.9 2.2x 0.16
P4 17 5.06 3.81 1.32% 0.05

Measurements for 10 million matrix to vector multiples. This amounts to 320 million floating point operations.

mvmulc(float *m, float *v)
{ float vtmp[4]1;
int i,3;
float t;
for(i=0;i<4;i++)
{
t=0;
for(j=0;j<4;j++) t=t+m[i*4+j1*v[j];
vimp[il=t;
}
for(i=0;i<4;i++) v[il=vtmpl[il;

Algorithm 15. C variant of the matrix to vector multiply.
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floating point operations per clock cycle. This probably indicates an inherently
superior floating point unit on the Athlon.

However, the superiority of the 3DNow instruction architecture is brought
out by comparing the relative speeds of C and assembler on each CPU. This
comparison compensates for differences in clock speed and FPU speed, but we
again see that gains from vectorisation are much more marked for the Athlon.



Intel SIMD Instructions

In the following sections we give a semi-formal definition of the multi-media
instruction-sets used on Intel and AMD processors. For each instruction we
provide a specification of its semantics and indicate the assembler syntax used.
For all instructions we provide NASM syntax. The types used by the instructions
and their semantics are defined in Pascal.

4.1 Types

The underlying types used by the architecture are defined first. These are
comprised of :

1. a collection of base types

2. a collection of short vector types

3. types used to represent registers

4. types used in the store and recovery of machine state.

Base Types

We first define the underlying base types used by the multi-media instructions.
The definitions of all types are given in Pascal syntax.

type
int8= —128..127;
uint8 = 0..255;

int16 = —32768..32767;

uint16 = 0..65535;

int32 = integer,

int64 = —9223372036854775807..9223372036854775807;
ieee32 =real;

jeee64 = double;

Aggregates
We now define the short vector types used by the MMX, 3DNOW and SSE
instructions.

MMX int32vec2 = array [0..1] of int32;

int16vec4 = array [0..3] of int16;

47
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3DNOW
SSE
SSE2

byte
word
dword
qword
dqword

Only AMD

uint16vec4
int8vec8
uint8vec8
ieee32vec2
ieee32vec4
ieee64vec2
int64vec2
int32vec4
int16vec8
uint16vec8
int8vec16
uint8vec16

array [0..3] of uint16;
array [0..7] of int8;
array [0..7] of uint8;
array [0..1] of ieee32;
array [0..3] of ieee32;
array [0..1] of ieee64;
array [0..1] of int64;
array [0..3] of int32;
array [0..8] of int16;
array [0..8] of uint16;
array [0..15] of int8;
array [0..15] of uint8;

Mnemonics for Lengths and Shifts

formats = (b,
w,
d,
q
dq);

We encode mnemonics for the three kinds of shifts, logical left and right,
and arithmetic right.

shifts = (ll,ra,rl);

MMX Register Types

We define the MMX registers as variant records with multiple possible internal
representations.

MMX = record
case char of
‘a": (a:int64);
'b": (b:int32vec2);
'c’s (ciint16vec4);
'd": (dwint16vec4);
‘e": (e:int8vec8);
'f". (f.uint8vec8);
'g": (g:ieee32vec2);
end;
regid=0..7;

SSE Register Types

We define the types of the SSE registers as a variant record allowing any of the
formats supported in either SSE1 or SSE2 instruction-sets.

XMM = record
case char of
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SEE
SEE2

80 bit state

fpu exponents

fpu control word
fpu status word

fpu tag word

fpu opcode

fpu instruction addr
code segment
reserved

fpu data addr

data segment
reserved

MMX control reg
reserved

‘a"; (a:ieee32vecd);
'b": (b:ieee64vec2);
‘¢’ (cint32vecd);
'd": (d:int16vec8);
‘e": (e:uint16vec8);
'f': (Fint8vec16);
'g" (g:uint8vec16);
'h": (h:int64vec2);
end;

XMM and MMX Save State

This defines the type of data used when a save or restore is perform
the’entire SIMD state (see Sections 4.4.19 and 4.4.20). This block is 512

long.

fpu_reg_save = record

mmr:-MMX;

exponent:int16;
end;
MMXpad = array [10..15] of int8;
MMXsave = record

data:fpu_reg_save;

pad:-MMXpad,
end;
tMMXsaved = array [regid] of MMXsave;
tMMXreg = array [regid] of MMX;
texponents = array [regid] of int16;
tXMMreg = array [regid] of XMM;
tpad5 = array [1..14] of XMM;
XMMstatus = record

few:int16;

fsw:int16;

pad1:ints;

ftw:int8;

fop:int8;

fouip:int32;

cs:int16;

pad2:int16;

foudp:int32;

ds:int16;

pad3:int16;

mxcsrint32;

pad4.int32;

MMXr:tMMXsaved;

XMMr:tXMMreg;
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arbitrary

cache bank select

general registers
EFLAGS

tag word
control word
status word
opcode
instruction addr
code segment
data addr

data segment
MMx control reg

Define Memory

We define the memory both as an array of bytes and as an array of 16-byte
vectors, because the SSE instructions have distinct aligned and unaligned
memory load instructions. We also define the level 1 cache, (see Section 2.4.1).

const
memsize =16777216;
type
alignment = (IA32,SSE);
tbytemem = array [0.memsize — 1] of uint8;
tvecmem = array [0.memsize div 16 — 1] of XMM;
var
mem:record
case alignment of
IA32: (bytemem:tbytemem);
SSE: (vecmem:tvecmem);
end;
level1 : array [0..3] of array [0..31] of array [0..63] of uintS8;
level2 : array [0..8] of array [0..511] of array [0..63] of uint8;
bank:integer;

Define Register State

We give a partial description of the register state of the processor including all
of the status vector that can be altered by the SIMD instruction-set.

type
tgeneral = array [regid] of integer;
var
MMXreg:tMMXreg;
exponents:texponents;
XMMreg:tXMMreg;
general:tgeneral,
ZF:boolean;
PF:boolean;
CF:boolean;

Status and control registers:

ftw:int8;
few:int16;
fsw:int16;
fop:int8;
fpuip:int32;
cs:int16;
foudp:int32;
ds:int16;
mxcsr:int32;
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Register Names

At the machine code level, all registers are simply numbered, but for historical
reasons Intel associate names with the general registers. The mapping from
register names to register numbers is

const
eax=0;
ecx=1;
edx=2;
ebx=3;
esp =4;
ebp =5;
esi=6;
edi=7;

4.2 shrl

Define shift right logical in arithmetic terms.

function shrl (x:integer;c,w:integer):integer;
begin

shrl:=if ¢ = 0 then x else shrl((x + 2) and not(2"~"),c — 1,w)
end;

4.3 saturate

function saturate (x,low,high:integer) : integer;

This function is used to define the effects of saturated arithmetic; it forces
the output to be within the bounds low .. . high.

begin
if x > high then saturate — high
else
if x < low then saturate — low
else
saturate «— x
end;

4.4 Instructions

Each instruction is now presented as a procedure to give the semantics; along
with this the NASM syntax for the instruction and the machines which support
it are given. We also provide a star rating for how useful the instructions are:

»++ indicates that the instruction is important, and is likely to be of general
use in SIMD programming.
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++  indicates that the instruction is useful, either as a replacement for existing
FPU instructions or in some specific SIMD contexts.

* indicates that the instruction is unlikely to be of use to the average SIMD
programmer.

4.4.1 ADDPS
Instruction ADDPS (d:regid;src:XMM);

**%  P3 P4 ATHLONXP
NASM ADDPS XMMreg,r/ml128

Add packed single-precision floating point. The source can be register or
16-byte aligned memory vector.

XMMregg.a «— src.a + XMMregg.a

44.2 ADDSS
Instruction ADDSS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM ADDSS XMMreg, XMMreg/mem32

Scalar single floating point add. The source can be memory or XMM register.
This instruction is useful if one wants to do floating-point scalar arithmetic
without corrupting the MMX registers.

XMMregg.ao — src.ag + XMMrega.ao

4.4.3 ANDNPS
Instruction ANDNPS (d:regid;src:XMM);

*x P3,P4,ATHLONXP
NASM ANDNPS XMMreg,r/m128

And negated, src is register or 16-byte aligned memory vector.

XMMreggy.g < src.g A not XMMreg,.g

4.4.4 ANDPS
Instruction ANDPS (d:regid;src:XMM);

**x P3,P4,ATHLONXP
NASM  ANDPS XMMreg,r/ml128

16-byte bitwise logical and.
XMMregqag —src.g A XMMreg,.g;
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We define an enumerated type for comparison operations that can be done
in parallel on packed floating-point values. These are passed as an 8-bit
immediate field to the comparison opcode.

type
fcomp =
fit
fle
funord
fneq
fnlt
fnle
ford);

(feq,

44.5 CMPPS

Instruction CMPPS (d:regid;src:XMM;imm8:fcomp);

**x P3,P4 ,ATHLONXP

NASM CMPPS XMMreg,r/ml128, imm8

Parallel single-precision floating-point comparison. Compares four pairs of
floats and creates a Boolean mask as a result. Such masks can then be used to
select results from other vectors. The src is either a register or a 16-byte aligned
vector. When writing assembler pass in the ordinal value of fcomp typed field

as a parameter.

var
i:0.3;
for i— 0 to 3 do
case imm8 of

feq : XMMreggy.c; — {51

flt : XMMregq.c; — {51
fle : XMMregq.c; < {51
fneq : XMMregq.c; — {(1
fnlt : XMMregq.c; «— {0

fnle : XMMregq.c; < {0

-1

if XMMregg.a; = src. ai.
otherwise

if XMMregy.a; < src. a,
otherwise

if XMMregq.a; < src. a,
otherwise

if XMMregq.a; = src. a,
otherwise

if XMMregq.a; < src. ai.
otherwise

if XMMregg.a; < src. a,
otherwise
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44.6 CMPSS
Instruction CMPSS (d:regid;src:XMM;imm8:fcomp);

** P3,P4,ATHLONXP
NASM CMPSS XMMreg, r/m32, imm8

Scalar single-precision floating-point comparison. Compares a pair of floats

and creates a Boolean mask as a result.
The src is either a register or a memory location. There are no special

alignment requirements.

case imm8 of

—1 if XMMregq.aq = src. do.

. XMMregg. {
feq régd-co 0 otherwise

-1 if XMMreggy.ay < src. do.

fit : XMMreg,.c {
9d-Co = 0 otherwise

if XMMreggy.ao < src. ao

fle : XMMregy.co «— {51 otherwise

if XMMregg.ay = src. ao

fneq : XMMreggq.co «— {g otherwise

if XMMreggy.a9 < src. ao

fnlt : XMMregg.co < {(i otherwise

if XMMregq.ag < src. ao

fnle : XMMreggq.co — {g otherwise

4.4.7 COMISS
Instruction COMISS (d:regid;srcXMM);

** P3,P4,ATHLONXP
NASM COMISS XMMreg, r/m32

SSE Scalar Compare and Set EFLAGS. Compares single-precision floating-
point numbers and set flags appropriately.

if XMMregg.a, = src.a, then
begin
ZF — true;
CF — false;
PF — false
end
else
if X\MMreg,.aq > src.a, then
begin
ZF — false;
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CF — false;
PF — false
end
else
if XMMregq.ao < src.ao then
begin
ZF — false;
CF — true;
PF — false
end
else
begin
ZF — false;
CF — false;
PF — false
end;

4.4.8 CVTPI2PS
Instruction CVTPI2PS (d:regid;src:MMX);

* P3,P4,ATHLONXP
NASM CVTPI2PS XMMreg,r/m64

SSE Packed Integer to Floating-Point Conversion. Destination is lower two
words of XMM register; source is an MMX register or memory location.

XMMregg.ao < src.by;
XMMreg,.a, — src.by;

449 CVTPS2PI
Instruction CVTPS2PI (d:regid;src:XMM);

* P3,P4,ATHLONXP
NASM CVTPS2PI MMXreg,r/m64

SSE Packed Floating-point to Integer Conversion with rounding: source is
lower two words of XMM register or memory location; destination is an MMX
register.

MMXreg4.bo — round (src.ao);
MMXrega.b, — round (src.ay);

4.4.10 CVTTPS2PI
Instruction CVTTPS2PI (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM CVTTPS2PI MMXreg,r/mé4
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SSE Packed Floating-point to Integer Conversion with truncation: source is
lower two words of XMM register or memory location; destination is an MMX
register.

MMXreg,.bo — trunc (src.ag);
MMXregy.b, — trunc (src.a,);

4.4.11 CVTSI2SS
Instruction CVTSI2SS (d:regid;src:integer);

** P3,P4,ATHLONXP
NASM CVTSI2SS XMMreg, r/m32

SSE Scalar Integer to Floating-Point Conversion. Destination is lower word of
XMM register; source is a general register or memory location.

XMMregg.aq «— src;

4.4.12 CVTSSasI
Instruction CVTSS2S/ (d:regid;src.ieee32);

** P3,P4,ATHLONXP
NASM CVTSS2SI reg32,XMMreg/mem32

SSE Scalar Floating-Point to Integer Conversion. Destination is a general
register; source is lower word of XMM register or memory location.

generaly +— round (src);

4.4.13 CVTTSS2sI
Instruction CVTTSS2SI (d:regid;src:ieee32);

*k P3,P4,ATHLONXP
NASM CVTTSS2SI reg32,XMMreg/mem32

SSE Scalar Floating-Point to Integer Conversion with truncation. Destination
is a general register; source is lower word of XMM register or memory
location.

generaly — trunc(src);

4.4.14 DIVPD
Instruction DIVPD (dregid;src:XMM);

* %% P4
NASM DIVPD XMMreg,r/ml128

Packed Double-Precision FP Divide. Destination is an XMM register; source is
XMM register or memory location. Element by element division is performed.
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var
i:0.1;

fori—Oto 1do
XMMregd.b,- — XMMregy.by,

src.bj '

4.4.15 DIVPS
Instruction DIVPS (d:regid;src:XMM);

bl P3,P4,ATHLONXP
NASM DIVPS XMMreg,r/ml128

Packed Single-FP Divide. Destination is an XMM register; source is XMM
register or memory location. Element by element division is performed.

var
i:0.3;
fori— Oto3 do

XMMregy.a;,
XMMreggq.a; — —S,C—;L,

4.4.16 DIVSD
Instruction DIVSD (d:regid;src:ieee64);

* % P4
NASM DIVSS XMMreg, XMMreg/mem64

Scalar Double-FP Divide. Destination is low word of an XMM register; source
is XMM register low word or memory location. This is a useful alternative to
the use of the FPU stack for real arithmetic since it removes resource
contention between the FPU stack and the MMX registers.

XMMregg.by « XMMrega-be,

4.4.17 DIVSS
Instruction DIVSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM DIVSS XMMreg, XMMreg/mem32

Scalar Single-FP Divide. Destination is low word of an XMM register; source is
XMM register low word or memory location.

XMMregy.ag,
XMMregg.ay — == 244,

44.18 EMMS
Instruction EMMS;

*+%  K6,MMX PENTIUM,Athlon,P3,P4 ATHLONXP
NASM  EMMS
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Empty MMX State. This sets the FPU tag word (marking which floating-point
registers are available) to all ones, meaning that all registers are available for
the FPU to use. All other MMX instructions clear the FPU TagWord. This
clearing of the tag word invalidates any values currently on the FPU stack, so
that MMX instructions and FPU instructions cannot be mixed. EMMS should
be used after executing MMX instructions and before executing any
subsequent floating-point operations.

ftw —Sff;

4.4.19 FXRSTOR
Instruction FXRSTOR (src:XMMstatus);

* P3,P4,ATHLONXP
NASM FXRSTORm512byte

Restore FP, MMX and SSE States. Loads the FP, MMX and XMM state from
a memory area. Area should previously have been saved by FXSAVE (see
Section 4.4.20).

var

i:regid;

few — src.few;

fsw «— src.fsw;

ftw — src.ftw;

fop — src.fop;

fpuip «— src.fpuip;

CS «— SIc.cs;

fpudp «— src.fpudp;

ds — src.ds;

mXCSr < Src.mxcsr;

fori— Oto 7 do

begin
MMXreg; — src. MMXr;.data.mmr;
exponents; — src. MMXr,.data.exponent;
XMMreg; — src XMMr;

end;

4.4.20 FXSAVE
Instruction FXSAVE (var dest:XMMstatus);

* P3,P4,ATHLONXP
NASM FXSAVEm512byte

Save FP, MMX and SSE States. This is mainly of use in context switching and
is unlikely to be used by applications coders. The processor retains the
contents of the FP and MMX state and Streaming SIMD Extension state in the
processor after the state has been saved. This instruction has been optimized to
maximize floating-point save performance.
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var
i-regid,

dest.fcw — few;

dest.fsw — fsw;

dest.ftw — ftw;

dest.fop — fop;

dest.fpuip — fpuip;

dest.cs — cs;

dest.fpudp « fpudp;

dest.ds — ds;

dest.mxcsr < mxcsr,

fori— Oto 7 do

begin
dest. MMXr.data.mmr — MMXreg;;
dest. MMXr..data.exponent — exponents;;
dest. XMMr; — XMMreg;;

end;

4.4.21 MASKMOVQ
Instruction MASKMOVQ (r1,r2:regid);

* P4
NASM  MASKMOVQ MMXreg,MMXrege

Byte Mask Write. This is analogous to the the x86 string move instructions in
that it writes bytes in r1 under the byte mask provided by r2 to a destination
specified by the (DS:) EDI register. This use of the EDI register as a destination
register is somewhat old-fashioned but was probably chosen because of the
need to provide a third operand to the instruction.

Note that this can be used in conjunction with comparison instructions that
set vector register elements to either —1 or 0. It will work after wordwise or
bytewise comparisons have been performed.

var
isinteger;
fori— Oto 7 do
if MMXreg,,.e; < 0 then
mem.bytememgeneral,,+i <+ MMXreg1.e;;

4.4.22 MAXPD
Instruction MAXPD (d:regid;src:XMM);

* % P4
NASM  MAXPD XMMreg,r/ml128

Packed Double-Precision FP Maximum. Destination is an XMM register;
source is XMM register or memory location. Element by element comparison
is performed.
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var
i:0.1;
with XMMreg, do
fori— Oto1do
if src.b; > b; then
b; —src.b;

4.4.23 MAXPS
Instruction MAXPS (d:regid;src:XMM);

*x P3,P4,ATHLONXP
NASM  MAXPS XMMreg,r/m128

Packed Single-FP Maximum. Destination is an XMM register; source is XMM
register or memory location. Element by element comparison is performed.

var
i:0.3;
with XMMreg, do
fori— 0to 3 do
if a; < src.a; then
a;«— src.a;

4.4.24 MAXSD
Instruction MAXSD (d:regid;src.ieee64);

** P4
NASM MAXSS XMMreg, XMMreg/mem64

Scalar Double-FP Maximum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

src if (XMMregq.bo) < src.

XMMregq.bo — { XMMregq.by  otherwise

4.4.25 MAXSS
Instruction MAXSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM MAXSS XMMreg, XMMreg/mem32

Scalar Single-FP Maximum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

src if XMMreggy.ag < src

XMMregq.ao «— {XMMregd.ao otherwise g
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4.4.26 MINPD
Instruction MINPD (d:regid;src:XMM);

*k P4
NASM  MINPD XMMreg,r/ml128

Packed Double-Precision FP Minimum. Destination is an XMM register;
source is XMM register or memory location. Element by element comparison
is performed.
var

i:0.1;
with XMMreg, do

fori—Oto1do

if src.b; < b; then
b;— src.b;

4.4.27 MINPS

Instruction MINPS (d:regid;src:XMM);
*x P3,P4,ATHLONXP
NASM MINPS XMMreg,r/ml128

Packed Single-FP Minimum. Destination is an XMM register; source is XMM
register or memory location. Element by element comparison is performed.
var

i:0.3;
with XMMreg, do

fori— 0 to 3 do

if a; > src.a; then
a;« sre.a;

4.4.28 MINSD

Instruction MINSD (d:regid:src.ieee64);

** P4
NASM MINSS XMMreg, XMMreg/mem64

Scalar Double-FP Minimum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

src if (XMMreggq.by) > src

XMMrega.bo « {XMMregd.bo otherwise

4.4.29 MINSS

Instruction MINSS (d:regid;src:ieee32);

** P3,P4,ATHLONXP
NASM MINSS XMMreg, XMMreg/mem32
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Scalar Single-FP Minimum. Destination is low word of an XMM register;
source is XMM register low word or memory location.

src if XMMregg.aq > src

XMMrega.ao — {XMMregd.ao otherwise /

4430 MOVAPS load
Instruction MOVAPS_load (d:regid;src:XMM);

*x P3,P4,ATHLONXP
NASM MOVAPS XMMreg,r/ml128

Packed Single-FP Aligned Load. Destination is an XMM register; source is
XMM register or a 16-byte aligned memory location. For unaligned moves,
use MOVUPS.

XMMregy — src;

4431 MOVAPS store
Instruction MOVAPS_store (d:regid;var dest:XMM);

*k P3,P4,ATHLONXP
NASM MOVAPS r/ml128, XMMreg

Packed Single-FP Aligned Store. Source is an XMM register; destination is
XMM register or a 16-byte aligned memory location. This shares its assembler
mnemonic with MOVAPS_load (see Section 4.4.30).

dest — XMMreg;

4.4.32 MOVD_load
Instruction MOVD_load (d:regid;src:int32);

** PentiumMMX,K6,P3,P4, ATHLONXP
NASM MOVDMMXreg, r/m32

32-Bit MMX Load. Destination is an MMX register, source is a general register
or a memory location. It cannot be used to move words between MMX
registers.

with MMXreg, do
begin

bg — src;

by —0;
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4.4.33 MOVD_store
Instruction MOVD_store (d:regid;var dest:int32);

*x PentiumMMX,K6,P3,P4,ATHLONXP
NASM  MOVD r/m32,MMXreg

32-Bit MMX Store. Destination is a general register or a memory location;
Source is low 32-bit word of an MMX register. It cannot be used to move
words between MMX registers.

dest — MMXreg,.by;

4.434 MOVD_load_sse
Instruction MOVD_load_sse (d:regid;src:int32);

okl P4
NASM  MOVD XMMreg, r/m32

32-Bit XMM Load. Destination is an XMM register; source is a general register
or a memory location. It cannot be used to move words between XMM
registers.

with XMMreg, do
begin
Co «— SIC;
G0
Q<0
3 0;

4.4.35 MOVD_store_sse

Instruction MOVD_store_sse (d:regid;var dest.int32);

** P4
NASM  MOVD r/m32, XMMreg

32-Bit XMM Store. Destination is a general register or a memory location;
source is low 32-bit word of an XMM register.

dest — XMMreg 4.co;

4436 MOVHLPS
Instruction MOVHLPS (r1,r2:regid);

*x P3,P4,ATHLONXP
NASM MOVHLPS XMMreg, XMMreg

SSE Move High to Low. Moves top 8 bytes in r2 to bottom 8 bytes in rl1. Both
operands are XMM registers.

XMMreg,.ao.1 < XMMreg,,.a, 3;
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4.4.37 MOVHPS_load
Instruction MOVHPS_load (r1:regid;src:MMX);

** P3,P4,ATHLONXP
NASM  MMOVHPS XMMreg,mem64

SSE Move High Packed Single Precision. Moves two single-precision floats to
the high pair of words in an XMM register. The lower two floats in the register
do not change. Source is in memory.

XMMreg,;.a; 3 — src.go.;

4.4.38 MOVHPS_store
Instruction MOVHPS_store (r1.regid:var dest:MMX);

* P3,P4,ATHLONXP
NASM MOVHPS mem64, XMMreg

SSE Move High Packed Single Precision. Moves two single-precision floats
from the high pair of words in an XMM register. Destination is in memory.

dest.go.1 — XMMreg,,.a, s;

4439 MOVLHPS
Instruction MOVLHPS (r1,r2:regid);

* P3,P4,ATHLONXP
NASM MOVLHPS XMMreg, XMMreg

SSE Move High to Low. Moves bottom 8 bytes in r2 to top 8 bytes in rl. Both
operands are XMM registers.

XMMreg;;.a; 3 — XMMreg,>.d, 1;

4440 MOVLPS_load
Instruction MOVLPS_load (r1:.regid;src:MMX);

* P3,P4,ATHLONXP
NASM  MMOVLPS XMMreg,mem64

SSE Move Low Packed Single Precision. Moves two single precision floats to
the low pair of words in an XMM register. The lower two floats in the register
do not change. Source is in memory.

XMMreg,.aq.1 + Src.go.1;

4.4.41 MOVLPS store
Instruction MOVLPS_store (r1:regid;var dest:MMX);



Chapter 4 e Intel SIMD Instructions 65

* P3,P4,ATHLONXP
NASM  MOVLPS mem64, XMMreg

SSE Move Low Packed Single Precision. Moves two single-precision floats
from the low pair of words in an XMM register. Destination is in memory.

dest.go.1 — XMMreg,;.do_1;

4442 MOVMSKPS
Instruction MOVMSKPS (dest,src:regid);

*x P3,P4,ATHLONXP
NASM  MOVMSKPS r, XMMreg

Move Packed Single-Precision Mask Bits to Integer. Source is an XMM
register; destination a general register. The bottom 4 bits of the general register
are set to the signbits of the 32-bit integers in the XMM register.

var
i:0.3;
generalgess — O;
with XMMreg,,. do
for i— 3 downto 0 do
if ¢; < 0 then
generalges; — general gesy + 2';

4,443 MOVNTPS
Instruction MOVNTPS (d:regid;var dest:XMM);

** P3,P4,ATHLONXP
NASM MOVNTPSmeml28, XMMreg

Packed Single-FP Aligned Store without cache pollution. Source is an XMM
register; destination is a 16-byte aligned memory location. The register is
stored in memory directly without going into the cache.

dest — XMMreg;

4444 MOVNTQ
Instruction MOVNTQ (s:regid;var dest:MMX);

*x P3,P4,ATHLONXP
NASM  MOVNTQmem64,MMXreg

Quadword Store without cache pollution. Source is an MMX register; destina-
tion is a memory location. The register is stored in memory directly without
going into the cache. No alignment restrictions are imposed on this instruction.

dest — MMXreg,;
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4445 MOVQ_load
Instruction MOVQ_load (dest:regid;src:MMX);

**%*  PentiumwithMMX,K6,P3,P4, ATHLONXP
NASM MOVQMMXreg,r/mé64

Move Quadword to MMX Register. Destination is an MMX register; source is
either another MMX register or a memory location. This shares an assembler
mnemonic with MOVQ_store.

MMXreg et < SIc;

4446 MOVQ_store
Instruction MOVQ_store (var dest:MMX;src:regid);

***  PentiumwithMMX,K6,P3,P4,ATHLONXP
NASM MOVQ r/mé4,MMXreg

Move Quadword to MMX Register. Source is an MMX register; destination is
either another MMX register or a memory location. This shares an assembler
mnemonic with MOVQ_load.

dest — MMXregs,;

4.4.47 MOVSS_load
Instruction MOVSS_load (dest.regid;srcieee32);

** P3,P4,ATHLONXP
NASM  MOVSS XMMreg,r/m32

Move Quadword to MMX Register. Destination is the low 32-bit word of an
XMM register; source is either another XMM register or a memory location.
This shares an assembler mnemonic with MOVSS store.

XMMreges;.ag «—SI¢;

4448 MOVSS store
Instruction MOVSS_store (var dest.ieee32;src:regid);

** PentiumwithMMX,K6,P3,P4,ATHLONXP
NASM  MOVSS r/m32,XMMreg

Move Quadword to MMX Register. Source is a the low 32 bits of an XMM
register; the destination is either another XMM register or a memory location.
This shares an assembler mnemonic with MOVSS load.

dest — XMMregs,.ao;
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4.4.49 MOVUPS._load

Instruction MOVUPS_load (d:regid;src:XMM);

k%% p3 P4 ,ATHLONXP
NASM MOVUPS XMMreg,r/ml128

Packed Single-FP Unaligned Load. Destination is an XMM register; source is
XMM register or a 16-byte memory location. This is more generally useful
than MOVAPS 4.4.30 but runs significantly slower. However, for many image
processing applications it is impossible to ensure that the operands are 16-byte
aligned. In this case MOVUPS should be used.

The performance overhead is sufficiently great that it often pays to use the
MMX registers rather than the XMM registers if unaligned loads and stores
must be used, since there are no alignment restrictions on the MOVQ
instruction used to load the MMX registers.

XMMregy — src;

4.4.50 MOVUPS_store

Instruction MOVUPS_store (d:regid;var dest:XMM);
**%  P3,P4,ATHLONXP
NASM MOVUPS r/ml128,XMMreg

Packed Single-FP Unaligned Store. Source is an XMM register; destination is
XMM register or a 16-byte memory location. This shares its assembler
mnemonic with MOVUPS_ load (see Section 4.4.49).

dest — XMMreg;

44.51 MULPD

Instruction MULPD (d:regid;src:XMM);

*x P4
NASM MULPD XMMreg,r/m128

Packed Double-Precision FP Multiply. Destination is an XMM register; source
is XMM register or memory location. Element by element multiplication is
performed. If unaligned access is used, this instruction has no performance
advantage over the use of the FPU stack.

var
i:0.1;

fori— O0to1do
XMMreg.b; — (XMMreg4.b) x src.b;

4.4.52 MULPS

Instruction MULPS (d:regid;src:XMM);

**k  p3 p4 ATHLONXP
NASM MULPS XMMreg,r/ml128
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Packed Single-FP Multiply. Destination is an XMM register; source is XMM
register or memory location. Element by element multiplication is performed.
It is faster than the use of the FPU stack even when unaligned accesses are used.

var
i:0.3;

fori— O to 3 do
XMMregg.a; — (XMMregg.a) x src.a;

44,53 MULSD
Instruction MULSD (d:regid;src:ieee64);

*k P4
NASM MULSS XMMreg, XMMreg/memé64

Scalar Double-FP Multiply. Destination is low word of an XMM register;
source is XMM register low word or memory location. This is a useful
alternative to the use of the FPU stack for real arithmetic since it removes
resource contention between the FPU stack and the MMX registers.

XMMrega.by — (XMMregg.bo) x src;

4.4.54 MULSS
Instruction MULSS (d:regid;src:ieee32);

okl P3,P4,ATHLONXP
NASM MULSS XMMreg, XMMreg/mem32

Scalar Single-FP Multiply. Destination is low word of an XMM register; source
is XMM register low word or memory location.

XMMregg.ag «— (XMMregg.ao) X src;

4.4.55 ORPS
Instruction ORPS (d:regid;src:XMM);

** P4
NASM ORPS XMMreg,r/ml128

128-Bit Or. Destination is an XMM register; source is XMM register or
memory location. It is faster to use the MMX equivalent instruction POR
when unaligned accesses are used.

var
i:0.3;
fori— O to 3 do
XMMregy.c; — (XMMregg.c)) V src.c;;
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4.4.56 PACKSSDW
Instruction PACKSSDW (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PACKSSDWMMXreg,r/mé4;

Pack double to word with saturation. This takes a pair of 64-bit operands and
packs the double words in the pair into the destination. It is useful for
converting a vector of integers to a vector of shorts.

var
c: array [0.3] of int32;
i:0.3;

Co.1 — MMXregesi.bo.1;

C2.3¢=Src.bo.1;

fori— 0 to 3 do
if ¢; > 32767 then MMXreg es:.C; — 32767
else if ¢; < —32768 then MMXregges.C;— —32768
else MMXreges:.Ci — Ci;

4.4.57 PACKSSWB
Instruction PACKSSWB (dest:regid;src:MMX);

*x PentiumMMX,K6,P3,P4,ATHLONXP
NASM PACKSSWB MMXreg,r/m64;

Pack word to byte with saturation. This takes a pair of 64-bit operands and
packs the words in the pair into the destination. It is useful for converting a
vector of shorts to a vector of signed bytes.

var
d : array [0..7] of int16;
i:0.7;
do.3 — MMXregyest-Co.3;
ds.7 + SrC.Co.3;
fori — 0to 7 do
if d; > 127 then MMXregges.e; — 127
else if d; < —128 then MMXreg es.e; — —128
else MMXregges.ei— d;

4.4.58 PACKUSWB
Instruction PACKUSWB (dest:regid;src:MMX);

*x PentiumMMX,K6,P3,P4,ATHLONXP
NASM  PACKUSWB MMXreg,r/mé64;

Pack word to unsigned byte with saturation. This takes a pair of 64-bit
operands and packs the words in the pair into the destination. It is useful for
converting a vector of shorts to a vector of unsigned bytes.
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var
d : array [0..7] of int16;
i:0.7;

do.3 — MMXreggest.Co.3i

dy. 7 «— Src.Co3;

fori—0to7do
if d; > 255 then MMXreg es.f; — 255
else if d; < 0 then MMXregges.f; — O
else MMXreg ges..f; — dj;

4.4.59 PADDB
Instruction PADDB (dest:regid;src:MMX);

**%  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDB MMXreg,r/mé4;

Packed byte addition in MMX registers. Performs parallel element by element
addition of all of the bytes in the source and destination. Source can be in
memory.

var
i:0.7;

with MMXreg e do
fori— O0to 7 do fi— f + src.f;

4.4.60 PADDB_sse
Instruction PADDB_sse (dest:regid;src:XMM);

* % P4
NASM PADDB XMMreg,r/ml28;

Packed byte addition in XMM registers. Performs parallel element by element
addition of all of the bytes in the source and destination. Extended version for
XMM registers. Memory operands must be 16-byte aligned. It is not competit-
ive in speed with the MMX version unless aligned memory operands are used,
since unaligned use requires two instructions an unaligned load followed by
the arithmetic operation.

var
i:0.15;
with XMMreg .s; do
fori— O0to 15do fi— f; + srcf;

4.4.61 PADDW

Instruction PADDW (dest:regid;src:MMX);

**%x  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDWMMXreg,r/m64;
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Packed word addition in MMX registers. Performs parallel element by element
addition of all of the words in the source and destination.

var
i:0.3;
with MMXreg ., do
for i— 0 to 3 do ¢;— c;+src.c;

4.4.62 PADDW_sse
Instruction PADDW._ sse (dest:regid;src: XMM);

** P4
NASM PADDW XMMreg,r/ml128;

Packed word addition in XMM registers. Performs parallel element by element
addition of all of the words in the source and destination. Extended version for
XMM registers. Memory operands must be 16-byte aligned. It is not competit-
ive in speed with the MMX version unless aligned memory operands are used,
since unaligned use requires two instructions an unaligned load followed by
the arithmetic operation.

var
i:0.7;

with XMMreg.; do
for i— 0 to 7 do d;—d;+ src.d;

4.4.63 PADDD
Instruction PADDD (dest:regid;src:MMX);

**%  PentiumMMX,K6,P3,P4, ATHLONXP
NASM PADDDMMXreg,r/m64;

Packed doubleword addition in MMX registers. Performs parallel element by
element addition of all of the 32-bit integers in the source and destination.

var
i:0.3;
begin
with MMXreg.s: do
begin
by — by +src.by;
by « by +src.by;
end;

4.4.64 PADDD_sse

Instruction PADDD_sse (dest.regid;src:XMM);

** P4
NASM PADDD XMMreg,r/ml128;
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Packed double word addition in XMM registers. Performs parallel element by
element addition of all of the 32-bit integers in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i:0.3;

with XMMreg s, do
for i— 0to 15 do ¢;— c¢;+src.c;

4.4.65 PADDQ
Instruction PADDQ (dest:regid;src:MMX);

*x*  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDQMMXreg,r/mé4;

Quadword addition in MMX registers. Performs addition of the 64-bit
integers in the source and destination. The EFLAGS are not set on overflow.

var
i:0.3;
with MMXregges; do a — a+ src.a;

4.4.66 PADDQ_sse
Instruction PADDQ_sse (dest:regid;src:XMM);

*K P4
NASM PADDQ XMMreg,r/ml28;

Packed quadword addition in XMM registers. Performs parallel element by
element addition of all of the 64-bit integers in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i:0.1;

with XMMreg,.;: do
for i— 0 to 1 do h;— h;+srch;;

4.4.67 PADDSB

Instruction PADDSB (dest:regid;src:MMX);

***  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDSB MMXreg,r/m64;
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Packed byte addition in MMX registers with saturation. Performs parallel
element by element addition of all of the bytes in the source and destination.
Source can be in memory.

var
i:0.7;
with MMXreg.s: do
fori— O0to 7 do
e; — saturate ((e; + src.e;), —128, 127);

4.4.68 PADDSB_ sse
Instruction PADDSB_sse (destregid;src:XMM);

*x P4
NASM PADDSB XMMreg,r/m128;

Packed saturated signed byte addition in XMM registers. Performs parallel
element by element addition of all of the bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i:0.15;
with XMMreg.s: do
fori— 0 to 15 do
f; < saturate (f; + src.f;, —128, 127);

4.4.69 PADDUSB
Instruction PADDUSB (dest:regid;src:MMX);

**x*  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PADDUSBMMXreg,r/mé4;

Packed byte addition in MMX registers with unsigned saturation. Performs
parallel element by element addition of all of the bytes in the source and destina-
tion. Source can be in memory.

var
i:0.7;
with MMXreg.s: do
fori— 0 to 7 do
fi — saturate ((f;+ src.f), 0, 255);
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4.4.70 PADDUSB_sse
Instruction PADDUSB_sse (dest.regid;srcXMM);

* % P4
NASM PADDUSB XMMreg,r/ml128;

Packed saturated unsigned byte addition in XMM registers. Performs parallel
element by element addition of all of the bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned. It is not competitive in speed with the MMX version unless aligned
memory operands are used, since unaligned use requires two instructions an
unaligned load followed by the arithmetic operation.

var
i:0.15;
with XMMreg ;.s: do
fori— 0 to 15 do
gi < saturate (g;+ src.g;, 0, 255);

4.4.71 PAND
Instruction PAND (dest.regid;src:MMX);

***  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PANDMMXreg,r/m64;

Quadword and in MMX registers. Performs and of the 64-bit integers in the
source and destination.

var
i:0.3;
with MMXreg ;.s; do
fori— 0 to 3 do
d,'f—d,' /\SfC.d,‘,'

4.4.72 PAND_sse
Instruction PAND_sse (dest:regid;src:XMM);

*% P4
NASM PAND XMMreg,r/ml128;

Packed quadword and in XMM registers. Performs parallel and of all of the
bits in the source and destination. Extended version for XMM registers.
Memory operands must be 16-byte aligned. It is not competitive in speed with
the MMX version unless aligned memory operands are used, since unaligned
use requires two instructions an unaligned load followed by the arithmetic
operation.
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var
i:0.3;
with XMMreges: do
for i— 0 to 3 do
Ci+—C; Asrcc;

4.4.73 PANDN
Instruction PANDN (dest:regid;src:MMX);

*%%  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PANDNMMXreg,r/mé64;

Quadword and in MMX registers. Performs and of the bits in the source and
the negated destination.

var
i:0.1;
fori—Oto1do
with MMXreg.;: do b — (not b) and src.b;

4,474 PANDN_sse
Instruction PANDN_sse (dest:regid;src:XMM);

* % P4
NASM PANDN XMMreg,r/m128;

Packed quadword and in XMM registers. Performs parallel element by element
and of all of the bits in the source and the negated destination. Extended
version for XMM registers. Memory operands must be 16-byte aligned. It is
not competitive in speed with the MMX version unless aligned memory
operands are used, since unaligned use requires two instructions an unaligned
load followed by the arithmetic operation.

var
i:0.3;
with XMMreg.s: do

for i — 0 to 3 do ¢;— (not ¢;) and src.c;

4.4.75 PAVGB
Instruction PAVGB (destregid;src:MMX);

*okk PentiumMMX,K6,P3,P4,ATHLONXP
NASM PAVGB MMXreg,r/m64;

Packed byte unsigned average. Performs parallel element by element average of
all of the pairs of bytes in the source and destination. Source can be in
memory.
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var
i:0.7;
with MMXreg,.,: do
fori— Oto 7 do
fi— (fi+ src.f);

4.4.76 PAVGB_sse
Instruction PAVGB_sse (dest.regid;src:XMM);

*k P4
NASM  PAVGB XMMreg,r/ml128;

Packed unsigned byte average in XMM registers. Performs parallel element by
element average of all of the pairs of bytes in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned.

var
i:0.15;
with XMMreg,.,; do

fori— 0 to 15 do
gi — gi+S’CAg,‘,
2 7

4.4.77 PAVGW
Instruction PAVGW (dest:regid;src:MMX);

Fkx PentiumMMX,K6,P3,P4,ATHLONXP
NASM PAVGWMMXreg,r/mé64;

Packed word unsigned average. Performs parallel element by element average of
all of the pairs of words in the source and destination. Source can be in memory.

var
i:0.3;

with MMXregg.;: do
fori—0to3do

di+src.d;.
di — ’TL,

4.4.78 PAVGW sse
Instruction PAVGW _sse (dest:regid;src:XMM);

*% P4
NASM PAVGb XMMreg,r/ml28;

Packed unsigned word average in XMM registers. Performs parallel element by
element addition of all of the pairs of words in the source and destination.
Extended version for XMM registers. Memory operands must be 16-byte
aligned.
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var
i:0.7;

with XMMreg .: do
for i— 0 to 15 do

) e +src.e;.
€ — 2 [

44.79 PCMPEQB
Instruction PCMPEQB (dest:regid;src:MMX);

**%%  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPEQB MMXreg,r/mé4;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with Off indicating true. Source can be in memory.

var
i:0.7;
with MMXreg .;: do
fori— O0to 7 do
£ {255 if (f; = src.f),
0 otherwise

4.4.80 PCMPEQB_sse
Instruction PCMPEQB_sse (dest:regid;srcXMM);

** P4
NASM PCMPEQB XMMreg,r/ml28;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with 0ff indicating true. Source can be in memory, but if so must
be 16-byte aligned.

var
i:0.15;
with XMMreg .;: do
fori— 0 to 15 do
gi — {255 if (g = src.g,-);
0 otherwise

4.4.81 PCMPEQW
Instruction PCMPEQW (dest:regid;src:MMX);

***%  PentiumMMX,Ké6,P3,P4,ATHLONXP
NASM PCMPEQWMMXreg,r/m64;
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Packed word comparison. Performs parallel element by element comparison
of all of the pairs of bytes in the source and destination. Generates a vector of
mask words with 0f fff indicating true. Source can be in memory.

var
ji:0.3;
with MMXreg.;; do
fori— 0to 3 do
¢ — { -1 if (¢ ='5rc.c,-) :
0 otherwise

4.4.82 PCMPEQW sse
Instruction PCMPEQW _sse (dest:regid;src:XMM);

x% P4
NASM PCMPEQW XMMreg, r/m128;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of words in the source and destination. Generates a vector of
mask words with 0ffff indicating true. Source can be in memory, but if so
must be 16-byte aligned.

var
i:0.7;
with XMMreg.s; do
fori— O to 7 do
d — {—1 if (d; :'src.d;);
0 otherwise

4.4.83 PCMPEQD
Instruction PCMPEQD (dest:regid;src:MMX);

* Kk PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPEQD MMXreg,r/m64;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0f f f f f f f f indicating true. Source can
be in memory.

var
i:0.1;
with MMXregges: do
fori— O0to1do
' =1 if (bj =src.b;)
bi = {0 otherwise;



Chapter 4 e Intel SIMD Instructions 79

4.4.84 PCMPEQD_sse
Instruction PCMPEQD_sse (dest:regid;src:XMM);

** P4
NASM PCMPEQD XMMreg,r/ml128;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0f f f f f f f f indicating true. Source can
be in memory, but if so must be 16-byte aligned.

var
i:0.3;
with XMMreg.;: do
for i— 0 to 3 do
¢ — {—1 if (i =.src.c,');
0  otherwise

4485 PCMPGTB
Instruction PCMPGTB (dest:regid;src:MMX);

*x*  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPGTB MMXreg,r/mé4;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with Off indicating true. Source can be in memory.

var
i:0.7;
with MMXreg.;: do
fori— 0 to 7 do
f e {255 if (i > src.ﬂ);
0 otherwise

4486 PCMPGTB._sse
Instruction PCMPGTB_sse (dest:regid;src:XMM);

* % P4
NASM PCMPGTB XMMreg,r/ml128;

Packed byte comparison. Performs parallel element by element comparison of
all of the pairs of bytes in the source and destination. Generates a vector of
mask bytes with 0f f indicating true. Source can be in memory, but if so must
be 16-byte aligned.
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var
i:0.15;

with XMMregg.s: do
fori— 0to 15 do

gi — 255 if (g; > src.g;)
' 0 otherwise

’

4487 PCMPGTW
Instruction PCMPGTW (dest:regid;src:MMX);

KKk PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPGTWMMXreg,r/mé64;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of bytes in the source and destination. Generates a vector of
mask words with 0ffff indicating true. Source can be in memory.

var
i:0.3;
with MMXreg . do
fori— 0 to 3 do
¢ — {—1 if (ci >_src.c,-);
0  otherwise

4488 PCMPGTW sse
Instruction PCMPGTW _sse (dest:regid;src:XMM);

xx P4
NASM PCMPGTW XMMreg,r/m128;

Packed word comparison. Performs parallel element by element comparison
of all of the pairs of words in the source and destination. Generates a vector of
mask words with 0ffff indicating true. Source can be in memory, but if so
must be 16-byte aligned.

var
i:0.7;
with XMMreg ., do
fori—Oto 7 do
di — {—1 if (d; >'src.d,~);
0 otherwise

4489 PCMPGTD
Instruction PCMPGTD (destregid;src:MMX);

A K PentiumMMX,K6,P3,P4,ATHLONXP
NASM PCMPGTDMMXreg,r/m64;
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Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0f f ff ff ff indicating true. Source can
be in memory.
var

i:0.1;
with MMXreg.s; do

fori—Oto1do

by — { -1 if (b >.src.b,‘);
0  otherwise

4.490 PCMPGTD_sse
Instruction PCMPGTD_ sse (dest.regid;src:XMM);

* % P4
NASM PCMPGTD XMMreg,r/ml28;

Packed doubleword comparison. Performs parallel element by element
comparison of all of the pairs of 32-bit words in the source and destination.
Generates a vector of mask words with 0f ff f ff ff indicating true. Source can
be in memory, but if so must be 16-byte aligned.
var

i:0.3;
with XMMreg,.s; do

fori—0to 3 do

¢ — { -1 if (¢ =‘src.c,~);
0 otherwise

4491 PEXTRW

Instruction PEXTRW (r,m:regid;wordno:0..3);

* % P4
NASM  PEXTRWreg32,MMXreg, imm8;

Extract word from MMX register. The word in the MMX register m selected
by wordno is copied to the general register r.

general, — MMxregmdwordno;

4.4.92 PEXTRW._sse
Instruction PEXTRW_sse (r.x:regid;wordno:0..7);

*oK P4

NASM PEXTRWreg32, XMMreg, imm8;
Extract word from MMX register. The word in the XMM register x selected by
wordno is copied to the general register r.

general, — XMMreg,.eordnos
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4.4.93 PINSRW
Instruction PINSRW (rx:regid;wordno:uint8);

* % P 4

NASM PINSRWMMXreg,r/ml6, imm8;
Insert word in MMX register. Copies bottom 16 bits of a general register into
word of MMX register.

MMXreg,.ewordno — general,;

4.494 PMADDWD
Instruction PMADDWD (dest:regid;src:-MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PMADDWD MMXreg,r/mé4;

Packed Multiply accumulate. Used for computing inner product of two
vectors of int16s. An example is given in Alg. 16. On entry we assume that two
arrays X,y each contain 4n words, and that ecx is initialised to n. At exit the
inner product is held in the bottom 32 bits of mm0.

lea esi,[x-8]

lea edi,[y-8]

pxor mm2,mm2 ; clear register

11:movg mm0, [esi+ecx*8] ; get first 4 ints from array x
pmaddwd mm0, [edi+ecx*8];

paddd mm2,mmO

Toop 11 ; loop for all sub vectors
movg mm0, mm2 ; copy subtotal

psrlq mm0,32 ; shift down high word
padd mmO, mm2 ; add high and Tow words

Algorithm 16. Inner product in assembler

var
temp:mmyx;
[}
fori— O0to 1do
begin
j—2xi;
temp.bj «—— MMXreggest.¢; X src.c; + MMXregges: .Cip1 X SIC.Cjy1;
end;
MMXregges: — temp;

4495 PMAXSW
Instruction PMAXSW (d:regid;src:MMX);



Chapter 4 e Intel SIMD Instructions 83

* Kk x P4
NASM PMAXSWMMXreg,r/m64

Packed 16-bit signed integer Maximum. Destination is an MMX register;
source is MMX register or memory location. Element by element comparison
is performed.

var
i:0.3;

with MMXreg, do
fori— 0 to 3 do
if ¢;<src.c; then
Cj— Src.c;;

4496 PMAXUB
Instruction PMAXUB (d:regid;src:MMX);

* k) P4
NASM PMAXUBMMXreg,r/m64

Packed Unsigned Byte Maximum. Destination is an MMX register; source is
MMX register or memory location. Element by element comparison is
performed.

var
i:0.7;
with MMXreg,; do
fori— O to 7 do
if f; < src.f; then
f; — src.f;

4497 PMINSW
Instruction PMINSW (d:regid;src:MMX);

*okk P4
NASM PMINSWMMXreg, r/mé4

Packed 16-bit signed integer Minimum. Destination is an MMX register;
source is MMX register or memory location. Element by element comparison
is performed.

var
i:0.3;
with MMXreg, do
fori— 0 to 3 do
if ¢;> src.c; then
Cj— SIC.C;;
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4.498 PMINUB
Instruction PMINUB (d:regid;src:MMX);

* %% P4
NASM PMINUB MMXreg,r/m64

Packed Unsigned Byte Minimum. Destination is an MMX register; source is
MMX register or memory location. Element by element comparison is
performed.

var
i:0.7;
with MMXreg, do
fori— O0to 7 do
if f;> src.f; then
f;— src.f;

4499 PMOVMSKB
Instruction PMOVMSKB (d,m:regid);

* P4
NASM PMOVMSKB reg32,MMXreg

Move Byte Mask to Integer Register. Source is an MMX register; destination a
general register.
The sign bits of the bytes are put into a mask byte stored in a general register.

var
i:0.7;
tinteger;
t—0;
with MMXreg,,, do
for i — 7 downto 0 do
begin
if e;< 0 then
t—t+1;
t—tx2
end;
generaly — t;

4.4.100 PMULHUW
Instruction PMULHUW (dest:regid;src:MMX);

** P4
NASM  PMULHUWMMXreg,r/m64

Packed Multiply High Unsigned Word. Destination is an MMX register;
source is MMX register or memory location. Element by element multi-
plication is performed and the top 16 bits of the results are retained.
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var
i:0.3;
tinteger;
with MMXregge,: do
for i— O to 3 do
begin
t—d; x srcd;
d,' —t16;
end;

44,101 PMULHW
Instruction PMULHW (dest:regid;src:MMX);

*kk PentiumMMX,K6,P3,P4,ATHLONXP
NASM PMULHWMMXreg,r/mé4

Packed Multiply High Signed Word. Destination is an MMX register; source is
MMX register or memory location. Element by element multiplication is
performed and the top 16 bits of the results are retained. This is ideal for
multiplying together vectors of signed binary fractions or fixed point numbers
represented as 16-bit integers.

var
i:0.3;
tiinteger;
with MMXreg.s: do
fori— 0 to 3 do
begin
t—d; x src.d;
d,' —t 16,'
end;

44,102 PMULLW
Instruction PMULLW (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM  PMULLWMMXreg,r/mé64

Packed Multiply High Signed Word. Destination is an MMX register; source is
MMX register or memory location. Element by element multiplication is
performed and the bottom 16 bits of the results are retained.

var
i:0.3;
tinteger;

with MMXreg.,: do
for i— 0 to 3 do
begin
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t— d,' X Src.d,';
d; — t \65535;
end;

4.4.103 POR
Instruction POR (dest:regid;src:MMX);

***  PentiumMMX,K6,P3,P4,ATHLONXP
NASM PORMMXreg,r/mé4;

Quadword OR in MMX registers. Performs OR of the 64-bit integers in the
source and destination.

var
i:0.3;
with MMXreg 4.s do
fori— 0 to 3 do
d;—d;V srcd;

4.4.104 PREFETCHNTA
Instruction PREFETCHNTA (loc:integer);

*x P3,P4,ATHLONXP
NASM PREFETCHNTA mem

Loads a cache line into the level 1 data cache. This is equivalent to the
PREFETCH instruction used by AMD.

levellpank, (oc 61/31,0.61 +— Mem.bytememyoc joc + 63;
bank « (bank + 1)mod 4;

4.4.105 PREFETCHT1
Instruction PREFETCHT1 (loc:integer);

** P3,P4,ATHLONXP
NASM PREFETCHTI mem

Loads a cache line into the level 2 data cache. It leaves level 1 unchanged.

level2uank, (joc64)n511,0..61¢ Mem.bytememyoc joc163;
bank — (bank + 1)mod 4;

4.4.106 PREFETCHTO
Instruction PREFETCHTO (loc:integer);

** P3,P4,ATHLONXP
NASM PREFETCHTO mem
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Loads a cache line into the level 1 and level 2 data cache.

levellpank, (toc-64)A31,0..61 < Mem.bytememioc joc+63;
level2pank, (oc=64yn511,0..61 < mem.bytememioc joc+63;
bank — (bank + 1)mod 4;

4.4.107 PSADBW
Instruction PSADBW (dest.regid;src:MMX);

* % P4
NASM PSADBWMMXreg,r/mé4;

Computes the sum of the absolute differences of the signed bytes in the
destination register and those in the source operand. It then places this sum in
the lowest word of the destination register and sets the three other words to
zero.
begin
with MMXrege.: do
begin
co « > abs(f, —src.f,);
3«0
end;
end;

4.4.108 PSHUFD
Instruction PSHUFD (dest:regid;srcXMM;imm8.uint8);

* % P4
NASM PSHUFD XMMreg,r/mi28, imm8;

Performs a permutation of the 32-bit source words using the four 2-bit integer
fields in the 8-bit immediate operand.

var
p:array [0..3] of 0..3;
i 0.3

po «— imm8 mod 4;

p1 — (m8) mod 4;

p2 — (Z78) mod 4;

ps — (78) mod 4;
with XMMreg,.: do
fori— 0 to 3 do

a; Src.ap;

4.4.109 PSHUFW

Instruction PSHUFW (dest.regid;src:MMX;imm8:uint8);

* % P4
NASM PSHUFWMMXreg,r/mé64,imm8;
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Performs a Permutation of the 16-bit source words using the four 2-bit integer
fields in the 8-bit immediate operand.

var
p:array [0..3] of 0.3;
i:0.3;

po — imm8 mod 4;

p1 — (Z8) mod 4;

p2 « (Z7%) mod 4;

ps — ("78) mod 4;

with MMXreg . do
fori— 0 to 3 do

Ci  SIC.Cp;

44110 PSxxf
Instruction PSxxf (dest.regid;count.uint8;xx:shifts;f-formats);

** PentiumMMX,K6,P3,P4,ATHLONXP

NASM PSLLWMMXreg,r/m64;
PSLLWMMXreg, imm8;
PSLLDMMXreg,r/m64;
PSLLDMMXreg, imm8;
PSLLQMMXreg, r/m64;
PSLLQMMXreg, imm8;
PSRAWMMXreg,r/m64;
PSRAWMMXreg, imm8;
PSRADMMXreg,r/m64;
PSRADMMXreg, imm8;
PSRLWMMXreg,r/m64;
PSRLWMMXreg, imm8;
PSRLDMMXreg,r/m64;
PSRLDMMXreg, imm8;
PSRLOMMXreg, r/mé64;

Packed shift instructions. The LL instructions shift left logically, the RL right
logically shifting in 0. The RA shift right arithmetically, propagating the sign
bit. The count can either be in an MMX register, in memory or in an
immediate field.

var
iiinteger;
if f=q then
with MMXreg es:
do
case xx of
LL: a — g x 2¢ount;
RA: a «— 5o
RL: a < shrl(a, count, 64);
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end
else
if f=d then
with MMXreg .,; do
fori—0to1do
case xx of
LL: b,‘ — b,' X 2count;
RA: b; — 52
RL: b; < shrl (b;, count,32);
end
else
with MMXreg .s; do
fori— 0 to 3 do
case xx of
LL: ¢; ¢ ¢; x 2¢ount,
RA: ¢ — 5o
RL: ¢;« shrl (c;, count, 16);
end;

4.4.111 PSUBx
Instruction PSUBx (dest:regid;src:MMX;x:formats);

*E* PentiumMMX,K6,P3,P4,ATHLONXP

NASM PSUBWMMXreg,r/mé64;
PSUBDMMXreg,r/mé4;
PSUBWMMXreg,r/mé4;

Perform signed unsaturated subtraction on two MMX register sized vectors.

var
isinteger;
case x of
b:fori—0
MMXregges-€; — MMXregies:.e; — src.e;;
w:fori—0
MMXreggest.Ci <+ MMXregges:.Ci — src.cj;
d:fori— 0
MMXreggest.bi «— MMXregges:.b; — src.b;;
end;

44112 PSUBSx
Instruction PSUBSx (dest:regid;src:.MMX;x:formats);

** PentiumMMX,K6,P3,P4,ATHLONXP
Nasm Syntax PSUBSBMMXreg,r/mé4;
PSUBSWMMXreg,r/mé4;

Perform signed saturated subtraction on two MMX register sized vectors.
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var
iinteger;
case x of
b:fori—0
MMXreges: .€; «— saturate (MMXregges;.e; — src.e;, —128, 127);
w:fori — 0O
MMXregges.c; — saturate(MMXregges:.C; — src.c;, — 32768, 32767);
end;

44113 PSUBUSx
Instruction PSUBUSXx (dest:regid;src:MMX:x:formats);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PSUBUSB MMXreg,r/m64;
PSUBUSWMMXreg,r/mé64;

Perform unsigned saturated subtraction on two MMX register sized vectors.

var
isinteger;
case x of
b:fori—0
MMXregges: .f; — saturate(MMXregges:.f; — src.f;, 0, 255);
w:fori—0
MMXregges:.d; «— saturate(MMXregges;.d; — src.d;, 0, 65535);
end;

4.4.114 PSWAPD
Instruction PSWAPD (dest.regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PSWAPDMMXreg,r/m64;

Packed Swap Doubleword. Copies the source operand to the destination
register, swapping the upper and lower halves in the process.

MMXreggest.bg «— src.by;
MMXreges: .by «— src.bg;

4.4.115 PUNPCKHBW
Instruction PUNPCKHBW (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKHBWMMXreg,r/m64;

Packed interleave high bytes. Top 4 bytes from each operand are interleaved. If
the first operand held O0x7A6A5A4A3A2A1A0A and the second held
Ox7B6B5B4B3B2B1B0OB, then PUNPCKHBW would return Ox7B7A6B6AS-
B5A4B4A.
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var
t:MMX;
iiinteger;
for i— 0 to 3 do
begin
t.€jxa < SIcC.€jis,
t.€ixa11 — MMXreggest-€it4;
end;
MMXreggest — t;

4.4.116 PUNPCKLBW
Instruction PUNPCKLBW (dest:regid;src:MMX);

** PentjumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLBWMMXreg,r/mé4;

Packed interleave low bytes. Bottom 4 bytes of each operand are interleaved.

var
t:MMX;
iiinteger;
fori— 0 to 3 do
begin
t.ejxa « Src.e;;
t.eixar1 — MMXreggest.€i;
end;
MMXreggest < t;

4.4.117 PUNPCKHWD

Instruction PUNPCKHWD (dest:regid;src:MMX);

**x PentiumMMX,Ké6,P3,P4,ATHLONXP
NASM PUNPCKHWDMMXreg,r/m64;

Packed interleave high words. Top 2 words from each operand are interleaved.

var
t:MMX;
i:integer;
fori—O0to1do
begin
t.Cixa < SIC.Ciz2;
t.Cixas1 — MMXreggest Cit2;
MMXreggest < t;

44118 PUNPCKLWD

Instruction PUNPCKLWD (dest:regid;src:zMMX);

*k PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLWDMMXreg,r/mé4;
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Packed interleave low words. Bottom 2 words of each operand are interleaved.

var
tMMX;
iinteger;
fori—Oto1do
begin
t.Cix2 — SIC.Cj;
t.Cixa+1 — MMXregges:.Ci;
MMXreggest «— t;

4.4.119 PUNPCKHDQ
Instruction PUNPCKHDQ (dest:regid;src:MMX);

** PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKHDQ MMXreg,r/mé4;

Packed interleave high double words. Top double words from each operand
are interleaved.

var
t:MMX;
iiinteger;
t.bg « src.by;
t.by — MMXreggest-b1;
MMXregges: — t;

4.4.120 PUNPCKLDQ
Instruction PUNPCKLDQ (dest:regid;src:-MMX);

*x PentiumMMX,K6,P3,P4,ATHLONXP
NASM PUNPCKLDQMMXreg,r/m64;

Packed interleave low double words. Bottom double words from each operand
are interleaved.

var
tMMX;
isinteger;
t.bg «— src.bg;
t.by — MMXregest.bo;
MMXreggest «— t;

4.4.121 PXOR
Instruction PXOR (dest:regid;src:MMX);

KKk PentiumMMX,K6,P3,P4,ATHLONXP
NASM PXORMMXreg,r/mé64;
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Quadword XOR in MMX registers. Performs XOR of the 64-bit integers in the
source and destination.

var
i:0.3;
with MMXregges: do
fori— 0 to 3 do
di «— (d; V src.di)A not (d; Asrc.d;);

4.4.122 RCPPS

Instruction RCPPS (dest:regid;src:XMM);

**x%x  P3 P4, ATHLONXP
NASM RCPPS XMMreg,r/m128;

SSE Packed Single-FP Reciprocal Approximation. For each of the four 32-bit
floating-point numbers in the source operand RCPPS calculates an approxi-
mation of the reciprocal and stores it in the corresponding quarter of the
destination register. The absolute value of the error for each of these
approximations is at most 3/8192. It use is illustrated in Alg. 17.

var
i:0.3;

fori— O to 3 do
XMMreggest.a; —

1.
src.a;’

; for 1:=0 to 3 do x[il:=y[i1/z[i]
movdqu xmm0, [ebp+100]

movdqu xmml,[ebp+116]

rcpps  xmml,xmml

mulps xmm0, xmml

movdqu [ebp+3271, xmm0

Algorithm 17. Use of RCPPS.

4.4.123 RCPSS

Instruction RCPSS (dest:regid;src:ieee32);

*kok P3,P4,ATHLONXP
NASM RCPSS XMMreg, XMMreg/mem32;

SSE Scalar Single-FP Reciprocal. This is a scalar equivalent to RCPPS.

XMMreggest.Go — i

4.4.124 RSQRTPS
Instruction RSQRTPS (dest:regid;src:XMM);

** P3,P4,ATHLONXP
NASM RSQRTPS XMMreg,r/ml128;
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SSE Packed Single-FP Square Root Reciprocal Approximation. For each of the
four 32-bit floating-point numbers x; in the source operand RCPPS calculates
an approximation of 1/,/X; and stores it in the corresponding quarter of the
destination register. The absolute value of the error for each of these
approximations is at most 3/8192.

var
i:0.3;

fori— 0 to 3 do
XMMreggest.G; — s

4.4.125 RSQRTSS
Instruction RSQRTSS (dest.regid:src.icee32);

ok Kx P3,P4,ATHLONXP
NASM RSQRTSS XMMreg, XMMreg/mem32;

SSE Scalar Single-FP Reciprocal Square Root. This is a scalar equivalent to
RSQRTPS. It use is illustrated in Alg. 18. This normalises a four element
single-precision vector, i.e. it takes an arbitrary vector in 4-space and projects
it on to the unit hyper-sphere.

XMMreges: .Gy — —=;

src!

movdqu xmmO, [ebp+100] ; load vector

movdqu  xmml,xmmO ; copy it

mulps  xmml,xmml ; Square it

pshufd xmmZ,xmml, 00001110b; move high words to Tow
addps  xmml,xmm2 ; add top and bottom halves
pshufd xmm2,xmml, 00000001b; word[0]<-word[1]

addss  xmml,xmml ; form sum of squares
rsgrtss xmml,xmml ; form sqrt

pshufd xmm2,xmml, 00000000b; replicate to vector
mulps  xmmO, xmm2 ; normalise

movdqu [ebp+32], xmm0 ; store

Algorithm 18. Use of RSQRTSS to normalise a vector.

4.4.126 SFENCE
Instruction SFENCE;

*x P3,P4
NASM  SFENCE

SFENCE guarantees that all store instructions which precede it in the program
order are globally visible before any store instructions which follow it. This
relates to the use of the MOVNTPS instruction. The non-temporal store instruc-
tion minimizes cache pollution while writing data. The main difference between
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a non-temporal store and a regular cacheable store is in the write-allocation
behaviour. With a normal store the processor will fetch the corresponding cache
line into the cache hierarchy prior to performing the store. For a non-temporal
store, if the data are not present in the cache hierarchy, the transaction will be
weakly ordered; consequently, you are responsible for maintaining coherency.
Non-temporal stores will not write allocate cache lines. Different implementa-
tions may choose to collapse and combine these stores inside the processor.

Since the cache may not have been updated, a subsequent fetch may obtain
outdated copies of the data. Within well-defined assembler loops one may be
able to guarantee that the data written with MOVNTPS will not be accessed
again within your loop. When the assembler loop exits, however, then code
outside the assembler loop may access the data so written. To ensure
coherence, the SFENCE instruction should be issued after any sequence or
loop that uses non-temporal stores.

4.4.127 SQRTPS
Instruction SQRTPS (dest:regid;src:XMM);

bl P3,P4,ATHLONXP
NASM SQRTPS XMMreg,r/ml128;

SSE Packed Single-FP Square Root. For each of the four 32-bit floating-point
numbers x; in the source operand RCPPS calculates /x; and stores it in the
corresponding quarter of the destination register.

var
i:0.3;

fori— O to 3 do
XMMreggest.a; «— (/src.a;;

4.4.128 SQRTSS
Instruction SQRTSS (dest.regid;src.ieee32);

k%% P3,P4,ATHLONXP
NASM SQRTSS XMMreg, XMMreg/mem32;

SSE Scalar Single-FP Square Root. This is a scalar equivalent to SQRTPS.
XMMreggest.Gg «— +/Src;

4.4.129 SUBPS
Instruction SUBPS (d:regid;src:XMM);

ak P3,P4,ATHLONXP
NASM  SUBPS XMMreg,r/ml128

Subtract packed single-precsion floating point. Source can be register or 16-
byte aligned memory vector.

XMMregy.a — src.a — XMMregy.a
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4.4.130 SUBSS
Instruction SUBSS (d:regid;src:XMM);

** P3,P4,ATHLONXP
NASM SUBSS XMMreg, XMMreg/mem32

Scalar single floating-point subtract. Source memory or XMM register. This
instruction is useful if one wants to do floating-point scalar arithmetic without
corrupting the MMX registers.

XMMreggy.ap «— src.do — XMMreggy.ao

4.4.131 UNPCKHPS
Instruction UNPCKHPS (d:regid;src:XMM);

**%  P3,P4,ATHLONXP
NASM  UNPCKHPS XMMreg,r/m128

Unpack High Packed Single-FP Data. Source can be register or 16-byte aligned
memory vector.

begin
with XMMreg, do
begin
Qo < ay;
a, < src.ay;
a; < asz;
as « src.as;
end;
end;

4.4.132 UNPCLPS
Instruction UNPCLPS (d:regid;src:XMM);

**%  P3,P4,ATHLONXP
NASM UNPCKLPS XMMreg,r/m128

Unpack Low Packed Single-FP Data. Source can be register or 16-byte aligned
memory vector.

begin
with XMMreg, do
begin
dp «— do;
a; < src.dy;
a; < ay;
as < src.dy;
end;
end;
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4.4.133 XORPS
Instruction XORPS (dest:regid;src:XMM);

** P4
NASM  XORPS XMMreg,r/m128;

Quadword XOR in MMX registers. Performs XOR of the 128-bit integers in
the source and destination. Because the memory operand must be 16-byte
aligned, use PXOR in preference to this. For most uses it will be faster.

var
i:0.7;
with XMMreg.;; do
fori— 0to 7 do
di — (d; V src.d;) A\ not(d; A src.d;);



3DNOW Instructions

These instructions assume the data structures declared in the previous chapter.

5.0.1 FEMMS
Instruction FEMMS;

* K6,Athlon
NASM FEMMS

Fast Empty MMX State. This is a faster AMD version of EMMS.
ftw —Sff;

5.0.2 PF2ID
Instruction PF2ID (dest.regid;src:MMX);

*kk K6,Athlon
NASM PF2IDMMXreg,r/mé4;

3DNOW Packed floating point to integer. Converts two floating-point values
to a pair of integers using truncation. Source can be in memory or a register.

with MMXreg.s: do
begin
by « trunc(src.go);
b, — trunc(src.g1);
end;

5.0.3 PFACC
Instruction PFACC (dest:regid;src:-MMX);

** K6,Athlon
NASM PFACCMMXreg,r/mé64;

3DNOW Packed floating-point accumulate. This is useful in multiply accumu-
late sequences such as those involved in inner product operations, or in
summing a vector.

99
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with MMXreg .s: do
begin

go < 9o + g1

g1 < Src.gy + src.go;
end;

5.0.4 PFADD
Instruction PFADD (dest:regid;src:MMX);

*kk K6,Athlon
NASM PFADDMMXreg,r/mé64;

3DNOW Packed floating-point add. Parallel add of two floating-point values.
Source can be in memory or a register.

with MMXreg . do
begin
9o < Go + src.go;
g1 < g1 +src.gy;
end;

5.0.5 PFCMPEQ
Instruction PFCMPEQ (dest:regid;src:MMX);

HAK K6,Athlon
NASM PFCMPEQMMXreg,r/m64;

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Of fffffff, otherwise set to 0. Source can be in memory or a register.

with MMXrege;: do
begin
-1 if go = src.go.
bo {0 otherwise '
—1 if gy =src.g.
b ;
1 {0 otherwise
end;

5.0.6 PFCMPGT
Instruction PFCMPGT (dest.regid;src:MMX);

*kK K6,Athlon
NASM PFCMPGT MMXreg,r/mé4;

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Of fffffff, otherwise set to 0. Source can be in memory or a register.
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with MMXreg,es: do

begin
-1 if go > src.go.
b ;
o= {0 otherwise
-1 if g1 > src.gy.
b ;
U {0 otherwise
end;

5.0.7 PFCMPGE
Instruction PFCMPGE (dest:regid;src:MMX);

*kk K6,AthTon
NASM PFCMPGE MMXreg,r/mé64;

3DNOW Packed floating-point comparison. Element by element comparison
of two pairs of floating-point numbers. If comparison succeeds destination set
to Of fffffff, otherwise set to 0. Source can be in memory or a register.

with MMXreges: do

begin
b {5 e
o {gh R
end;
5.0.8 PFMAX

Instruction PFMAX (dest:regid;src:MMX);

Tk Kx K6,Athlon
NASM PFMAXMMXreg,r/m64;

3DNOW Packed floating-point maximum. Finds the greater of each of two
pairs of floating-point values. Source can be in memory or a register.

with MMXreg.s; do
begin
90 if go > src.go,
9o — {src.go otherwise '

g — g1 if g1 > src.gy,
! src.g; otherwise '

end;

5.09 PFMIN
Instruction PFMIN (dest.regid;src:MMX);

*kx K6,AthTon
NASM PFMINMMXreg,r/mé4;
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3DNOW Packed floating-point minimum. Finds the minimum of each of two
pairs of floating-point values. Source can be in memory or a register.

with MMXreges: do
begin
90 if go < src.go,
9o {src.go otherwise

o if g1 < src.gs,

9 = {src.g1 otherwise

end;

5.0.10 PFMUL
Instruction PFMUL (dest:regid;src:MMX);

**x  K6,Athlon
NASM PFMUL MMXreg, r/m64;

3DNOW Packed floating-point multiply. Parallel mutiply of two floating-
point values. Source can be in memory or a register.

with MMXreg.s: do
begin
go < Go X src.go;
g1 < g1 X src.gy;
end;

5.0.11 PFNACC
Instruction PFNACC (dest:regid;src:MMX);

* Athlon
NASM PFNACC MMXreg,r/m64;

3DNOW Packed floating-point negative accumulate. This is the subtraction
equivalent of PFACG; it is of little use.

with MMXreg.s: do
begin

go < 9go — 91;

gy« Src.gy, — src.go;
end;

5.0.12 PFPNACC
Instruction PFPNACC (dest:regid;src:MMX);

* Athlon
NASM PFPNACC MMXreg,r/m64;

3DNOW Packed floating-point negative accumulate. This is an odd mix of
PENACC and PFACG; it is of little use.
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with MMXreg.,: do

begin

do < Ggo — g1;

gq « Src.gy + src.go;
end;

5.0.13 PFRCP

Instruction PFRCP (dest:regid;srcieee32);

okl Ké,Athlon
NASM PFRCPMMXreg,r/m32;

3DNOW Floating point Reciprocal. The divide operation takes longer on com-
puter hardware than other mathematical operators. Some high-performance
machines avoid using a divide and substitute a reciprocal operation. The
PFRCP operation computes a reciprocal approximation accurate to 14 bits.
Note that unlike other 3DNOW instructions, this instruction takes a scalar
argument. This is either a 32-bit memory operand or the lower 32 bits of an
MMX register. The approximate reciprocal is stored in both halves of the
result register.
This instruction has two deficiencies:

1. the fact that it operates on scalars rather than on vectors
2. its limited accuracy.

In combination, these make it difficult for a parallelising compiler to make use
of it. It remains possible for hand coded instructions to use it, for instance in
normalising a vector.

with MMXreg.,: do
begin
9o < #;
g1 — #i
end;

5.0.14 PFRCPIT

Instruction PFRCPIT (dest.regid;src.ieee32);

*x Ké,Athlon
Syntax  PFRCPIT1MMXreg,r/m32;
PFRCPIT2MMXreg,r/m32;

3DNOW Floating-point Reciprocal Iteration step 1. This applies Newton—
Raphson iteration to converge on the result of the floating-point reciprocal.
Both PFRCPIT1 and PFRCPIT2 must be executed in succession. The iteration
relation is

Xiy1 = x(1 — b X x;)
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Newton—Raphson

to compute 1/b. It can be used in conjunction with PFRCP to perform division
as shown in Alg. 19 will perform the assignment z — . The first argument of the
instruction must have been the source of a PFRCP instruction and the second
argument must have been the output of the same PFRCP instruction.

movd mm0, [x]
pfrcp mml,mm0
punpckldg mmO,mm0
pfrcpitl mmO,mml
p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>