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Introduction 

A number of widely used contemporary processors have instruction-set 
extensions for improved performance in multi-media applications. The aim is 
to allow operations to proceed on multiple pixels each clock cycle. Such 
instruction-sets have been incorporated both in specialist DSPchips such as the 
Texas C62xx (Texas Instruments, 1998) and in general purpose CPU chips like 
the Intel IA32 (Intel, 2000) or the AMD K6 (Advanced Micro Devices, 1999). 

These instruction-set extensions are typically based on the Single Instruc­
tion-stream Multiple Data-stream (SIMD) model in which a single instruction 
causes the same mathematical operation to be carried out on several operands, 
or pairs of operands, at the same time. The level or parallelism supported ranges 
from two floating point operations, at a time on the AMD K6 architecture to 
16 byte operations at a time on the Intel P4 architecture. Whereas processor 
architectures are moving towards greater levels of parallelism, the most widely 
used programming languages such as C, Java and Delphi are structured around 
a model of computation in which operations takeplace on a single value at a 
time. This was appropriate when processors worked this way, but has become 
an impediment to programmers seeking to make use of the performance 
offered by multi-media instruction -sets. The introduction of SIMD instruction 
sets (Peleg et al., 1997; Intel, 1999) to personal computers potentially provides 
substantial performance increases, but the ability of most programmers to 
harness this performance is held back by two factors: 

1. The first is the limited availability of compilers that make effective use of 
these instruction-sets in a machine-independent manner. This remains the 
case despite the research efforts to develop compilers for multi-media 
instruction-sets (Cheong and Lam, 1997; Leupers, 1999; Krall and Lelait, 
2000; Srereman and Govindarajan, 2000). 

2. The second is the fact that most popular programming languages were 
designed on the word at a time model of the classic von Neumann 
computer. 

Vector Pascal aims to provide an efficient and concise notation for 
programmers using multi-media enhanced CPUs. In doing so it borrows 
concepts for expressing data parallelism that have a long history, dating back 
to Iverson's work on APL in the early 1960s (Iverson, 1962). 

Define a vector of type T as having type T[ ]. Then if we have a binary 
operator w : ( T ® T) -+ T, in languages derived from APL we automatically 
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have an operator w: (T[] ® T[]) ~ T[ ]. Thus, if x,y are arrays of integers 
k = x + y is the array of integers where ki = Xi + Yi· 

The basic concept is simple; there are complications to do with the 
semantics of operations between arrays of different lengths and different 
dimensions, but Iverson provides a consistent treatment of these. The most 
recent languages to be built round this model are J, an interpretive language 
(Iverson, 1991, 2000; Burke, 1995), and F (Metcalf and Reid, 1996) a 
modernised Fortran. In principle, though, any language with array types can 
be extended in a similar way. Iverson's approach to data parallelism is machine 
independent. It can be implemented using scalar instructions or using the 
SIMD model. The only difference is speed. 

Vector Pascal incorporates Iverson's approach to data parallelism. Its aim is 
to provide a notation that allows the natural and elegant expression of data 
parallel algorithms within a base language that is already familiar to a con­
siderable body of programmers and combine this with modern compilation 
techniques. 

By an elegant algorithm is meant one which is expressed as concisely as 
possible. Elegance is a goal that one approaches asymptotically, approaching 
but never attaining ( Chaitin, 1997). APL and J allow the construction of very 
elegant programs, but at a cost. An inevitable consequence of elegance is the 
loss of redundancy. APL programs are as concise as or even more concise than 
conventional mathematical notation (Iverson, 1980) and use a special 
character set. This makes them hard for the uninitiated to understand. J 
attempts to remedy this by restricting itself to the ASCII character set, but still 
looks dauntingly unfamiliar to programmers brought up on more conven­
tional languages. Both APL and J are interpretive, which makes them ill suited 
to many of the applications for which SIMD speed is required. The aim of 
Vector Pascal is to provide the conceptual gains oflverson's notation within a 
framework familiar to imperative programmers. 

Pascal (Jensen and Wirth, 1978) was chosen as a base language over the 
alternatives of C and Java. C was rejected because notations such as x+y for x 
and y declared as i n t x [ 4 ] , y [ 4 ] , already have the meaning of adding the 
addresses of the arrays together. Java was rejected because of the difficulty of 
efficiently transmitting data parallel operations via its intermediate code to a 
just in time code generator. 



Part I 

SIMD Programming 
Paul Cockshott 



1.1 Clocks 

Computer Speed, 
Program Speed 

Since their invention in the 1940s, the speed of electronic computers has 
increased exponentially. Their raw speed is usually measured in MHz or 
millions of cycles per second. In the last few years, MHz have been replaced 
by GHz, or thousands of millions of cycles per second. These figures describe 
what is called the clock speed of the computer. 

Since the invention of escapement mechanisms in the Middle Ages, all 
clocks have had at their heart a device that oscillates, the regularity of whose 
cycles determines the clock's accuracy. In mechanical clocks the oscillator was 
typically a pendulum or a balance wheel bound by a spring, which might 
oscillate once per second. The clockwork mechanism then used toothed wheels 
to count these cycles and show the result in terms of seconds, minutes and 
hours. Such clocks were, in a sense, the first computers. 

Nowadays, clocks use quartz crystals which vibrate rapidly when a voltage is 
placed across them. The crystals used in modern watches typically vibrate some 
30 000 times per second. The vibrations produce as a side effect electronic 
pulses; digital circuits or registers count these vibrations and show or register 
the time on the face of the watch. 

When we talk about the clock speed of a computer, we are referring to the 
rate of a similar sort of crystal-controlled oscillator. The pulses produced by it 
are used to synchronise all of the internal operations of the processor chip. 
Like a clock, the chip contains registers which hold the numbers on which 
calculations are performed. The registers are designed so that they can change 
their values only when a pulse arrives from the oscillator. 

In between the registers are arithmetic circuits which perform the actual 
calculations, as shown in Figure 1.1. Register A feeds information into a 
calculation circuit and the result is registered in B. It takes a small but definite 
time for these calculation circuits to operate, and chip designers have to ensure 
that the results will arrive at B before the next clock pulse. As the components 
making up the arithmetic circuits are made smaller and smaller, the time taken 
for electrical pulses to propagate through them declines, allowing designers to 
shorten the intervals between successive clock pulses. In a modern computer 
the parts are so small that delays between pipeline stages are less than a 
nanosecond, a billionth of a second. 

3 
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' 
: ALU : 
~---r ___ : Clock 

Figure 1.1. The use of clocked pipelines. 

The first computer to operate with a 1 MHz clock was built in the mid-
1950s. By 2000, clocks were 1000 times faster. The driving force in all of this 
has been the ability of the semiconductor industry to make transistors smaller 
and smaller, reducing the time it takes for electrons to pass through them. This 
reduction in size has also made computers far cheaper. Twenty years ago Cray 
mainframe computers had clock speeds of over 100 MHz, but they were so 
expensive that only major national laboratories could afford them. Two 
decades later we have computers with 2 GHz clocks so cheap that they are used 
to amuse children. 

1.2 Width 

Clock speeds sell computers and, historically, improvements in clock speeds 
have been by far the most important factor in increasing the power of 
computers. Clock speeds have gone up 1000-fold since the mid-1950s but 
individual computers are probably some 100000 times faster than they were 
then. The remaining factor of 100 stems from improvements in the internal 
design or architecture. 

Consider the problem of adding together two four-digit numbers, 1204 + 
1801. If you were to do this by hand you would proceed as follows: 1 + 4 = 5 
and carry 0, 0 + 0 = 0 and carry 0, 2 + 8 = 0 and carry 1, 1 + 1 + 1 = 3, so 
the answer is 3005. We have done this working on at most three digits at a 
time. At primary school we memorised the addition tables of all the pairs of 
digits, knowing these we can perform the calculation in four steps. 

We do pencil and paper arithmetic a single digit at a time, but using the 
methods of long addition, long multiplication, etc., people can perform sums 
on numbers of arbitrary length. A single decimal digit can be stored in a 4-bit 
binary number, so a computer capable of adding together two numbers each 
4 bits long would be a emulate our paper and pencil methods. In one cycle it 
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could add a single pair of digits, in the next another pair, etc., taking four 
cycles to do 1204 + 1801. Indeed, this is exactly how most cheap pocket 
calculators work, they add pairs of digits at a time. When you press the square 
root key of a pocket calculator a software subroutine is invoked that calculates 
the square root by a laborious process involving repeated single digit 
arithmetic, but, since the cycle time is very short compared with humans, it 
appears to perform the operation instantaneously. 

However, if you compare a 4-bit computer with a 16-bit computer then the 
addition 1204 + 1801 can now be performed in a single operation. Thus, aside 
from clock frequency, the 16-bit machine will be four times faster than the 
4-bit machine. However, this only holds so long as the calculations are four 
digits long. Leaving aside considerations of clock speed, a 4-bit machine will be 
just as efficient as a 16-bit machine on single digit arithmetic. 

Taking into account both clock speed and data width, we get a measure of 
CPU speed s as 

cb 
s=­

w 

where c is the clock speed, b the bit width of the machine's arithmetic and 
w the bit width of the operands on which the program is working. 

1.3 Instruction Speed 

A further complication is that the number of clock cycles required to perform 
an instruction varies. 

Different designs of CPUs take varying numbers of clock cycles to perform 
an instruction. If you look at Table 1.1, you can see that the number of clocks 
per instruction has gone down over the years with successive models of Intel 
CPUs. The factors entering into this are the speed of memory relative to the 
clock and the depth of the data processing pipeline. Early processors took 
several clock cycles to access memory. On newer processors, this has been cut 
thanks to the ability of the CPU to fetch several instructions in one memory 

Table 1.1. Intel processors 

CPU Year Register Clock MHz Clocks per Throughput 
width instruction MIPS 

4004 1971 4 0.1 8 0.0125 
8080 1974 8 2 8 0.25 
8086 1978 16 5 8 0.33 
386 1985 32 16 3 5.0 
Pentium with MMX 1997 64 200 0.5 400 
P4 2001 128 1600 0.5 3200 

The first Intel microprocessor, the 4004, was targeted at pocket calculators. It had a 4-bit accumulator, just enough to 
hold a decimal digit. Subsequent processors have seen the widths of their registers increase by successive factors of two. 
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access and to the use of caches, small auxiliary high-speed memories, to reduce 
the mean time to read a memory location. The most recent processors are 
super-scalar, meaning that they can execute more than one instruction each 
clock cycle. A Pentium class processor can issue two instructions per clock. 

This modifies our speed equation to 

cb 
s = ----; 

W1 

where i is the number clocks per instruction. On a given processor, the most 
important factor determining the number of clocks per instruction is memory 
access. Since memory speeds have consistently lagged behind processor speeds, 
an algorithm with many load and store instructions will be slower than one 
with fewer. Since the main technique used by CPU designers to reduce i has 
been the use of caches, another crucial determinant of speed is the extent to 
which the data used by an algorithm will fit into the cache. If the dataset is 
small enough, memory fetches will execute in one or two instructions. If not, 
they can take 10 times as long. 

1.4 Overhead Instructions 

When we consider an algorithm in the abstract, we can determine the 
minimum number of basic arithmetic operations required to perform a task. If 
we want to form the total of an array of four numbers, then we know that we 
need at least three additions. On most designs of CPU, however, it would be 
hard to code this with so few instructions. 

If the addition is performed using a f o r loop (see Alg. 1), then there will be 
additional instructions to increment the iteration variable, to test it against 
limits and to perform jumps. Even the basic addition step t: =t+a [ i] can 
involve several instructions. In Alg. 1, a total of 36 instructions are required to 
perform the three basic additions. 

If we unroll the loop and express it in a single statement as shown in Alg. 2, 
then the compiler is able to make a better job of translating the code, so we 
end up with only five instructions to perform the three adds that are required. 

The number of overhead instructions needed depends on: 

• the sophistication of the compiler used 
• the coding style used by the programmer 
• the expressive power of the CPU's instruction-set. 

We can summarise the effects of these factors in a number u, which is defined as 

useful instructions 
u = total instructions 

In the program fragment in Figure 1.1 we get u = f2 and for the unrolled 
code we obtain u = ~· 
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High Level Code Resulting machine code 

t:=O; 
XOR AX,AX 
MOV T,AX 

for i:=l to 4 do t:=t+a[i]; 
MOV I,DDDl 
JMP DD2D 
INC 
MDV AX,T -+ 
MDV DI.I I 
SHL DI.l I t:=t+a[iJ 
ADD AX, [DI+AJ I 
MDV T,AX -+ 
CMP I ,4 
JNZ OOlC 

Instructions executed 36 

Note that the high-level code generates many more lines of assembler. Even the basic stage of 
computing each step of the total t : =t +a [ i ] requires five instructions. 

Algorithm 1. Forming a total with a for loop. 

t:=a[l]+a[2J+a[3J+a[4]; 
MOV AX. [A] 
ADD AX. [A+2] 
ADD AX. [A+4 J 
ADD AX. [A+6] 
MOV T,AX 

Instructions executed 5 

Note that in this case the compiler is able to optimise access to the array elements and to dispense 
with the loop code, giving a much better efficiency. 

Algorithm 2. Forming a total with an unrolled loop. 

Taking overhead instructions into account, we obtain a new equation for 
program speed: 

ucb 
s=-. 

Wl 

Another factor that one has to consider is Amdahl's law, which states that 
the effective speedup of a program due to parallelisation will be constrained by 
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the fraction of the program that cannot be executed in parallel: 

where A is the acceleration achievable, 'ljJ is the number of inherently serial 
instructions in the program, p is the potentially parallel instructions and n is 
the number of processing units available to perform the operations. This 
means that for real programs the effective speedup tends to be less than that 
which might appear to be possible simply by looking at the parallelism of the 
instruction-set. For instance, assume we have a computer capable of perform­
ing four operations in parallel, and a program in which 8 million of the dynam­
ically executed operations are potentially parallelisable, with a residuum of 
2 million that are inherently serial: 

Serial Parallel Parallelism Total 
instructions instructions 

Problem 2000000 8 000000 
Machine 1 2000000 8 000000 1 10000000 
Machine 2 2000000 2 000000 4 4000000 
Speedup 150% 

1.5 Algorithm Complexity 

The factors described so far relate to the speed and architecture of the CPU 
and to the compiler's effectiveness in using it. However, for large programs 
these factors are dominated by the algorithmic complexity of the program. 
This describes how the number of basic arithmetic operations required by the 
program grows as a function of the size of the problem. Thus a naive searching 
algorithm would require of the order of n basic operations to search a table 
of n elements, but a better algorithm can achieve the same function with of 
the order of log n basic operations. We use the notation C( n) to denote the 
complexity of the algorithm. C(n) gives the minimum number of basic 
arithmetic operations that are required by the algorithm assuming that u = 1, 
i.e. that we have a perfectly efficient compiler. We call this minimum number 
of operations the base operations. Thus our final model for determining the 
speed of a program is given by 

s = C(n) uc~ 
WI 

where wi < b, and a modified versions of Amdahl's equation in other cases: 

s= C(n)uc('t/J+~) 
't/J+wi 
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Table 1.2. Performance on vector kernels 

w b 

16 (BP) 32 (DevP) 32 (TMT) 32 (DP) 32 (VP 486) 64 (VP K6) test 

8 46 71 80 166 333 2329 unsigned byte + 
8 38 55 57 110 225 2329 saturated unsigned byte + 
8 23 49 46 98 188 2330 pixel+ 
8 39 67 14 99 158 998 pixel x 
16 39 66 74 124 367 1165 short integer + 
32 47 85 59 285 349 635 long integer + 
32 33 47 10 250 367 582 real+ 
32 32 47 10 161 164 665 real dot prod 
32 33 79 58 440 517 465 integer dot prod 

In these tests the clock speed c = 1 GHz is held constant, and the number of base operations is known 
for each row of the table. All figures are in terms of millions of base operations per second measured on 
a 1 GHz Athlon. Different rows of the table have different effective data type widths w. Variations in 
speed going down a column show the effects of w, and also measure the relative efficiency, u, of the 
compilers for different data types. 

The rows measuring dot product also potentially show variations in i because there are opportunities 
in the dot product operation for caching operands in registers. Where these are taken, the effect is to 
reduce the mean number of clocks to access an operand, thus giving higher performances. 

The bit width of the registers available varies between the columns since one compiler was targeted 
on the 286 instruction-set giving b = 16, another was targeted on the K6 instruction-set with b = 64 
and the others on the 486 instruction-set with b = 32. The resulting variations in performance along 
the rows measure the effect of b and u varying between the compilers. 

It can be seen that the combined effects of variations in bu can amount to a performance variation of 
100 to 1 along the rows. 

The following compilers were used: BP = Borland Pascal compiler with 287 instructions enabled range 
checks off, b = 16, release of 1992; DevP = Dev Pascal version 1.9, b = 32; TMT = TMT Pascal version 
3, b = 32, release of 2000; DP =Delphi version 4, b = 32, release of 1998; VP 486 =Vector Pascal 
targeted at a 486, b = 32, release of 2002; VP K6 =Vector Pascal targeted at an AMD K6, b = 64, 
release of 2002. 

Clearly the most important factor here is C(n), since, despite gains in clock 
speed, etc., for sufficiently large n an On algorithm will run faster on an old 
8086 than an On2 algorithm on a P4. 

However, if we assume that the complexity of the algorithm C(n) is 
unchanged and that we have a particular processor to work with, thus fixing c, 
then changes to the remaining factors can still produce dramatic changes in 
program speed. 

If we select our numeric precision w to be no greater than required, use 
large register widths b and produce few overhead instructions, some programs 
can be speeded up by more than an order of magnitude (see Tables 1.2 and 
13.1). Vector Pascal improves program performance by concentrating on these 
factors. To understand how this is possible we have to look at how Intel and 
AMD have widened the registers on their latest processors, and introduced 
new data-types targeted at image processing problems. This is the subject 
matter of the next chapter. 



SIMD Instruction-sets 

In the performance model presented in Chapter 1, we identified two crucial 
factors to be b the bit width of the machine's registers and w the width in bits 
of the numbers being used in the program. We examined the situation where 
w > b, taking the example of a 4-bit machine doing 16-bit arithmetic. In this 
case we saw that performance would vary as b!w. 

In this chapter, we look at how processor manufacturers have attempted to 
deal with the opposite case, b > w, where the register widths are substantially 
wider than the data types being operated on. This occurs frequently when 
dealing with images and sound, which are typically represented by 8- or 16-bit 
discrete samples. Modern processors tend to have at least some 64-bit 
registers, since these are required for floating point operations. The challenge 
has been to keep performance increasing as a function of b!w whilst b > w. 

2.1 The SIMD Model 

A number of widely used contemporary processors have instruction-set exten­
sions for improved performance in multi-media applications. The aim is to allow 
operations to proceed on multiple pixels each clock cycle. Such instruction­
sets have been incorporated both in specialist DSP chips such as the Texas C62xx 
(Texas Instruments, 1998) and in general-purpose CPU chips such as the Intel 
IA32 (Intel, 1999, 2000) or the AMD K6 (Advanced Micro Devices, 1999). 

These instruction-set extensions are typically based on the Single Instruction­
stream Multiple Data-stream (SIMD) model in which a single instruction causes 
the same mathematical operation to be carried out on many operands, or pairs 
of operands, at the same time. The SIMD model was originally developed in 
the context of large-scale parallel machines such as the ICL Distributed Array 
Processor or the Connection Machine. In these systems, a single control pro­
cessor broadcast an instruction to thousands of single-bit wide data processors 
causing each to perform the same action in lockstep. These early SIMD pro­
cessors exhibited massive data parallelism but, with each data processor having 
its own private memory and data-bus, they were bulky machines involving 
multiple boards each carrying multiple memory chip, data-processor chip pairs. 
Whilst they used single bit processors, the SIMD model is not dependent on 
this. It can also be implemented with multiple 8-, 16- or 32-bit data processors. 

11 
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The incorporation of SIMD technology in modern general-purpose 
microprocessors is on a more modest scale than were the pioneering efforts. 
For reasons of economy the SIMD engine has to be included on the same die as 
the rest of the CPU. This immediately constrains the degree of parallelism that 
can be obtained. The constraint does not arise from the difficulties of incorpo­
rating large numbers of simple processing units. With contemporary feature 
sizes, one could fit more than 1000 1-bit processors on a die. Instead, the degree 
of parallelism is constrained by the width of the CPU to memory data path. 

The SIMD model provides for all data processors to transfer simultaneously 
words of data between internal registers and corresponding locations in their 
memory banks. Thus with n data processors each using w-hit words one needs 
a path to memory of nw bits. If a CPU chip has a 64-bit memory bus then it 
could support 64 1-bit SIMD data processors, or eight 8-bit data processors, 
two 32-bit processors, etc. 

For bulk data operations, such as those involved in image processing, the 
relevant memory bus is the off-chip bus. For algorithms that can exploit some 
degree of data locality, the relevant bus would be that linking the CPU to the 
on-chip cache, and the degree of parallelism possible would be constrained by 
the width of the cache lines used. 

Whilst memory access paths constrain the degree of parallelism possible, the 
large numbers of logic gates available on modern dies allow the complexity of 
the individual data processors to be raised. Instead of performing simple 1-bit 
arithmetic, they do parallel arithmetic on multi-bit integers and floating point 
numbers. 

As a combined result of these altered constraints we find that SIMD instruc­
tions for multi-media applications have parallelism levels of between 32 bits 
(Texas C62xx) and 128 bits (Intel P4), and the supported data types range 
from 8-bit integers to 64-bit floating point numbers. 

2.2 The MMX Register Architecture 

The MMX architectural extensions were introduced in late models of the 
Pentium and subsequent processors from Intel and exist in compatible chips 

32 64 
4 • 

eax mmxO 

ebx mmx1 
ecx mmx2 
edx mmx3 
ebp mmx4 

esi mmxS 
edi mmx6 
esp mmx7 

Figure 2.1. The Intel IA32 with MMX register architecture. 
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produced by AMD, Cyrix and others. They can now be considered part of the 
baseline architecture of any contemporary PC. 

The data registers available for computational purposes on processors 
incorporating the MMX architecture are shown in Figure 2.1. The original 
IA32 architecture had eight general-purpose registers and an eight-deep stack 
of floating point registers. When designing the multi-media extensions to the 
instruction-set, Intel wanted to ensure that no new state bits were added to the 
process model. Adding new state bits would have made CPUs with the exten­
sions incompatible with existing operating systems, as these would not have 
saved the additional state on a task switch. Instead, Intel added eight new 
virtual 64-bit registers which are aliased on to the existing floating point stack. 
These new multimedia registers, mmO ... mm7, use state bits already allocated to 
the Floating Point Unit (FPU), and are thus saved when an operating system 
saves the state of the FPU. 

The MMX instructions share addressing mode formats with the instructions 
used for the general-purpose registers. The 3-bit register identification fields 
inherited from the previous instructions are now used to index the eight multi­
media rather than the eight general-purpose registers. The existing addressing 
modes for memory operands are also carried over, allowing the full gamut of 
base and index address modes to be applied to the loading and storing of 
MMX operands. 

2.3 MMX Data-types 

The MMX registers support four data formats as shown in Figure 2.2. A 
register can hold a single 64-bit QWORD, a pair of 32-bit DWORDS, four 16-bit 
WORDS or eight BYTES. Within these formats the data types shown in Table 2.1 
are supported. 

8 8-bit BYTES 
I I I I 

4 16-bit WORDS 
I I I 

2 32-bit DWORDS 
I 

1 64-bit QWORD 

Figure 2.2. The MMX data formats. 

Table 2.1. MMX data types 

Format Signed Unsigned Signed saturated Unsigned saturated 

BYTE Yes Yes Yes Yes 
WORD Yes Yes Yes Yes 
DWORD Yes Yes No No 
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The saturated data types require special comment. They are designed to 
handle a circumstance that arises frequently in image processing when using 
pixels represented as integers: that of constraining the result of some arithmetic 
operation to be within the meaningful bounds of the integer representation. 

Suppose we are adding two images represented as arrays of bytes in the range 
0.255 with 0 representing black and 255 white. It is possible that the results may 
be greater than 255. For example, 200 + 175 = 375 but in 8-bit binary 

11001000 
+ 10101111 

1 01110111 

Dropping the leading 1, we get 01110111=119, which is dimmer than either 
of the original pixels. The only sensible answer in this case would have been 
255, representing white. 

Consider the problem of applying the following vertical edge sharpening 
convolution kernel to an image represented as signed bytes: 

-0.25 0.75 -0.25 
-0.5 1.5 -0.5 
-0.25 0.75 -0.25 

Since the kernel is unitary, that is, its elements sum to 1, it produces no overall 
change in the contrast of the image. The image, being represented in signed 
bytes, will have pixels in the range -128 ... 127, with -128 representing black 
and 127 representing white. The effect of the convolution should be to 
enhance the contrast on any vertical lines or vertical edges. 

Now consider the effect of applying the kernel to the 3 x 4 pixel pattern 

0 -70 -70 0 
0 -70 -70 0 
0 -70 -70 0 

which represents a 2 pixel wide dark-grey vertical line on a mid-grey 
background. The intended effect should be to enhance the contrast between 
the line and the background. 

If we perform the calculations for the convolution using real arithmetic, 1 

the pixels p representing the dark -grey line (the -70s) are mapped to p' = 3 x 
-70 + ( -1 x -70) = -140. The snag is that -140 is less than the smallest 
signed 8-bit integer. The only 'sensible' value that can be assigned top' would 
be -128 =black. If we simply converted -140 to an 8-bit signed value by 

1 For speed we might use 16-bit integers representing the convolution as 

-1 3 -1 
-2 6 -2 
-1 3 -1 

followed by a shift right two places to normalise the result, but the argument above would 
still hold. 
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truncation, we would obtain 01110011 binary or 115 decimal. The dark line, 
would have been mapped to a light line, contrary to intention. 

To avoid such errors, image processing code using 8-bit values has to put in 
tests to check if values are going out of range, and force all out-of-range values 
to the appropriate extremes of the ranges. This inevitably slows the computa­
tion of inner loops. In addition to introducing additional instructions, the 
tests involve conditional branches and pipeline stalls. 

The MMX seeks to obviate this by providing packed saturated data types 
with appropriate arithmetic operations over them. These use hardware to ensure 
that the numbers remain in range. 

The combined effect of the use of packed data and saturated types can be to 
produce a significant increase in code density and performance. 

Consider the C code in Alg. 3 to add two images pointed to by v 1 and v 2, 
storing the result in the image pointed to by v 3. The code includes a check to 
prevent overflow. Compiled into assembler code by the Visual C ++ compiler 
the resulting assembler code has 18 instructions in the inner loop. The poten­
tial acceleration due to the MMX can be seen by comparing it with the hand­
coded assembler inner loop in Alg. 4. 

The example assumes that v 1, v 2, v 3 are indexed by e s i for the duration of 
the loop. Only five instructions are used in the whole loop, compared with 18 
for the compiled C code. Furthermore, the MMX code processes eight times as 
much data per iteration, thus requiring only 0.625 instructions per byte 
processed. The compiled code thus executes 29 times as many instructions to 
perform the same task. Although some of this can be put down to the 
superiority of hand-assembled versus automatically compiled code, the 
combination of the SIMD model and the saturated arithmetic is obviously a 
major factor. 

2.4 3DNow! 

The original MMX instructions introduced by Intel were targeted at increasing 
the performance of 2D image processing, giving their biggest performance 
boost for images of byte-pixels. The typical operations in 3D graphics, pers­
pective transformations, ray tracing, rendering, etc., tend to rely upon floating 
point data representation. Certain high 2D image processing operations requir­
ing high accuracy such as high-precision stereo matching can also be imple­
mented using floating point data. Both Intel and AMD have seen the need to 
provide for these data representations. AMD responded first with the 3DNow! 
instructions, then Intel introduced the Streaming SIMD instructions which we 
discuss in the next section. 

The basic IA32 architecture already provides support for 32- and 64-bit 
IEEE floating point instructions using the FPU stack. However, 64-bit floating 
point numbers are poor candidates for parallelism in view of the data-path 
limitations described in Section 2.1. 

AMD provided a straightforward extension of the MMX whereby an addi­
tional data type, the pair of 32-bit floats shown in Figure 2.3, could be operated 
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rna in ( ) 
{ 

} 

unsigned char v1[LENJ.v2[LEN],v3[LEN]; 
i nt i , j , t; 
for(j=O;j<LEN;j++){ 
t=v2[j]+vl[j]; 
v3[j]=Cunsigned char)Ct>255?255:t); 

} 

ASSEMBLER 
xor edx, edx 

$B1$3: Preds $Bl$5 
mov eax, edx 
lea ecx. DWORD PTR [esp] 
movzx ecx, BYTE PTR [eax+ecx] 
mov DWORD PTR [esp+19200], edi 
lea edi, DWORD PTR [esp+6400] 
movzx edi. BYTE PTR [eax+edi] 
add ecx, edi 
cmp ecx, 255 
mov edi , DWORD PTR [esp+19200J 
jle $Bl$5 Prob 16% 

$B1$4: Preds $B1$3 
mov ecx, 255 

$81$5: Preds $81$3 
inc edx 
cmp edx, 6400 
mov DWORD PTR [esp+19200], edi 
lea edi, DWORD PTR [esp+12800] 
mov BYTE PTR [eax+edi], cl 
mov edi, DWORD PTR [esp+19200] 
jl $B1$3 ; Prob 80% 

\end{verbatim} 

; 9.8 

$B1$2 
10.9 
10.6 
10.6 

10.12 
10.12 
10.12 
11.26 

11.26 

11.26 
$81$4 

9.18 
9.3 

11.4 
11.4 

9.3 

Algorithm 3. C code to add two images and corresponding assembler for the inner loop. Code 
compiled on the Intel C compiler version 4.0. 

11: movq mmO.[esi+ebp-LENJ 
paddusb mm0,[esi+ebp-2*LENJ 
movq [esi+ebp-3*LENJ,mm0 
add esi ,8 
loop 11 

load 8 bytes 
packed unsigned add bytes 
store 8 byte result 
inc dest pntr 
repeat for the rest 

Algorithm 4. MMX version of Alg. 3. 
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Real Real 

32 bit 

Figure 2.3. The AMD 3DNOW! extensions add 32-bit floating point data to the types that can be 
handled in MMX registers. 

on. Type conversion operations are provided to convert between pairs of 
32-bit integers and 32-bit floats. 

The range of operators supported includes instructions for the rapid 
computation of reciprocals and square roots - relevant to the computation of 
Euclidean norms in 3D space. 

2.4.1 Cache Handling 

A significant extension with 3DNow, copied in the Streaming SIMD exten­
sions, is the ability to prefetch data into the cache prior to its use. This is pot­
entially useful in any loop operating on an array of data. For instance the loop 
in the previous section could be accelerated by inserting the marked prefetch 
instructions. 

The instruction count rises; despite this, performance goes up since loads 
into the cache are initiated prior to the data being needed. This allows the 
loading of the cache to be overlapped with useful instructions rather than 
forcing calculations to stall whilst the load takes place. 

To understand why this is useful, it is worth taking a closer look at how the 
cache on a modern processor works. We will describe the P4 cache as an example; 
the Athlon cache differs only in details. The account we give is simplified but 
sufficient to understand how the prefetch instructions work. 

The P4 has an 8 kb level 1 cache with 64-byte cache lines and four-way set 
associativity (see Figure 2.4). 

This means that it has four banks of memory each of which contains 
32 lines. When a memory fetch occurs, the CPU generates a 32-bit store 
address. The address is split into three fields as shown. The bottom 6 bits select 
a byte offset within a cache line. The next 5 bits are used to select one of 32lines 
in each bank. The remaining 21 bits constitute the tag field of the address. This 
is compared in parallel to the tag fields of each four selected cache lines. In 
addition to checking the tag fields for identity, validity flags associated with the 
lines are validated. If the tag field of one of the lines is found to match with the 
tag field of the address, then a cache hit occurs, otherwise a cache miss occurs. 

In the event of a hit, the word in the line indicated by the byte select bits is 
returned as the operand of the instruction. In the event of a cache miss then a 
cache load is initiated to the next level of the store hierarchy- the level2 cache. 
Here a similar process is repeated except that here the cache is larger and the 
access time longer. A miss on the level2 cache causes a line of the level 2 cache 
to be loaded from main memory. 

When a fetch percolates down to the main store, the processor will fetch a 
whole cache line as a single transaction, spread over several clock cycles. There 
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Figure 2.4. The cache structure. 
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is an initial memory setup time during which the address is transfered to the 
dynamic ram chips and an appropriate page within the dynamic ram chips is 
selected. Following this, eight memory cycles each transfering 8 bytes are used 
to fill the cache line. The reason for having relatively long cache lines is that it 
enables the cost of address setup to be amortised over multiple fetched memory 
words. This runs the risk that some of the data fetched into the cache will not be 
used, and will therefore show its greatest advantage either when an algorithm 
moves sequentially through adjacent memory locations or when a small group 
of frequently accessed variables can be loaded into a single cache line. 

In parallel with the fetching of a new line's worth of data from memory, the 
CPU selects one of the four cache banks to receive the data. The mechanism 
used to choose which bank will get the data varies. Some caches use a pseudo 
random number generator to select a bank, others select the bank containing 
the oldest cache line to be replaced (Hennessy and Patterson, 2003). The block 
being replaced has its tag field replaced with the tag field of the requested word 
and the line is marked as invalid. Once the data has been loaded into the cache, 
the flags are set to indicate that it is now valid. 

A moment's consideration will show that with a four-bank cache it is pos­
sible to store data from four distinct areas of memory which share the same low 
order address bits. As soon as a fifth block is accessed sharing these addresses, 
then one of the previous blocks must be discarded. However, as Figure 2.5 
shows, it is still possible to perform many useful loops without such clashes 
occurring. 

2.4.2 Cache Line Length and Prefetching 

Since entire cache lines are fetched at a time, we can see that if the processor 
has 64-byte cache lines, Alg. 5 will issue unnecessary prefetch instructions. We 
only need to issue a single prefetch instruction for each use of a new cache line, 
that is, once every 64 bytes processed. Alg. 6 illustrates this, having two nested 
loops. Immediately prior to entering the inner loop, it prefetches the data that 
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Cache banks 

Local variables 

Array A 

Array B 

Array ( 

Main memory 

Figure 2.5. With four banks of cache it is possible for a loop using two source and one destination array 
to stream data in distinct banks whilst reserving one bank for local variables. 

mov ecx, LEN 
shr ecx, 3 

11: movq mmO.[esi+ebp-LENJ 
prefetch [es i+ebp - LEN+8] 
paddusb mm0,[esi +ebp -2*LENJ 
prefetch [es i+ebp-2* LEN+8] 
movq [es i +ebp-3*LENJ,mm0 
prefetchw [es i+ebp-3*LEN+8] 

add esi,8 
loop 11 

ecx gets 
number of times 
round loop 
load 8 bytes 
get next 8 into cache 
packed unsigned add bytes 

store 8 byte result 
set up cache to write 
8 bytes of data 
inc dest pnt r 
repeat for the rest 

Algorithm 5. A simple example of prefetching. 

will be need for the following iteration of the outer loop. It does this by 
prefetching data that is 64 bytes on from the data to be accessed on the 
following iteration of the inner loop. 

2.5 Streaming SIMD 

Intel produced their own functional equivalent to AMD' s 3D NOW! instruction­
set with the Pentium III processor. They called the new instructions Streaming 
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mov eax,LEN 
shr eax,6 

prefetch [esi+ebp-LEN+64J 
prefetch [esi+ebp-2*LEN+64J 
prefetchw [esi+ebp-3*LEN+64J 

10: mov ecx,8 
11: movq mmO,[esi+ebp-LENJ 

paddusb mm0,[esi+ebp-2*LENJ 
movq [esi+ebp-3*LENJ,mm0 
add esi ,8 
loop 11 
dec eax 
jnz l 0 

eax gets 
number of times 
round outer loop 
get next line to cache 
ditto 
set up cache to write 

times round inner loop 
load 8 bytes 
packed unsigned + bytes 
store 8 byte result 
inc dest pntr 
repeat for the rest 
decrement outer loop count 

Algorithm 6. An example that makes more effective use of prefetching than Alg. 5. 

I I I I I I I 
Figure 2.6. The Streaming SIMD extensions add additional 128-bit vector registers, with multiple 
formats. 

SIMD. As with 3DNOW!, the Streaming SIMD instructions combine cache 
prefetching techniques with parallel operations on short vectors of 32-bit 
floating point operands. With the P4 these were extended to allow operations 
on other data types as shown in Figure 2.6. 

The most significant difference is in the model of machine state. Whilst the 
original MMX instructions and 3DNOW! add no new state to the machine 
architecture, Streaming SIMD introduces additional registers. Eight new 128-
bit registers (XMMO ... 7) are introduced. The addition of new state means 
that operating systems have to be modified to ensure that XMM registers are 
saved during context switches. Intel provided a driver to do this for Microsoft 
Windows NT 4.0; Windows 98 and subsequent Windows releases have this 
support built in. 

The default format for the XMM registers is a 4-tuple of 32-bit floating point 
numbers. Instructions are provided to perform parallel addition, multi­
plication, subtraction and division on these 4-tuples. Other formats are: 

1. A set of Boolean operations are provided that treat the registers as 128-bit 
words, useful for operations on bitmaps. 
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Table 2.2. The XMM registers support both scalar and 
vector arithmetic 

Vector addition 
ADDPS xmmO,xmm1 

xmmO 1.2 1.3 1.4 1.5 
xmm1 2.0 4.0 6.0 8.0 + 
xmmO 3.2 5.3 7.4 9.5 

Scalar addition 
ADDSS xmmO,xmm1 

xmmO 1.2 1.3 1.4 1.5 
xmm1 2.0 4.0 6.0 8.0 + 
xmmO 1.2 1.3 1.4 9.5 

21 

2. Scalar floating operations are provided that operate on the lower 32 bits 
of the register. This allows the XMM registers to be used for conventional 
single-precision floating point arithmetic. Whereas the pre-existing Intel 
FPU instructions support single-precision arithmetic, the original FPU is 
based on a reverse Polish stack architecture. This scheme does not fit well 
with the register allocation schemes used in some compilers. The existence 
of what are effectively eight scalar floating point registers can lead to more 
efficient floating point code. 

The scalar and vector uses of the XMM registers are contrasted in Table 2.2. 
A special move instruction (MOVSS) is provided to load or store the least 
significant 32 bits of an XMM register. 

From the introduction of the P4 processor the following data types became 
available: 

1. The registers can hold two double-precision floating point numbers. 
2. The low 64 bits of the registers can be treated as scalar double-precision 

floating point numbers. 
3. The registers can be treated as holding four integers of length 32 bits. 
4. They can hold eight integers of length 16 bits. 
5. They can hold 16 integers of length 8 bits. 

2.5.1 Cache Optimisation 

The Streaming side of the Streaming SIMD extensions is concerned with 
optimising the use of the cache. The extensions will typically be used with large 
collections of data, too large to fit into the cache. If an application were adding 
two vectors of a million floating point registers using standard instructions, 
the 4MB of results would pollute the cache. This cache pollution can be avoided 
using the non-temporal store instructions, MOVNTPS and MOVNTQ, operat­
ing on the XMM and MM registers, respectively. 

A family of prefetch instructions is provided to pre-load data into the cache. 
This is more sophisticated than the equivalent 3DNOW! instruction described 
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above. The AMD instruction applies to all cache levels. The Intel variant allows 
the programmer to specify which levels of cache are to be preloaded. 

Whereas all previous IA32 load and store instructions had operated equally 
well on aligned and unaligned data, the Streaming SIMD extensions introduces 
special load and store instructions to operate on aligned 128-bit words. General­
purpose load and store instructions capable of handling unaligned data are 
retained. However, these are much slower than the aligned loads and stores. For 
algorithms which cannot guarantee that operands will be 16-byte aligned, this 
can lead to significant performance penalties. For unaligned accesses to integer 
types it is generally more efficient to process data 64 bits at a time using the 
MMX registers than to process it 128 bits at a time using XMM registers. 

2.6 The Motorola Altivec Architecture 

Motorola have a vector extension, called AltiVec, on their G4 processor that is 
functionally similar to the SIMD instructions ofthe P4. The AltiVec unit con­
tains 32 128-bit vector registers identified as vO through v31. Data is represented 
in vector registers as either integer (byte, half, word size) or single-sized (32-
bit) floating point data. The operations supported on these registers are broadly 
similar to those provided by Intel in the P4 with the following significant 
restrictions and extensions. 

Restrictions 
1. As a RISC processor the G4 requires all operands of arithmetic or logical 

instructions to be in registers. There are no memory to register instructions. 
2. The alignment rules are even stricter than the P4 alignment rules. There is 

no unaligned load or store instruction. If an unaligned address is supplied 
to a load or store, the bottom 4 bits of the address are ignored. 

3. Double-precision floating point numbers are not supported. 
4. When using altivec instructions, a special register, the VRSA VE register, is 

used to indicate to the operating system which vector registers are in use. A 
bit set in the register indicates that your program is using the corresponding 
V register. The application is responsible for setting these bits and, if they are 
not set, the registers will not be saved during a context switch. 

Extensions 
1. Multiply accumulate instructions are provided. 
2. Instructions are provided to produce scalar sums over vector registers. 

Motorola also claim to obtain better floating point performance on their 
parallel single-precision instructions than Intel do. This claim, which the author 
has been unable to validate, must be set against the markedly slower clock speed 
of Motorola CPU s. 



SIMD Programming 
in Assembler and C 

There is little exploitation of the SIMD instructions described in the previous 
chapter because of relatively poor compiler support. When the MMX and SSE 
instructions became available, Intel supplied a C compiler that had low-level 
extensions allowing the extended instructions to be used. Intel terms these 
extensions 'assembler intrinsics'. Syntactically these look like C functions but 
they are translated one for one into equivalent assembler instructions. The use 
of assembler intrinsics simplifies the process of developing MMX code, in that 
programmers use a single tool - the C compiler, and do not need to concern 
themselves with low-level linkage issues. However, the other disadvantages of 
assembler coding remain. The Intel C compiler comes with a set of C++ classes 
that correspond to the fundamental types supported by the MMX and SIMD 
instruction sets. The SIMD classes do a good job of presenting the underlying 
capabilities of the architecture within the context of the C language. The code 
produced is also efficient. However, although the C++ code has a higher level 
of expression than assembler intrinsics, it is not portable to other processors. 
The same approach of essentially allowing assembler inserts into a high-level 
language was adopted by other compilers: TMT-Pascal, Free-Pascal and a 
release of gee for the G4 processor used in the iMac. 

3.1 Vertorising C Compilers 

There has been recent interest in the application of vectorisation techniques to 
instruction level parallelism. Thus, Cheong and Lam ( 1997) discuss the use of 
the Stanford University SUIF parallelising compiler to exploit the SUN VIS 
extensions for the UltraS pare from C programs. They report speedups of around 
4 on byte integer parallel addition. Krall and Lelait's compiler (Krall and Lelait, 
2000) also exploits the VIS extensions on the Sun Ultra-SPARC processor from 
C using the CoSy compiler framework. They compare classic vectorisation tech­
niques with unrolling, concluding that both are equally effective, and report 
speedups of 2.7 to 4.7. Sreraman and Govindarajan (2000) exploit Intel MMX 
parallelism from C with SUIF, using a variety of vectorisation techniques to 
generate in-line assembly language, achieving speedups from 2 to 6.5. All of 
these groups target specific architectures. Finally, Leupers ( 1999) has reported a 
C compiler that uses vectorising optimisation techniques for compiling code 
for the multimedia instruction sets of some signal processors, but this is not 
generalised to the types of processors used in desktop computers. 

23 
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Tools of this sort have recently become commercially available with the 
launch of version 6 of the Intel C compiler and also the V ectorC compiler 
from Codeplay. These allow unmodified C source programs to be compiled to 
the MMX and SSE instructions. The compilers are able to spot vectorisable 
for-loops and compile them into sequences of vector instructions. 

The code generator analyses inner loops and those which have the general 
form 

f o r ( i = l ow ; i < = h i g h ; i ++) 
a [ i J =b [ i J n1 c[ i Jn2d [ i J ..... 

are vectorised if vector instructions to perform operations nl> 02, etc. exist. 
The resulting code takes the form of two loops, the quotient loop and the 

remainder loop. The quotient loop is executed in parallel up to the parallelism 
factor defined by the machine vector registers, the remainder loop is then 
serialised. 

Suppose low= 0 and high= 10 and the type of a[i], b[i], etc., is 32-bit float 
and that the machine is P4, then the quotient loop translates to 

for(i=O;i<=7;i+=4) 
a[i .. i+3]=b[i .. i+3Jnlc[i .. i+3Jn2d[i .. i+3] .... 

the remainder loop translates to 

for(i=8;i<=lO;i++) 
a [ i J =b [ i Jn1 c [ i Jn2d [ i J .... 

The absence of scalar to vector arithmetic instructions on the Intel and 
AMD processors means that the gains from vectorisation are more limited if 
any of the operands in the assignment statement are scalars rather than 
vectors. The code generator will attempt to vectorise these, but in doing so it is 
forced to make multiple copies of scalars prior to loading them into vector 
registers, which is relatively costly. 

3.1.1 Dead for Loop Elimination 

The above transformations give rise to many null loops or loops with a single 
iteration, so the vectorisation is combined with algorithms to eliminate null 
loops. Given 

for(i=el;i<=e2;i++) cl 

then if we know at compile time that e 1 will always be greater than e 2, we can 
remove the entire for statement. 

In the loop 

for(i=el;i<=e2;i++) cl 

If we know that e 1 = e 2, then we can substitute it with 

i:=el;cl; 
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3.1.2 Loop Unrolling 

It is advantageous to unroll loops to some degree. Unrolling loops has the 
advantages that: 

1. Since the size of basic block is increased, the chances of pipeline stalls are 
reduced. This may be less significant with the very latest processors. 

2. The total number of instructions executed can be reduced since in simple 
an inner loop the comparison and branch instructions can make up around 
30% of the instructions executed. If we perform 5-fold unrolling we reduce 
this overhead, allowing the loop to execute about 25% faster. 

A for loop of the form 

for(i=1;i<=10;i++) x[i]=j[i]+1; 

can be expanded to 

for ( i =1; i <=1 0; i ++) { 
x[i]=j[i]+1; 
i=i+1; 
x[i ]=j[i ]+1; 
i=i+1; 
x[i J=j[i ]+1; 
i=i+1; 
x[i]=j[i]+1; 
i=i+1; 
x[i]=j[iJ+1; 

resulting in a loop that is only gone round twice. 
Since vectorisation and loop unrolling are performed prior to dead loop 

removal and unitary loop handling, the net effect is that: 

1. Many loops are replaced with vectorised straight line code. 
2. In the case of loops whose length modulo the vector register length is zero, 

the remainder loop is elided, giving a fully vectorised loop. 

Although the VectorC and Intel C compilers do provide a means by which 
unmodified C code can take advantage of SIMD instructions, the compilers are 
expensive: several thousand dollars for VectorC, somewhat less for the Intel one. 

3.2 Direct Use of Assembler Code 

With instruction-sets as complex as those incorporated into the latest Intel and 
AMD processors, careful hand-written assembler language routines produce the 
highest quality machine code. 

Microsoft's MASM assembler supports the extended instruction-set, as does 
the free assembler N asm. The latter has the advantage of running on both 
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section .text; 
global _main 
LEN equ 6400 
_main: enter LEN*3,0 

1 0: 
mov ebx,100000 perform test 100000 times 

mov es i , 0 set es i registers to 
index the elements 

mov ecx,LEN/8 set up the count byte 
11: movq mmO,[esi+ebp-LENJ load 8 bytes 

paddb mmO,[esi+ebp-2*LENJ packed unsigned add 
movq [esi+ebp-3*LENJ,mm0 store 8 byte result 
add esi ,8 inc dest pntr 
loop 11 ; repeat for the rest 
dec ebx 
jnz 10 
mov eax,O 
1 eave 
ret 

Algorithm 7. Assembler version of the test program. 

Linux and Windows, and provides support for MMX, 3DNOW! and SIMD 
instructions. 

If one either cannot obtain or cannot afford better tools, then it can be 
worth directly coding inner loops as assembler routines. The disadvantages of 
using assembler are well known: 

1. It is not portable between processors. A program written in assembler to 
use the AMD extensions will not run on an Intel processor nor, a fortiori, 
on a G4. 

2. It requires the programmer to have an in-depth knowledge of the underly­
ing machine architecture, which only a small proportion of programmers 
now have. 

3. Productivity in terms of programmer time spent to implement a given 
algorithm is lower than in high-level languages. 

4. The programmer must further master the low-level linkage and procedure 
call conventions of the high-levellanguage used for the rest of the application. 

5. Programmers have to master additional program development tools. 

All of these militate against widespread use. 

3.2.1 The Example Program 

The assembler version of the example program is shown in Alg. 7. It runs in 
4.01 son the test machine, a 233 MHz Pentium II, a throughput of 160 million 
byte arithmetic operations per second. 
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#define LEN 6400 
#define CNT 100000 
main() 
{ 

unsigned char vl[LENJ,v2[LENJ,v3[LEN]; 
i nt i , j, t; 
for( i=O; i <CNT; i++) 

for(j=O;j<LEN;j++) v3[j]=v2[j]+vl[j]; 

Algorithm 8. C version of the test program. 
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The C version is shown in Alg. 8. When compiled with the Intel C compiler 
(Version 4.0) it runs in 72 son the test machine, a performance of around 8.9 
million arithmetic operations per second. Thus the assembler version using 
MMX is about 20 times faster than the C version. 

3.3 Use of Assembler lntrinsics 

Intel supply a C compiler that has low-level extensions allowing the extended 
instructions to be used. Intel terms these extensions 'assembler intrinsics'. For 
example, the ADDPS instruction which adds four packed single-precision 
floating point numbers is mirrored by the Intel C/C++ Compiler Intrinsic 
Equivalent 

__ m128_mm_add_ps ( __ ml28 a, __ m128 b) 

which adds the four single-precision floating point values of a and b. 
Syntactically these look like C functions but they are translated one for one 

into equivalent assembler instructions. The use of assembler intrinsics simpli­
fies the process of developing MMX code, in that programmers use a single 
tool, the C compiler, and do not need to concern themselves with low-level 
linkage issues. However, the other disadvantages of assembler coding remain: 

1. It is still not portable between processors. 
2. It still requires the programmer to have an in-depth knowledge of the 

underlying machine architecture. 
3. Productivity is unlikely to be higher than with assembler. 

3.4 Use of C++ Classes 

The Intel C compiler comes with a set of C++ classes that correspond to the 
fundamental types supported by the MMX and SIMD instruction-sets. For 
instance, type lu8vec8 is a vector of eight unsigned 8-bit integers, ls32vec2 a 
vector of two signed 32-bit integers, etc. The basic arithmetic operators for 
addition, subtraction, multiplication and division are then overloaded to 
support these vector types. 
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#define LEN 800 
#define CNT 100000 
#include "ivec.h" 
main ( ) 
{ 

SIMD Programming Manual for Linux and Windows 

Iu8vec8 vl[LEN],v2[LEN],v3[LEN]; 
i nt i , j , t; 
for(i=O;i<CNT;i++) 

for(j=O;j<LEN;j++) 
v3[j]=v2[j]+vl[j]; 

Algorithm 9. C++ version of the test program. 

Alg. 9 shows the example program implemented in C++ using the Intel 
SIMD class Iu8vec8. The SIMD classes do a good job of presenting the under­
lying capabilities of the architecture within the context of the C language. The 
code produced is also efficient; the example program in C++ runs in 4.56 s on 
the test machine, a performance of 140 million byte operations per second. 
However, it has to be borne in mind that the C++ code is not portable to 
other processors. The compiler always generates MMX or SIMD instructions 
for the classes. If run on a 486 processor, these would be illegal. The C++ code 
built around these classes, although it has a higher level of expression than 
assembler intrinsics, is no more portable. 

There are many disadvantages to these approaches. First, programmers 
must have deep knowledge both of low-level architectural behaviour and of 
architecture-specific compiler behaviour to integrate assembly language with 
high-level code. Second, effective use of libraries depends on there being a 
close correspondence between the intended semantics of the application 
program and the semantics of the library routines. Finally, use of architecture­
specific libraries inhibits program portability across operating systems and 
CPU platforms. 

3.5 Use of the Nasm Assembler 

The Nasm assembler is an open source project to develop a Net-wide 
Assembler. The assembler is included as standard in most Linux distributions 
and is available for download to run under Windows. It provides support for 
the full Intel and AMD SIMD instruction-sets and also recognises some extra 
MMX instructions that run on Cyrix CPUs. Nasm provides support for 
multiple object module formats from the old MS-DOS com files to the obj and 
elf formats used under Windows and Linux. If one is programming in 
assembler, Nasm provides a more complete range of instructions, in association 
with better portability between operating systems than competing assemblers. 
Microsoft's MASM assembler is restricted to Windows. The GNU assembler, 
as, runs under both Linux and Windows, but uses non -standard syntax which 
makes it awkward to use in conjunction with Intel documentation. 
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It is beyond the scope of this book to provide a complete guide to assembler 
programming for the Intel processor family. Instead, we will concentrate on 
those features of the assembly language that are needed to write SIMD subrou­
tines that can be called from high -level languages. We document the Intel SIMD 
instructions in Chapter 4 and the 3DNow instructions in Chapter 5. Readers 
wanting a general background in assembler programming should consult 
appropriate text books in conjunction with the processor reference manuals 
published by Intel (1999, 2000) and AMD (Advanced Micro Devices, 1999). 

3.5.1 General Instruction Syntax 

Assembler programs take the form of a sequence of lines with one machine 
instruction per line. The instructions themselves take the form of an optional 
label, an operation code name conditionally followed by up to three comma 
separated operands. For example: 

11: SFENCE ; Ooperandinstruction 
PREFETCH [100] ; 1 operand instruction 
MOVQ MMO ,MM1 ; 2 operandi nstructi on 
P SHU F D X MM 1 , X MM 3 , 0 0 1 0 1 0 11 b ; 3 operand i n s t r u c t i on 

As shown above, a comment can be placed on an assembler line, with the com­
ment distinguished from the instruction by a leading semi-colon. The label, if 
present, is separated from the operation code name by a colon, ___ _ 

Case is not significant either in operation code names or in the names 
of registers. Thus pre fetch is equivalent to PRE FETCH and mm4 is equivalent 
to MM4. 

In the Nasm assembler, as in the original Intel assembler, the direction of 
assignment in an instruction follows high-level language conventions. It is 
always from right to left, 1 so that 

MOVQ MMO, MM4 

is equivalent to 

MMO:=MM4 

and 

ADDSS XMMO, XMM3 

is equivalent to 

XMMO:=XMMO+XMM3 

3.5.2 Operand Forms 

Operands to instructions can be constants, register names or memory locations. 

1 If you chose to use the GNU assembler instead of Nasm you should be aware that this follows 
the opposite convention of left to right assignment. This is a result of as having originated as a 
Motorola assembler that was converted to recognise Intel opcodes. Motorola follow a left to right 
assignment convention. 
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Constants 

Constants are values known at assembly time, and take the form of numbers, 
labels, characters or arithmetic expressions whose components are themselves 
constants. 

The most important constant values are numbers. Integer numbers can be 
written in base 16, 10, 8 or 2. 

mov a l. Oa2h ; base 16 leading zero required 
mov bh. $0a2 ; base 16 altern ate notation 
movcx,Oxa2 ;base16Cstyle 
addax,101 ;base10 
movbl,76q ;baseS 
xorax,ll0100llb; base2 

Floating point constants are also supported as operands to store allocation 
directives (see Section 3.5.3): 

dd3.14156 
dq9.2e3 

It is important to realise that due to limitations of the AMD and Intel 
instruction-sets, floating point constants can not be directly used as operands 
to instructions. Any floating point constants used in an algorithm have to be 
assembled into a distinct area of memory and loaded into registers from there. 

Constants can also take the form of labels. As the assembler program is 
processed, Nasm allocates an integer value to each label. The value is either the 
address of the operation-code prefixed by the instruction or may have been 
explicitly set by an EQU directive: 

Fseek equ 23 
Fread equ 24 

We can load a register with the address referred to by a label by including the 
label as a constant operand: 

mov esi. sourcebuf 

Using the same syntax, we can load a register with an equated constant: 

mov cl. tread 

Constant Expressions 

Suppose there exists a data-structure for which one has a base address label, it 
is often convenient to be able to refer to fields within this structure in terms of 
their offset from the start of the structure. Consider the example of a vector of 
four single-precision floating point values at a location with label myvec. The 
actual address at which myvec will be placed is determined by Nasm, we do 
not know it. We may know that we want the address of the third element of 
the vector: 

m o v e s i . my v e c + 3 * 4 
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to place the address of this word into the e s i register. Nasm allows one to 
place arithmetic expressions whose sub-expressions are constants wherever a 
constant can occur. The arithmetic operators are written C style as shown in 
Table 3.1. 

Registers 

Operands can be register names. The available register names are shown in 
Table 3.2. In the binary operation codes interpreted by the CPU, registers are 
identified using 3-bit integers. Depending on the operation code, these 3-bit 
fields are interpreted as the different categories of register shown in Table 3.2. 

One should be aware that in the Intel architecture a number of registers are 
aliased to the same state vectors, for example, the e ax, ax, a l , a h registers all 
share bits. More insidiously, the floating point registers STO ... ST7 not only 
share state with the MMX registers, but also their mapping to these registers is 
dynamic and variable. 

Memory Locations 

Memory locations are syntactically represented by the use of square brackets 
around an address expression, thus [ 1 0 0], [my v e c], [ e s i ] all represent 

Table 3.1. Nasm constant operators 

Operator Means Operator Means 

or + add 
II xor subtract 
& and * multiply 
<< shift left I signed division 
>> shift right II unsigned division 
% modulus %% unsigned modulus 

Table 3.2. Register encodings 

Number Alia sed dword reg Aliased sse reg 

byte reg word reg float reg nnx reg 

0 al ax eax stO mmO xmmO 
1 cl bx ecx stl mml xmml 
2 dl ex edx st2 mm2 xmm2 
3 bl bx ebx st3 mm3 xmm3 
4 ah sp esp st4 mm4 xmm4 
5 ch bp ebp st5 mm5 xmm5 
6 dh si esi st6 mm6 xmm6 
7 bh di edi st7 mm7 xmm7 
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memory locations. The address expressions, unlike constant expressions, can 
contain components whose values are not known until program execution. 
The final example above refers to the memory location addressed by the value 
in the e s i register and, as such, depends on the history of prior computations 
affecting that register. Address expressions have to be encoded into machine 
instructions, and since machine instructions, although of variable length on a 
CISC are nonetheless finite, so too must the address expressions be. On Intel 
and AMD machines this constrains the complexity of address expressions to 
the following grammar: 

memloc::= address I format address 
format ::=byte I word I dword I qword 
address::= [const] I [aexp] I [aexp+ const] 
aexp ::=reg I reg+ iexp 
iexp ::=reg I reg* scale 
scale ::= 2 I 4 I 8 
reg ::=eax I ecx I ebx I edx I esp I ebp I esi I edi 
const ::=integer I label 

The format qualifiers are used to disambiguate the size of an operand in 
memory where the combination of the operation code name and the other 
non-memory operands are insufficient so to do. 

3.5.3 Directives 

Directives look like operation code names, but instead of being translated into 
operation codes, they are used by the assembler itself to define the way in 
which data that follows it is to be interpreted. 

Sectioning 
Programs running under Linux have their memory divided into four sections: 

text 

data 

bas 
stack 

is the section of memory containing operation codes to be executed. 
It is typically mapped as read only by the paging system. 
is the section of memory containing initialised global variables, which 
can be altered following the start of the program. 
is the section containing uninitialsed global variables. 
is the section in which dynamically allocated local variables of sub­
routines are located. 

The section directive is used by assembler programmers to specify into 
which section of memory they want subsequent lines of code to be assembled. 
For example, in the listing shown in Alg. 10 we divide the program into three 
sections: a text section containing my fun c, a bss section containing 64 
undefined bytes and a data section containing a vector of four integers. 

The label my fun c b a s e can be used with negative offsets to access locations 
within the b s s, whereas the label my fun c g l o b a l can be used with positive 
offsets to access elements of the vector in the data section. 
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section .text 
global myfunc 

myfunc:enter 128,0 
; body of function goes here 

leave 
ret 0 

section .bss 
alignb 16 
resb 64 reserve 64 bytes 

myfuncBase: 
section .data 
myfuncglobal: reserve 4 by 32-bit integers 

dd 1 
dd 2 
dd 3 
dd 5 

Algorithm 10. Examples of the use of section and data reservation directives. 

Data Reservation 
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Data must be reserved in distinct ways in the different sections. In the data 
section, the data definition directives db, dw, dd and dq are used to define 
bytes, words, doublewords and quadwords. The directive must be followed by 
a constant expression. When defining bytes or words the constant must be an 
integer. Doublewords and quadwords may be defined with floating point or 
integer constants as shown previously. 

In the bss section the directive res b is used to reserve a specified number of 
bytes, but no value is associated with these bytes. 

Data can be allocated in the stack section by use of the enter operation 
code name. This takes the form 

enter space, level 

It should be used as the first operation code name of a function. The level 
parameter is only of relevance in block structured languages and should be set 
to 0 for assembler programming. The space parameter specifies the number of 
bytes to be reserved for the private use of the function. Once the en t e r 
instruction has executed, the data can be accessed at negative offsets from the 
e b p register. 

The last two instructions in a function should, as shown in Alg. 11, be 

leave 
ret 0 

The combined effect of these is to free the space reserved on the stack by enter, 
and pop the return address from the stack. The parameter to the operation 
code name ret is used to specify how many bytes of function parameters 
should be discarded from the stack. If one is interfacing to C this should 
always be set to 0. 
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Label Qualification 

The default scope of a label is the assembler source file containing the line it 
prefixes. However, labels can be used to mark the start of functions that are to 
be called from C or other high-level languages. To indicate that they have 
scope beyond the current assembler file, the g l o b a l directive should be used 
as shown in Alg. 10. 

The converse case, where an assembler file calls a function exported by a C 
program, is handled by the e tern directive: 

extern printreal 
call printreal 

In the above example we assume that p r i n t rea l is a C function called from 
assembler. 

3.5.4 Linking and Object File Formats 

There are four object file formats that are commonly used on Linux and 
Windows systems, as shown in Table 3.3. This lists the name of the format, its 
file extension - which is often ambiguous and the combination of operating 
system and compiler that makes use of it. A flag provided to Nasm specifies 
which format it should use. We will only go into the use of the gee compiler, 
since this is portable between Windows and Linux. 

Assume we have a C program called c 2 as m . c and an assembler file 
asmfromc. a sm. Suppose we wish to combine these into a single executable 
module c2asm. We issue the following commands at the console: 

nasm- tel f- o asmfromc. o asmfromc. asm 
gee -oc2asm c2asm. c asmfromc. o 

This assumes that we are working either under Linux or under Cygwin. If we 
are using djgpp, we type 

nasm-fcoff-oasmfromc.oasmfromc.asm 
gee- oc2asm c2asm. c asmfromc. o 

Leading Underbars 

If working with djgpp, then all external labels in your program, whether 
imported with extern or imported using g l o b a l , must have a leading 
underbar character. Thus to call the C procedure p r i n t rea l , one would write 

Table 3.3. Object file formats and compilers that use them 

Format Extension Operating system C++ compiler 

win32 .obj Windows Microsoft C++ 
obj .obj Windows Borland C++ 
coff .0 Windows Djgpp gee 
.elf .0 Windows Cygwin gee 
.elf .0 Linux gee 
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extern _pri ntrea l 
call _p r i n t real 

whereas to export myfunc one would write 

global _myfunc 
_myfunc: enter 128,0 

3.5.5 Summing a Vector 
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We will now put all this together with a simple example of calling a SIMD 
assembler routine from C. As an example, we take the problem of summing the 
elements of an integer array. If we use 32-bit integers, an MMX routine is in 
principle capable of doing this two words at a time, and so should outperform 
C code for the same purpose. Timing indicates that this is the case. Algorithm 
11 runs between three and four times faster than an equivalent C function. 2 

The example illustrates a problem which has to be addressed in many 
vectorised algorithms. We have to add up vectors of arbitrary length, but if we 
are to vectorise this we need to use vector registers of fixed size. If we divide 
through the vector length by the size of the vector registers, 2 in this case, we 
may be left with a remainder that cannot be vectorised. This imposes a 
standard structure on vectorised MMX algorithms: 

1. A parallel section that operates on the start of the array using the MMX 
registers. 

2. A conditionally executed section that, in the presence of an odd number of 
elements in the array, does the rest. 

The C function prototype to our array totalising routine is 

intpmyfunc(int*v. intlen); 

The C prototype is important because it defines the configuration of 
parameters on the stack. Given this prototype, the C compiler will push two 
32-bit words on to the stack when pmy fun c is called. The C convention is to 
push parameters on to the stack from right to left. As a result, after executing 
the enter instruction at the start of the function the local stack environment 
is as represented in Figure 3.1. 

The e p b register can be used to access the parameters to the function. 
Positive offsets from the register address parameters whereas negative offsets 
address local variables. 

We are going to remap the one-dimensional array of integers as a two­
dimensional array, whose second dimension has the range 0 ... 1. Each row of 
the vector will fit into an MMX register. This is illustrated by Figure 3.2. The 
algorithm starts by using the l en parameter to calculate the upper bound of 

20n arrays of length 100, it takes 35% and 25% of the time taken for C code on Crusoe and 
Athlon processors, respectively. The Crusoe implements the MMX architecture only by 
emulation and so does not show the full gains. 
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section .text 
global pmyfunc 

pmyfunc: enter 8,0 
tvec equ -8 

mov edi ,DWORD[ebp+12J 
shr edi , 1 
lea ecx,[edi-1] 

movq MM4,[dnull] 
xor edi ,edi 
mov esi ,DWORD[ebp+8] 

looptop: cmp edi ,ecx 
jg near loopstop 
paddd MM4,[esi+edi*8] 
lea edi, [edi+1J 
jmp looptop 

1oopstop: movq [ebp+tvec],MM4 
mov ebx,DWORD[ebp+12] 
mov edi ,DWORD[ebp+tvec+4J 
mov eax,DWORD[ebp+8J 
mov esi ,ebx 
and DWORD esi ,1 
imul esi, [eax+ebx*4-4] 

lea edx,[edi+esi] 
mov edi ,DWORD[ebp+tvec] 
lea eax,[edi+edx] 
leave 
emms 
ret 0 
section .data 

dnull : dd 0 
dd 0 

a temporary location 
on stack to hold a 2 
element vector 
edi=len 

ecx=( l en/2 -1) 

ecx holds number of vector 
adds to perform 
clear MM4 
clear edi as induction variable 
set esi -> the array 

add two elements at a time 

save the result 
ebx=len 

esi=1 if len odd 
esi holds last element 
if len odd 
add to tvec[l] 
get Oth of tvec 
form total 

vector of two zeros 

Algorithm 11. Use of MMX instructions to sum a vector of integers. 

this two-dimensional array: 

mov edi, DWORD [ebp+ 12]; edi=l en 
shredi,1 
lea ecx, [edi -1] 

The result is stored in the ecx register. Suppose that the vector length was 7; 
if we shift this right, we lose the least significant bit, giving 3 in ed i. Since the 
vector is assumed to be zero-based, we want to iterate from 0 ... 2 so we 
subtract 1 to get 2 in the ecx register. The subtraction is done by using the 
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len 

v 

return address 

ebp dynamic link 

tvecl 

esp tvecO 

Figure 3.1. Stackframe on entry to pmyfunc. 

Two-dimensional map of the vector 

Originall-dimensional vector v 

0 

Odd final element 

Figure 3.2. Mapping a one-dimensional array to a two-dimensional array suitable for vectorisation. 

l e a instruction. This stands for Load Effective Address; it loads the address of 
memory location [edi -1] into ecx, which in practice means ecx=edi -1. 
Intel recomend using lea rather than increment and decrement operations on 
the P3 and P4 processors, since l ea is executed in fewer micro-ops. Next, we 
set up the other registers that will be used to go through the loop. We clear 
MM4 by loading it with the null vector: 

movq MM4, [ dnu ll J 

This could have been done by xoring MM4 with itself using the P X 0 R instruc­
tion, but we have chosen to load a constant vector to illustrate how this is 
done. The constant vector itself is allocated store and initial values in the data 
segment. We then clear the ed i register which will be used as the induction 
variable for our loop. In this case we do use an x or instruction to clear it: 

xoredi ,ed i 

Finally, we set the e s i register to point to the base address of the array, by 
fetching the address parameter from the stack: 

mov es i , OW ORO [ ebp+ 8] 

The algorithm then loops round adding two elements at a time to the pairs of 
totals in the MM4 register. It uses base plus scaled index addressing to do this, 
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#include <stdio.h> 
int pmyfunc(int *v,int len); 
main(int argc, char **argv) 
{inta[lOJ; 

i nt i; 
for(i=O;i<lO;i++) a[i]=i; 
for(i=l;i<lO;i++) printf("%d %d\n",i,pmyfunc(a,i)); 

Algorithm 12. Illustration of calling pmyfunc from C. 

multiplying the loop induction registered i by eight to get the relative starting 
position of each row of our mapped two-dimensional array: 

1ooptop:empedi ,eex 
jg near 1 oopstop 
padddMM4,[esi+edi*8J; addtwoe1ementsatatime 
1eaedi,[edi+1] 
jmp 1 ooptop 

1 oops top :movq [ebp+ tvee] ,MM4; save the resu1 t 

At the end of the loop we have the total of the even words in MM4 [ 0] and the 
total of the odd words in MM4 [ 1]. We want to add these together along with any 
possible remainder word. This will be handled by scalar arithmetic, so we save 
the two totals in the two-element vector tv e e. If the original array was of odd 
length, we want to form the sum t vee [ 0 ]+t vee [ 1 ]+v [ 1 en -1 ], otherwise we 
want simply to add the two elements oft vee together. This could be done by 
testing len and branching, but it is more efficient to multiply the last element of 
the array by the least significant bit of the length. If the length is even, the least 
significant bit will be zero so that the last element is not included in the total. 

mov ebx,DWORD [ebp+12]; ebx=1en 
mov edi ,DWORD [ebp+tvee+4]; edi=tvee[1] 
mov eax, DWORD [ebp+8]; eax= array base 
MOVesi,ebx 
and DWORD esi ,1 
imu1 esi, [eax+ebx*4-4J 
1 e a e d x , [ e d i +e s i J ; add to tv e e [1 J 
mov edi, DWORD[ebp+tvee] ; get Oth of tvee 
1eaeax,[edi+edx] ; formtota1 

The total is returned in the eax register, since this is the C convention for 
integer-returning functions. 

3.6 Coordinate Transformations Using 3DNow! 

For a second example we will look at some basic 3D graphics operations. As its 
name implies, one of the main aims of the AMD SIMD extensions is to accelerate 
3D graphics operations. To understand the rationale for these instructions, a 
little background information about 3D graphics operations is necessary. 
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3 

2 

2 3 4 

Figure 3.3. Translation. The triangle a,b,c with coordinates [1, 1],[1,2],[2,2] is translated to the 
triangle d,e,f with coordinates [3,0.5],[3, 1.5],[4, 1.5] by adding [2,-0.5] to each vertex. 

Points in three-dimensional space can be represented as triples of real 
numbers [x,y,z] encoding position with respect to three orthogonal axes. 
Surfaces in three-space are typically represented as a set triangles, each of 
whose vertices is such a triple [x,y,z]. Manipulations of simulated solid objects 
break down into the primitive operations: 

Translate move all of the points in an object some common distance in 
three-space. 

Scale make the object larger or smaller. 
Rotate around one or other of the axes, an arbitrary rotation being 

decomposable into rotations about the axes. 

Let us consider each of these in turn as abstract operations before going to 
look at how they can be implemented in the 3DNow instructions. 

Translate 
We can see in Figure 3.3 how we can translate a triangle by adding a constant 
vector to each vertex. For ease of illustration we use 2D drawings, but the 
principle extends to higher dimensions. The basic data-type used by 3DNow is 
a two-element vector of reals. Translation in two dimensions would obviously 
be very efficient; three-dimensional operations would at first sight seem less 
efficient, given that only the first two elements can use vector arithmetic, with 
the last requiring scalar instructions. However, when we look at the other 
object manipulation primitives, we shall see that this is not the case. 

Scale 
As Figure 3.4 shows, an object can be scaled by simply multiplying each vertex 
by a scalar. Thus a= [1,1] --+ d = [2,2] and b = [1,2] --+ e = [2,4], etc. Again 
for two dimensions, this is relatively easy to achieve, one duplicates the scalar to 
a two-element vector and performs parallel element by element multiplication. 
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Rotate 
Figure 3.5 illustrates the effect of rotating unit vectors aligned with the x- and 
y-axes by 45°. Any point in the plane P = [x,y] can be treated as the sum 
of two vectors, [x,O]+[O,y] with one aligned with the x-axis and the other with 
they-axis. These in turn are scalar multiples of the unit vectors [1,0], [0,1] 
aligned the axes. These unit vectors provide the basis of the 2D vector space. 
We can thus decompose P into x[1, 0] + y[O, 1]. The numbers x,y specify 
the amplitude of the point P with respect to these basis vectors. 

We know what the effect of the rotation of these unit vectors by 45° will be, 
namely [1,0]----; R = [)z,_LJ whereas [0,1] ____, S = [Jk6l· We can therefore 
achieve the effect of rofa~g P by first rotating the unft vectors, multiplying 
them by their original amplitudes in P and summing the result: P ____, xR + yS. 
So it follows that a rotation by 45° will map a point P = [x,y] ____, Q = 
[ X + -y X + Y l 
Vi Vi' Vi Vi . 
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Figure 3.4. Scaling. Triangle d,e,f is obtained by multiplying the vertices of a,b,c by 2. 
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Figure 3.5. Illustration of the effect of rotations by~ on the unit vectors x = [1,0], y = [0, 1]. The 
result is that x--+ [a,b] = [)2-, )2-J andy--+ [-a,b] = [~, )2-J. 
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We can express this as a matrix calculation T P = Q with 

[ 1 -1] 
T= 1 1 

v'2 v'2 
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(3.1) 

More generally, we can express any 2D rotation of a point P in terms of 
operating on P with an appropriate transformation matrix T. This generalises 
to 3D points and higher. 

Note that the above describes the matrix multiplication using the conven­
tions of paper mathematics which distinguishes between row and column 
vectors. Computer memory is basically a one-dimensional array of words. 
Groups of words can be viewed as two-dimensional arrays, but the distinction 
between a row vector and a column vector does not make sense. Figure 3.6 
shows how T, P and Q would be represented in memory. Once loaded into 
3DNow registers, their rows of individual row vectors of T have the same 
representation as the column vector P. This means that the matrix multiplica­
tion can be performed by doing parallel vector multiplications between the 
rows ofT and the register form of P, followed by a summation along the rows. 

Generalised Transformations 

We have used two-dimensional pictures in our examples, and in consequence 
our rotation matrix T has been 2 x 2. Rotations in three dimensions would 
require a 3 x 3 matrix. 

Suppose we want both to rotate and to scale a series of points in three­
dimensional space, for example the vertices of a set of triangles. One approach 
is to mutliply each vertex by a rotation matrix and then multiply each vertex 
by a scalar. This would require 12 multiplications per vertex. If instead we 
premultiplied our rotation matrix by the scalar and then simply performed the 
matrix to vector multiplications, we would achieve the same result at a cost of 
nine multiplications per vertex. 

T[O,O] T[O,O] T[O,l] I 
T[O,l] T[l,O] T[1,1] I 
T[l,O] 

T[l, 1] 

P[O] or P[O,O] I P[O] I P[1] 

P[l] or P[l ,0] 

Q[O] or Q[O,O] IQ[O] I Q[l] 

Q[l] or Q[l ,0] 

Memory layout Register layout 

Figure 3.6. Contrast between the linear layout of the matrix and vectors in memory and the layout 
once loaded into 3DNow registers. 
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Can this technique be extended to handle translations also? 
Yes, it can, but for it to do so we have to move to vectors of length 4. 

Consider a four-dimensional point P of the form [x,y,z,l]. Multiply this by a 
matrix T of the form 

(3.2) 

The result is a vector [x + a,y + b, z + c,l]. The effect has been to translate P 
br:dtheevefolr [a,b,c,O]. More generally, given a 3 x 3 rotation and scale matrix 

g h i and a translation vector [a, b, c], then we can form a combined 
j k 1 

rotation, scaling and translation matrix M of the form 

M~ [1 ~ ~ ~] (3.3) 

All of our 3D graphics transforms can be expressed in terms of the same 
basic operation, multiplication of a four-element vector by a 4 x 4 matrix. In 
this light, the purpose of the 3DNow instructions becomes clear. They allow 
pairs of reals to be multiplied or added with a single instruction. A row of the 
transformation matrix M can be multiplied by a vector of four reals in just two 
steps. Alg. 13 gives an AMD assembler routine to perform multiplication of a 
four-element vector by a 4 x 4 matrix. 

The C template of the function is 

void mvmul (float *m, float *v) 

where m is the start address of a 4 x 4 matrix of floats and v is the start address 
of a four-element vector of floats. This implies that the matrix address will be 
found at an offset of 8 from the e b p register and the vector address at an offset 
of 12 on entry to mvmul. The routine caches these addresses in the esi and 
ebx registers, respectively. The routine has a single loop that steps through the 
four rows of the matrix, using edx as the loop induction variable. On each 
iteration the inner product between the edxth row of the matrix and the 
vector v is computed. Register MM3 is used as a parallel accumulator, allowing 
the sum of the odd and even products to be formed with two multiplications 
and one add instruction. Prefetching is used on the matrix but not the vector 
fetches, since there is no next row for the vector. The 64-bit result is stored in 
in a local two-element vector vtmp, and the elements are added using scalar 
arithmetic instructions. 

Between the vector arithmetic instructions and the scalar ones, it is 
necessary to plant an emms instruction to clear the MMX registers. Were this 
not done, a floating point exception would be reported. The floating point 
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stack, which is aliased to the same state bits as the MMX registers, would be 
found to have been corrupted. 

As the elements of the transformed vector are computed, they are stored in 
a temporary local four-element result vector, rtmp, to prevent the source 
vector being corrupted. At the end, rtmp is copied into v using MMX movq 
instructions. 

GLOBAL mvmul 
section .text 
mvmul:enter 100,0 
vtmp:equ -80 
ttmp:equ -32 

xor edx,edx 
mov esi ,DWORD[ebp+8] 
mov ebx,DWORD[ebp+l2J 

mvlooptop:cmp DWORD edx,3 
jg near mvloopend 
imul eax,DWORD edx,l6 
lea eax. [eax+8] 
prefetch [esi+eax+8J 
movq MM3,[esi+eaxJ 
PFmul MM3,[ebx+8] 
imul eax,DWORD edx,l6 
prefetch [esi+eax+8] 
movq MM2,[esi+eax] 
PFmul MM2,[ebx] 
PFadd MM3,MM2 

esi gets addr of matrix 
ebx gets addr of vector 

movq [ebp+vtmp],MM3 store pair in vtmp 
emms 
fld dword[ebp+vtmp] 
fadd DWORD[ebp+vtmp+4] 
fstp dword[ebp+edx*4+rtmp] ; dot product to rtmp[edx] 
lea edx,[edx+l] ; inc edx 

jmp mvlooptop 
mvloopend: 

mov edi ,DWORD[ebp+l2J 
movq MM2,[ebp+rtmp] 
movq [edi],MM2 
movq MM2,[ebp+8+rtmpJ 
movq [edi+8],MM2 
leave 
emms 
ret 0 

copy rtmp 
to v 

Algorithm 13. 30Now routine to multiply a vector by a matrix. 
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3.7 Coordinate Transformations Using SSE 
Instructions 

The SSE instructions were Intel's equivalent of 3DNow. Because new state bits 
were introduced to the CPU architecture, the 64-bit limit on vector registers 
was relaxed. SSE supports 128-bit long vector registers, sufficient to contain a 
four-element vector of floats. By way of contrast, let us look at how these 
instructions might be applied to the task of coordinate transformation per­
formed by 3DNow code in Alg. 13. 

The SSE variant closely parallels the 3DNow version. It is shown in Alg. 14. 
Since the assembly language uses the same mnemonic for a 128-bit vector 
register and for the 32-bit floating point scalar register, the listing distinguishes 
them by giving vector registers in capitals, XMM3, and scalar variants in lower 

global mvmul 
section .text 
mvmul :enter 72,0 
vtmp equ -64 
rtmp equ -32 

mov ecx,O 
mov edi ,DWORD[ebp+l2] 
movups XMM4,[edi] 

mvll: cmp ecx, 3 
jg near mvl2 

mov edi ,DWORD[ebp+BJ 
imul esi ,ecx,l6 
movups XMM2,[edi+esi] 
mulps XMM2,XMM4 
movups [ebp+vtmp],XMM2 
movss xmmO,[ebp+vtmpJ 
movss xmml,[ebp+vtmp+4J 
movss xmm2,[ebp+vtmp+BJ 
addss xmm2,[ebp+vtmp+l2] 
addss xmml,xmm2 

sum the vector using 
scalar SSE instructions 

addss xmmO,xmml dot product in xmmO 
movss [ebp+ecx*4+rtmp],xmm0 
inc ecx 

jmp mvll 
mvl2: mov edi ,DWORD[ebp+l2] 

movups XMM3,[ebp+rtmpJ 
movups [edi],XMM3 
leave 
ret 0 

Algorithm 14. Matrix-vector multiplication using SSE code. 
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case, xmm3. The significant differences between the AMD and Intel variants are 
that in the Intel case: 

1. The entire vector v can be cached in a register. 
2. Only one multiply instruction is needed per row of the vector. 
3. The scalar summation of the vector takes more instructions because of the 

vector register length. 
4. No emms instructions have to be planted. 

One might have expected that the SSE variant of the algorithm, using as it 
does a higher level of parallelism, would be faster. In fact, it is considerably 
slower than the AMD version. This is illustrated in Table 3.4, which shows 
their comparative performance. Despite the Intel code being run on a faster 
processor, it runs at only about half the speed of the AMD code. The difference 
is even more marked when we normalise for the effect of differences in clock 
speed. The AMD processor achieves three times as many floating point 
operations per cycle. 

Another comparison is provided by the C version ofmvmu l, given in Alg. 15. 
This was compiled using gee version 3.2 and the code produced uses no vector 
instructions. It can be seen that the Athlon is again markedly faster than the P4 
when running the C code. Running C code, the Athlon achieved twice as many 

Table 3.4. Comparative performance of the 3DNow and SSE versions of coordinate transformation 

CPU 

Athlon 
P4 

Clock (GHz) 

1.0 
1.7 

C time 

4.23 
5.06 

Assembler time 

1.9 
3.81 

Relative gain 

2.2x 
1.32x 

FOPs per cycle 

0.16 
0.05 

Measurements for 10 million matrix to vector multiples. This amounts to 320 million floating point operations. 

mvmulc(float *m, float *v) 
{ float vtmp[4]; 

int i,j; 
float t; 
for(i=O;i<4;i++) 
{ 

t=O; 
for(j=O;j<4;j++) t=t+m[i*4+j]*v[j]; 
vtmp[i]=t; 

for(i=O;i<4;i++) v[i]=vtmp[i]; 

Algorithm 1 S. C variant of the matrix to vector multiply. 
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floating point operations per clock cycle. This probably indicates an inherently 
superior floating point unit on the Athlon. 

However, the superiority of the 3D Now instruction architecture is brought 
out by comparing the relative speeds of C and assembler on each CPU. This 
comparison compensates for differences in clock speed and FPU speed, but we 
again see that gains from vectorisation are much more marked for the Athlon. 



MMX 

Intel SIMD Instructions 

In the following sections we give a semi-formal definition of the multi-media 
instruction-sets used on Intel and AMD processors. For each instruction we 
provide a specification of its semantics and indicate the assembler syntax used. 
For all instructions we provide NASM syntax. The types used by the instructions 
and their semantics are defined in Pascal. 

4.1 Types 

The underlying types used by the architecture are defined first. These are 
comprised of : 

1. a collection of base types 
2. a collection of short vector types 
3. types used to represent registers 
4. types used in the store and recovery of machine state. 

Base Types 

We first define the underlying base types used by the multi-media instructions. 
The definitions of all types are given in Pascal syntax. 

type 
intB = -128 .. 127; 
uintB = 0 .. 255; 
int16 = - 32768 .. 32767; 
uint16 = 0 .. 65535; 
int32 = integer; 
int64 = - 9223372036854775807 .. 9223372036854775807; 
ieee32 = real; 
ieee64 =double; 

Aggregates 

We now define the short vector types used by the MMX, 3DNOW and SSE 
instructions. 

int32vec2 = array [0 .. 1] of int32; 
int 76vec4 = array [0 . .3] of int 76; 
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3DNOW 
SSE 
SSE2 

byte 
word 
dword 
qword 
dqword 

Only AMD 
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uint76vec4 == array [0 .. 3] of uint16; 
intBvecB == array [0 . .7] of intB; 

uintBvecB == array [0 .. 7] of uintB; 
ieee32vec2 == array [0 .. 1] of ieee32; 
ieee32vec4 == array [0 .. 3] of ieee32; 
ieee64vec2 == array [0 .. 1] of ieee64; 
int64vec2 == array [0 .. 1] of int64; 
int32vec4 == array [0 . .3] of int32; 
int76vec8 == array [0 .. 8] of int76; 

uint76vec8 == array [0 .. 8] of uint16; 
int8vec16 == array [0 .. 15] of intB; 

uintBvec 7 6 == array [0 .. 15] of uintB; 

Mnemonics for Lengths and Shifts 

formats= (b, 
W, 

d, 
q, 
dq); 

We encode mnemonics for the three kinds of shifts, logical left and right, 
and arithmetic right. 

shifts= (1/,ra,rl); 

MMX Register Types 

We define the MMX registers as variant records with multiple possible internal 
representations. 

MMX=record 
case char of 

'a': (a:int64); 
'b': (b:int32vec2); 
'c': (c:int16vec4); 
'd': (d:uint76vec4); 
'e': (e:intBvecB); 
'f: (f:uintBvecB); 
'g': (g:ieee32vec2); 

end; 
regid=0 . .7; 

SSE Register Types 

We define the types of the SSE registers as a variant record allowing any of the 
formats supported in either SSEl or SSE2 instruction-sets. 

XMM=record 
case char of 
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SEE 
SEE2 

80 bit state 

fpu exponents 

fpu control word 
fpu status word 

fpu tag word 
fpu opcode 
fpu instruction addr 
code segment 
reserved 
fpu data addr 
data segment 
reserved 
MMX control reg 
reserved 

'a': (a:ieee32vec4); 
'b': (b:ieee64vec2); 
'c': (c:int32vec4); 
'd': (d:int16vec8); 
'e': (e:uint16vec8); 
'f: (f.intBvec 16); 
'g': (g:uint8vec16); 
'h': (h:int64vec2); 

end; 

XMM and MMX Save State 

This defines the type of data used when a save or restore is perform 
the' entire SIMD state (see Sections 4.4.19 and 4.4.20). This block is 512 
long. 

fpuJeg...save =record 
mmr:MMX; 
exponent:int 16; 

end; 
MMXpad =array [1 0 .. 15] of intB; 
MMXsave =record 

data:fpuJeg...save; 
pad:MMXpad; 

end; 
tMMXsaved =array [regid] of MMXsave; 
tMMXreg =array [regid] of MMX; 
texponents =array [regid] of int16; 
tXMMreg =array [regid] of XMM; 
tpadS=array [1..14] of XMM; 
XMMstatus =record 

fcw:int16; 
fsw:int16; 
pad1:int8; 
ftw:intB; 
fop:intB; 
fpuip:int32; 
cs:int16; 
pad2:int16; 
fpudp:int32; 
ds:int16; 
pad3:int16; 
mxcsr:int32; 
pad4:int32; 
MMXr:tMMXsaved; 
XMMr:tXMMrea; 
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arbitrary 

cache bank select 

general registers 
EFLAGS 

tag word 
control word 
status word 
opcode 
instruction addr 
code segment 
data addr 
data segment 
MMx control reg 
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Define Memory 

We define the memory both as an array of bytes and as an array of 16-byte 
vectors, because the SSE instructions have distinct aligned and unaligned 
memory load instructions. We also define the level1 cache, (see Section 2.4.1). 

const 
memsize= 16777216; 

type 
alignment= (IA32,SSE); 
tbytemem =array [O .. memsize - 1] of uintB; 
tvecmem =array [O .. memsize div 16 - 1] of XMM; 

var 
mem:record 

case alignment of 
IA32: (bytemem:tbytemem); 
SSE: (vecmem:tvecmem); 

end; 
Ieveil :array [0 .. 3] of array [0 .. 31] of array [0 .. 63] of uintB; 
level2 :array [0 .. 8] of array [0 . .511] of array [0 .. 63] of uintB; 
bank:integer; 

Define Register State 

We give a partial description of the register state of the processor including all 
of the status vector that can be altered by the SIMD instruction-set. 

type 
tgeneral =array [regid] of integer; 

var 
MMXreg:tMMXreg; 
exponents:texponents; 
XMMreg:tXMMreg; 
genera/:tgeneral; 
ZF:boolean; 
PF:boo/ean; 
CF:boolean; 

Status and control registers: 

ftw:intB; 
fcw:int76; 
fsw:int76; 
fop:intB; 
fpuip:int32; 
cs:int76; 
fpudp:int32; 
ds:int76; 
mxcsr:int32; 
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Register Names 

At the machine code level, all registers are simply numbered, but for historical 
reasons Intel associate names with the general registers. The mapping from 
register names to register numbers is 

const 
eax=O; 
ecx= 1; 
edx=2; 
ebx=3; 
esp=4; 
ebp=S; 
esi =6; 
edi=7; 

4.2 shrl 

Define shift right logical in arithmetic terms. 

function shrl (x:integer;c,w:integer):integer; 
begin 

shrl :=if c = 0 then x else shrl((x + 2) and not(2w-l ),c - 1 ,w) 
end; 

4.3 saturate 

function saturate (x,low,high:integer) :integer; 

This function is used to define the effects of saturated arithmetic; it forces 
the output to be within the bounds low ... high. 

begin 

end; 

if x > high then saturate+--- high 
else 

if x < low then saturate+--- low 
else 

saturate+--- x 

4.4 Instructions 

Each instruction is now presented as a procedure to give the semantics; along 
with this the NASM syntax for the instruction and the machines which support 
it are given. We also provide a star rating for how useful the instructions are: 

*** indicates that the instruction is important, and is likely to be of general 
use in SIMD programming. 
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** indicates that the instruction is useful, either as a replacement for existing 
FPU instructions or in some specific SIMD contexts. 

* indicates that the instruction is unlikely to be of use to the average SIMD 
programmer. 

4.4.1 ADDPS 

Instruction ADDPS (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM ADDPSXMMreg,r/ml28 

Add packed single-precision floating point. The source can be register or 
16-byte aligned memory vector. 

XMMregd.a +--- src.a + XMMregd.a 

4.4.2 ADDSS 

Instruction ADDSS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM ADDSSXMMreg,XMMreg/mem32 

Scalar single floating point add. The source can be memory or XMM register. 
This instruction is useful if one wants to do floating-point scalar arithmetic 
without corrupting the MMX registers. 

XMMregd.ao +--- src.ao + XMMregd.ao 

4.4.3 ANDNPS 

Instruction ANDNPS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM ANDNPSXMMreg,r/m128 

And negated, src is register or 16-byte aligned memory vector. 

XMMregd.g +--- src.g 1\ not XMMregd.g 

4.4.4 ANDPS 

Instruction ANDPS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM ANDPSXMMreg,r/m128 

16-byte bitwise logical and. 

XMMregd.g +--- src.g 1\ XMMregd.g; 
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We define an enumerated type for comparison operations that can be done 
in parallel on packed floating-point values. These are passed as an 8-bit 
immediate field to the comparison opcode. 

type 
fcomp = (feq, 
fit 
fie 
funord 
fneq 
fnlt 
fnle 
ford); 

4.4.5 CMPPS 

Instruction CMPPS (d:regid;src:XMM;immB:fcomp); 

** P3,P4,ATHLONXP 
NASM CMPPS XMMreg, r /ml28, i mm8 

Parallel single-precision floating-point comparison. Compares four pairs of 
floats and creates a Boolean mask as a result. Such masks can then be used to 
select results from other vectors. The src is either a register or a 16-byte aligned 
vector. When writing assembler pass in the ordinal value of fcomp typed field 
as a parameter. 

var 
i: 0 .. 3; 

for;,_ 0 to 3 do 
case immB of 

{ -1 
feq : XMMregd .c; +--- O 

{ -1 
fit : XMMregd .c; +--- O 

{ -1 
fie : XMMregd.c; +--- O 

fneq: XMMregd.c; +--- { 0 
-1 

fnlt : XMMregd.c; +--- { O 
-1 

fnle : XMMregd.c; +--- { 0 
-1 

if XMMregd.a; = src.a;. 
otherwise ' 

if XMMregd.a; < src.a;. 
otherwise I 

if XMMregd.a; :::; src.a;. 
otherwise I 

if XMMregd.a; = src.a;. 
otherwise I 

if XMMregd.a; < src.a;. 
otherwise I 

if XMMregd.a; :::; src.a;. 
otherwise I 
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4.4.6 CMPSS 

Instruction CMP55 (d:regid;src:XMM;immB:fcomp}; 

** P3,P4,ATHLONXP 
NASM CMPSSXMMreg,r/m32,imm8 

Scalar single-precision floating-point comparison. Compares a pair of floats 
and creates a Boolean mask as a result. 

The src is either a register or a memory location. There are no special 
alignment requirements. 

case immB of 

{ -1 feq: XMMregd.co +-- 0 

fit : XMMregd .co +-- { ~ 1 

fie: XMMregd.co +-- { ~ 1 

fneq: XMMregd.co +-- { 0 
-1 

fnlt: XMMregd.co +-- { 0 
-1 

fnle: XMMregd.co +-- { 0 
-1 

4.4.7 COMISS 

Instruction COM/55 (d:regid;src:XMM}; 

** P3,P4,ATHLONXP 
NASM COMISSXMMreg,r/m32 

if XMMregd.ao = src.ao. 
otherwise I 

if XMMregd.ao < src.ao. 
otherwise I 

if XMMregd.ao ~ src.ao. 
otherwise I 

if XMMregd.ao = src.a0 • 

otherwise I 

if XMMregd.ao < src.ao. 
otherwise I 

if XMMregd.ao :::; src.ao. 
otherwise I 

SSE Scalar Compare and Set EFLAGS. Compares single-precision floating­
point numbers and set flags appropriately. 

if XMMregd.ao = src.a0 then 
begin 

ZF+-true; 
CF +---false; 
PF+-false 

end 
else 

if XMMregd.ao > src.a0 then 
begin 

ZF+-false; 
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CF<- false; 
PF <--false 

end 
else 
if XMMregd.a0 < src.a0 then 

begin 
ZF.-false; 
CF<-true; 
PF <--false 

end 
else 

begin 
ZF<-false; 
CF <--false; 
PF <--false 

end; 

4.4.8 CVTPI2PS 

lnstrudion CVTPI2PS (d:regid;src:MMX); 

* P3,P4,ATHLONXP 
NASM CVTPI2PSXMMreg,r/m64 
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SSE Packed Integer to Floating-Point Conversion. Destination is lower two 
words of XMM register; source is an MMX register or memory location. 

XMMregd.ao <-- src.bo; 
XMMregd.al <-- src.b1; 

4.4.9 CVTPS2PI 

Instruction CVTPS2PI (d:regid;src:XMM); 

* P3,P4,ATHLONXP 
NASM CVTPS2PIMMXreg,r/m64 

SSE Packed Floating-point to Integer Conversion with rounding: source is 
lower two words of XMM register or memory location; destination is an MMX 
register. 

MMXregd.bo <-- round (src.a0); 
MMXregd.b1 <--round (src.al); 

4.4.1 0 CVTIPS2PI 

lnstrudion CVTTPS2PI (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM CVTTPS2PIMMXreg,r/m64 
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SSE Packed Floating-point to Integer Conversion with truncation: source is 
lower two words ofXMM register or memory location; destination is an MMX 
register. 

MMXregd.bo +- trunc (src.a0); 

MMXregd.b1 +- trunc (src.a1); 

4.4.11 CVTSI2SS 

Instruction CVf51255 (d:regid;src:integer); 

** P3,P4,ATHLONXP 
NASM CVTSI2SSXMMreg,r/m32 

SSE Scalar Integer to Floating-Point Conversion. Destination is lower word of 
XMM register; source is a general register or memory location. 

XMMregd.ao +- src; 

4.4.12 CVTSS2SI 

Instruction CVf5525/ (d:regid;src:ieee32); 

** P3,P4,ATHLONXP 
NASM CVTSS2SI reg32.XMMreg/mem32 

SSE Scalar Floating-Point to Integer Conversion. Destination is a general 
register; source is lower word of XMM register or memory location. 

generald +- round (src); 

4.4.13 CVTTSS2SI 

Instruction CVTT55251 (d:regid;src:ieee32); 

** P3,P4,ATHLONXP 
NASM CVTTSS2SI reg32.XMMreg/mem32 

SSE Scalar Floating-Point to Integer Conversion with truncation. Destination 
is a general register; source is lower word of XMM register or memory 
location. 

general d +- trunc(src); 

4.4.14 DIVPD 

Instruction DIVPD (d:regid;src:XMM); 

*** P4 
NASM DIVPDXMMreg,r/m128 

Packed Double-Precision FP Divide. Destination is an XMM register; source is 
XMM register or memory location. Element by element division is performed. 
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var 
i: 0 .. 1; 

for i <-- 0 to 1 do 
XMMreg b· <-- XMMregd.b;. 

d· 1 src.bi ' 

4.4.15 DIVPS 

Instruction 0/VPS (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM DIVPSXMMreg,r/m128 

Packed Single-FP Divide. Destination is an XMM register; source is XMM 
register or memory location. Element by element division is performed. 

var 
i: 0 . .3; 

for i <-- 0 to 3 do 
XMMreg a· <-- XMMregd.a;. 

d· ' src.a; ' 

4.4.16 DIVSD 

Instruction 0/VSO (d:regid;src:ieee64); 

** P4 
NASM DIVSSXMMreg,XMMreg/mem64 

Scalar Double-FP Divide. Destination is low word of an XMM register; source 
is XMM register low word or memory location. This is a useful alternative to 
the use of the FPU stack for real arithmetic since it removes resource 
contention between the FPU stack and the MMX registers. 

XMMregd.bo <-- XMM;~;d·bo; 

4.4.17 DIVSS 

Instruction 0/VSS (d:regid;src:ieee32); 

** P3,P4,ATHLONXP 
NASM DIVSSXMMreg,XMMreg/mem32 

Scalar Single-FP Divide. Destination is low word of an XMM register; source is 
XMM register low word or memory location. 

XMMreg a <-- XMMregd.ao. 
d·O src' 

4.4.18 EMMS 

Instruction EMMS; 

*** K6,MMXPENTIUM,Athlon,P3,P4,ATHLONXP 
NASM EMMS 
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Empty MMX State. This sets the FPU tag word (marking which floating-point 
registers are available) to all ones, meaning that all registers are available for 
the FPU to use. All other MMX instructions clear the FPU TagW ord. This 
clearing of the tag word invalidates any values currently on the FPU stack, so 
that MMX instructions and FPU instructions cannot be mixed. EMMS should 
be used after executing MMX instructions and before executing any 
subsequent floating-point operations. 

ftw+-$ff; 

4.4.19 FXRSTOR 

Instruction FXRSTOR (src:XMMstatus); 

* P3,P4,ATHLONXP 
NASM FXRSTORm512byte 

Restore FP, MMX and SSE States. Loads the FP, MMX and XMM state from 
a memory area. Area should previously have been saved by FXSA VE (see 
Section 4.4.20). 

var 
i:regid; 

few +- src.fcw; 
fsw +- src.fsw; 
ftw +- src.ftw; 
fop+- src.fop; 
fpuip +- src.fpuip; 
cs +- src.cs; 
fpudp +- src.fpudp; 
ds +- src.ds; 
mxcsr +- src.mxcsr; 
fori+- Oto7do 
begin 

MMXreg; +- src.MMXr;.data.mmr; 
exponents;+- src.MMXr;.data.exponent; 
XMMreg; +- src.XMMr;; 

end; 

4.4.20 FXSAVE 

Instruction FXSAVE (var dest'XMMstatus); 

* P3,P4,ATHLONXP 
NASM FXSAVEm512byte 

Save FP, MMX and SSE States. This is mainly of use in context switching and 
is unlikely to be used by applications coders. The processor retains the 
contents of the FP and MMX state and Streaming SIMD Extension state in the 
processor after the state has been saved. This instruction has been optimized to 
maximize floating-point save performance. 



Chapter 4 • Intel SIMD Instructions 

var 
i:regid; 

dest.fcw <-- few; 
dest.fsw <-- fsw; 
dest.ftw <-- ftw; 
dest.fop <-- fop; 
dest.fpuip <-- fpuip; 
dest.cs <-- cs; 
dest.fpudp <-- fpudp; 
dest.ds <-- ds; 
dest.mxcsr <-- mxcsr; 
for i <-- 0 to 7 do 
begin 

dest.MMXr;.data.mmr <-- MMXreg;; 
dest.MMXr;.data.exponent <--exponents;; 
dest.XMMr; <-- XMMreg;; 

end; 

4.4.21 MASKMOVQ 

Instruction MASKMOVQ (r7,r2:regid); 

* P4 
NASM MASKMOVQ MMXreg ,MMXrege 
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Byte Mask Write. This is analogous to the the x86 string move instructions in 
that it writes bytes in rl under the byte mask provided by r2 to a destination 
specified by the (DS:) EDI register. This use of the EDI register as a destination 
register is somewhat old-fashioned but was probably chosen because of the 
need to provide a third operand to the instruction. 

Note that this can be used in conjunction with comparison instructions that 
set vector register elements to either -1 or 0. It will work after wordwise or 
bytewise comparisons have been performed. 

var 
i:integer; 

for i <-- 0 to 7 do 
if MMXreg,2.e; < 0 then 

mem.bytemem9eneraled1+i <-- MMXreg,,.e;; 

4.4.22 MAXPD 

Instruction MAXPD (d:regid;src:XMM); 

** P4 
NASM MAXPDXMMreg,r/m128 

Packed Double-Precision FP Maximum. Destination is an XMM register; 
source is XMM register or memory location. Element by element comparison 
is performed. 
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var 
i: 0 .. 1; 

with XMMregd do 
fori+- Oto 1 do 

if src.b; > b; then 
b; +--- src.b;; 

4.4.23 MAXPS 
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Instruction MAXPS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM MAXPSXMMreg,r/ml28 

Packed Single-FP Maximum. Destination is an XMM register; source is XMM 
register or memory location. Element by element comparison is performed. 

var 
i: 0 .. 3; 

with XMMregd do 
for i +--- 0 to 3 do 

if o; < src.o; then 
o; +--- src.o;; 

4.4.24 MAXSD 

Instruction MAXSD (d:regid;src:ieee64); 

** P4 
NASM MAXSSXMMreg,XMMreg/mem64 

Scalar Double-FP Maximum. Destination is low word of an XMM register; 
source is XMM register low word or memory location. 

XMM b { src if (XMMregd.bo) < src. 
regd. 0 +- XMMregd.bo otherwise I 

4.4.25 MAXSS 

Instruction MAXSS (d:regid;src:ieee32); 

** P3,P4,ATHLONXP 
NASM MAXSSXMMreg,XMMreg/mem32 

Scalar Single-FP Maximum. Destination is low word of an XMM register; 
source is XMM register low word or memory location. 

XMM { src if XMMregd.ao < src. 
regd.ao +- XMMregd.ao otherwise I 
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4.4.26 MINPD 

Instruction MINPD (d:regid;src:XMM); 

** P4 
NASM MINPDXMMreg,r/m128 
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Packed Double-Precision FP Minimum. Destination is an XMM register; 
source is XMM register or memory location. Element by element comparison 
is performed. 

var 
i: 0 .. 1; 

with XMMregd do 
for i +- 0 to 1 do 

if src.b; < b; then 
b; +- src.b;; 

4.4.27 MINPS 

Instruction MINPS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM MINPSXMMreg,r/ml28 

Packed Single-FP Minimum. Destination is an XMM register; source is XMM 
register or memory location. Element by element comparison is performed. 

var 
i: 0 .. 3; 

with XMMregd do 
for i +- 0 to 3 do 

if a; > src.a; then 
a;<---- src.a;; 

4.4.28 MINSD 

Instruction MINSD (d:regid;src:ieee64); 

** P4 
NASM MINSSXMMreg,XMMreg/mem64 

Scalar Double-FP Minimum. Destination is low word of an XMM register; 
source is XMM register low word or memory location. 

{ 
src 

XMMregd.bo +--- XMM b regd. o 

4.4.29 MINSS 

Instruction MINSS (d:regid;src:ieee32); 

** P3,P4.ATHLONXP 
NASM MINSSXMMreg,XMMreg/mem32 

if (XMMregd.bo) > src . 
otherwise ' 
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Scalar Single-FP Minimum. Destination is low word of an XMM register; 
source is XMM register low word or memory location. 

{ 
src 

XMMregd.ao +-- vMM 
A1 regd.ao 

4.4.30 MOVAPSJoad 

Instruction MOVAPS_Ioad (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM MOVAPSXMMreg,r/ml28 

if XMMregd.ao > src. 
otherwise ' 

Packed Single-FP Aligned Load. Destination is an XMM register; source is 
XMM register or a 16-byte aligned memory location. For unaligned moves, 
use MOVUPS. 

XMMregd <---- src; 

4.4.31 MOVAPS_store 

Instruction MOVAPS_store (d:regid;var dest:XMM); 

** P3,P4,ATHLONXP 
NASM MOVAPSr/ml28.XMMreg 

Packed Single-FP Aligned Store. Source is an XMM register; destination is 
XMM register or a 16-byte aligned memory location. This shares its assembler 
mnemonic with MOVAPSJoad (see Section 4.4.30). 

4.4.32 MOVDJoad 

Instruction MOVD_Ioad (d:regid;src:int32); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM MOVD MMX reg, r /m32 

32-Bit MMX Load. Destination is an MMX register, source is a general register 
or a memory location. It cannot be used to move words between MMX 
registers. 

with MMXregd do 
begin 

b0 <----src; 
bl f- 0; 
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4.4.33 MOVD_store 

Instruction MOVD_store (d:regid;var dest:int32); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM MOVDr/m32,MMXreg 
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32-Bit MMX Store. Destination is a general register or a memory location; 
Source is low 32-bit word of an MMX register. It cannot be used to move 
words between MMX registers. 

dest +-- MMXregd.b0; 

4.4.34 MOVDJoad_sse 

Instruction MOVD _load_sse (d:regid;src:int32); 

** P4 
NASM MOVDXMMreg,r/m32 

32-Bit XMM Load. Destination is an XMM register; source is a general register 
or a memory location. It cannot be used to move words between XMM 
registers. 

with XMMregd do 
begin 

Co+-- src; 
c, +-- 0; 
c2 +-- 0; 
c3 +-- 0; 

4.4.35 MOVD_store_sse 

Instruction MOVD_store_sse (d:regid;var dest:int32); 

** P4 
NASM MOVDr/m32,XMMreg 

32-Bit XMM Store. Destination is a general register or a memory location; 
source is low 32-bit word of an XMM register. 

dest +-- XMMregd.c0; 

4.4.36 MOVHLPS 

Instruction MOVHLPS (r7,r2:regid); 

** P3,P4,ATHLONXP 
NASM MOVHLPSXMMreg,XMMreg 

SSE Move High to Low. Moves top 8 bytes in r2 to bottom 8 bytes in rl. Both 
operands are XMM registers. 

XMMreg,7.ao .. 1 +-- XMMreg,2.a2 .. 3; 
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4.4.37 MOVHPSJoad 

Instruction MOVHPS_Ioad (r7:regid;src:MMX); 

** P3.P4,ATHLONXP 
NASM MMOVHPSXMMreg,mem64 

SSE Move High Packed Single Precision. Moves two single-precision floats to 
the high pair of words in an XMM register. The lower two floats in the register 
do not change. Source is in memory. 

XMMreg,1.a2 .• 3 +-- src.go .. ,; 

4.4.38 MOVHPS...store 

Instruction MOVHPS_store (r1:regid;var destMMX); 

* P3,P4,ATHLONXP 
NASM MOVHPSmem64,XMMreg 

SSE Move High Packed Single Precision. Moves two single-precision floats 
from the high pair of words in an XMM register. Destination is in memory. 

dest.g0 .. 1 +-- XMMreg,1.a2 .. 3; 

4.4.39 MOVLHPS 

Instruction MOVLHPS (r7 ,r2:regid); 

* P3,P4,ATHLONXP 
NASM MOVLHPSXMMreg,XMMreg 

SSE Move High to Low. Moves bottom 8 bytes in r2 to top 8 bytes in rl. Both 
operands are XMM registers. 

4.4.40 MOVLPSJoad 

Instruction MOVLPS_Ioad (r1 :regid;src:MMX); 

* P3,P4,ATHLONXP 
NASM MMOVLPSXMMreg,mem64 

SSE Move Low Packed Single Precision. Moves two single precision floats to 
the low pair of words in an XMM register. The lower two floats in the register 
do not change. Source is in memory. 

4.4.41 MOVLPS...store 

Instruction MOVLPS_store (r1:regid;var dest:MMX); 
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* P3,P4,ATHLONXP 
NASM MOVLPSmem64,XMMreg 

SSE Move Low Packed Single Precision. Moves two single-precision floats 
from the low pair of words in an XMM register. Destination is in memory. 

dest.g0 .. , ,__ XMMreg,l.ao .. ,; 

4.4.42 MOVMSKPS 

Instruction MOVMSKPS (dest,src:regid); 

** P3,P4,ATHLONXP 
NASM MOVMSKPSr,XMMreg 

Move Packed Single-Precision Mask Bits to Integer. Source is an XMM 
register; destination a general register. The bottom 4 bits of the general register 
are set to the signbits of the 32-bit integers in the XMM register. 

var 
i: 0 . .3; 

generaldest ,__ 0; 
with XMMregsrc do 

for i ,__ 3 downto 0 do 
if C; < 0 then 

generaldest ,__ generaldest + i; 

4.4.43 MOVNTPS 

Instruction MOVNTPS (d:regid;var dest:XMM); 

** P3.P4.ATHLONXP 
NASM MOVNTPSmemlZB,XMMreg 

Packed Single-FP Aligned Store without cache pollution. Source is an XMM 
register; destination is a 16-byte aligned memory location. The register is 
stored in memory directly without going into the cache. 

4.4.44 MOVNTQ 

Instruction MOVNTQ (s:regid;var dest:MMX); 

** P3,P4,ATHLONXP 
NASM MOVNTQmem64,MMXreg 

Quadword Store without cache pollution. Source is an MMX register; destina­
tion is a memory location. The register is stored in memory directly without 
going into the cache. No alignment restrictions are imposed on this instruction. 
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4.4.45 MOVQJoad 

Instruction MOVQ_/oad (dest:regid;src:MMX); 

*** Pent i urn with MMX, K6. P3. P4. ATH LONXP 
NASM MOVQ MMX reg, r /rn64 

Move Quadword to MMX Register. Destination is an MMX register; source is 
either another MMX register or a memory location. This shares an assembler 
mnemonic with MOVQ_store. 

MMXregdest +-- src; 

4.4.46 MOVQ_store 

Instruction MOVQ_store (var dest:MMX;src:regid); 

*** Pent i urn with MMX. K6. P3. P4. ATH LONXP 
NASM MOVQr/rn64,MMXreg 

Move Quadword to MMX Register. Source is an MMX register; destination is 
either another MMX register or a memory location. This shares an assembler 
mnemonic with MOVQJoad. 

dest +-- MMXreg,,c; 

4.4.47 MOVSSJoad 

Instruction MOVSS_Ioad (dest:regid;src:ieee32); 

** P3.P4,ATHLONXP 
NASM MOVSSXMMreg,r/rn32 

Move Quadword to MMX Register. Destination is the low 32-bit word of an 
XMM register; source is either another XMM register or a memory location. 
This shares an assembler mnemonic with MOVSS_store. 

XMMregdest·ao +--src; 

4.4.48 MOVSS...store 

Instruction MOVSS_store (var dest:ieee32;src:regid); 

** PentiurnwithMMX,K6,P3,P4,ATHLONXP 
NASM MOVSSr/m32,XMMreg 

Move Quadword to MMX Register. Source is a the low 32 bits of an XMM 
register; the destination is either another XMM register or a memory location. 
This shares an assembler mnemonic with MOVSSJoad. 
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4.4.49 MOVUPSJoad 

Instruction MOVUPS_Ioad (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM MOVUPSXMMreg,r/m128 
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Packed Single-FP Unaligned Load. Destination is an XMM register; source is 
XMM register or a 16-byte memory location. This is more generally useful 
than MOVAPS 4.4.30 but runs significantly slower. However, for many image 
processing applications it is impossible to ensure that the operands are 16-byte 
aligned. In this case MOVUPS should be used. 

The performance overhead is sufficiently great that it often pays to use the 
MMX registers rather than the XMM registers if unaligned loads and stores 
must be used, since there are no alignment restrictions on the MOVQ 
instruction used to load the MMX registers. 

XMMregd +--- src; 

4.4.50 MOVUPS..store 

Instruction MOVUPS_store (d:regid;var dest:XMM); 

*** P3,P4,ATHLONXP 
NASM MOVUPSr/m128,XMMreg 

Packed Single-FP Unaligned Store. Source is an XMM register; destination is 
XMM register or a 16-byte memory location. This shares its· assembler 
mnemonic with MOVUPSJoad (see Section 4.4.49). 

dest +--- XMMregd; 

4.4.51 MULPD 

Instruction MULPD (d:regid;src:XMM); 

** P4 
NASM MULPDXMMreg,r/m128 

Packed Double-Precision FP Multiply. Destination is an XMM register; source 
is XMM register or memory location. Element by element multiplication is 
performed. If unaligned access is used, this instruction has no performance 
advantage over the use of the FPU stack. 

var 
i: 0 .. 1; 

for i +--- 0 to 1 do 
XMMregd.b; +--- (XMMregd.b;) x src.b;; 

4.4.52 MULPS 

Instruction MULPS (d:regid;srcXMM); 

*** P3,P4,ATHLONXP 
NASM MULPSXMMreg,r/ml28 
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Packed Single-FP Multiply. Destination is an XMM register; source is XMM 
register or memory location. Element by element multiplication is performed. 
It is faster than the use of the FPU stack even when unaligned accesses are used. 

var 
i: 0 . .3; 

for i +- 0 to 3 do 
XMMregd.a; +- (XMMregd.a;) x src.a;; 

4.4.53 MULSD 

Instruction MULSD (d:regid;src:ieee64); 

** P4 
NASM MULSSXMMreg,XMMreg/mem64 

Scalar Double-FP Multiply. Destination is low word of an XMM register; 
source is XMM register low word or memory location. This is a useful 
alternative to the use of the FPU stack for real arithmetic since it removes 
resource contention between the FPU stack and the MMX registers. 

XMMregd.bo +- (XMMregd.bo) x src; 

4.4.54 MULSS 

Instruction MULSS (d:regid;src:ieee32); 

** P3,P4,ATHLONXP 
NASM MULSSXMMreg,XMMreg/mem32 

Scalar Single-FP Multiply. Destination is low word of an XMM register; source 
is XMM register low word or memory location. 

XMMregd.a0 +- (XMMregd.ao) x src; 

4.4.55 ORPS 

Instruction ORPS (d:regid;src:XMM); 

** P4 
NASM ORPSXMMreg,r/ml28 

128-Bit Or. Destination is an XMM register; source is XMM register or 
memory location. It is faster to use the MMX equivalent instruction POR 
when unaligned accesses are used. 

var 
i: 0 . .3; 

for i +- 0 to 3 do 
XMMregd.c; +- (XMMregd.c;) V src.c;; 
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4.4.56 PACKSSDW 

Instruction PACKSSDW (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PACKSSDW MMXreg, r /m64; 
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Pack double to word with saturation. This takes a pair of 64-bit operands and 
packs the double words in the pair into the destination. It is useful for 
converting a vector of integers to a vector of shorts. 

var 
c : array [0 .. 3) of int32; 
i: 0 .. 3; 

Co .. 1 +- MMXregdest·bo .. l; 
c2.3 +- src.b0 .. 1; 

for i +- 0 to 3 do 
if ci > 32767 then MMXregdest.Ci +- 32767 
else if ci < -32768 then MMXregdest·Ci+- -32768 
else MMXregdest·Ci +- ci; 

4.4.57 PACKSSWB 

Instruction PACKSSWB (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PACKSSWBMMXreg,r/m64; 

Pack word to byte with saturation. This takes a pair of 64-bit operands and 
packs the words in the pair into the destination. It is useful for converting a 
vector of shorts to a vector of signed bytes. 

var 
d :array [0 .. 7) of int76; 
i: 0 .. 7; 

do . .3 +- MMXregdest·C0 .. 3; 
d4 .. 7 +- src.co . .3; 

for i +- 0 to 7 do 
if di > 127 then MMXregdest·ei+- 127 
else if di < -128 then MMXregdest·ei +- -128 
else MMXregdest·ei +- di; 

4.4.58 PACKUSWB 

Instruction PACKUSWB (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PACKUSWBMMXreg,r/m64; 

Pack word to unsigned byte with saturation. This takes a pair of 64-bit 
operands and packs the words in the pair into the destination. It is useful for 
converting a vector of shorts to a vector of unsigned bytes. 
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var 
d : array [0 . .7] of int76; 
i: 0 . .7; 

do .. 3 +--- MMXregdest·Co . .3; 
d4 .. 7 +--- src.c0 .. 3; 

for i +--- 0 to 7 do 
if d; > 255 then MMXregdesr.f; +--- 255 
else if d; < 0 then MMXregdest·f; +--- 0 
else MMXregdesr.f; +--- d;; 

4.4.59 PADDB 

Instruction PADDB (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PADDBMMXreg,r/m64; 

Packed byte addition in MMX registers. Performs parallel element by element 
addition of all of the bytes in the source and destination. Source can be in 
memory. 

var 
i: 0 . .7; 

with MMXregdest do 
for i +--- 0 to 7 do f; +--- f; + src.f;; 

4.4.60 PADDB....sse 

Instruction PADDB_sse (dest:regid;src:XMM); 

** P4 
NASM PADDBXMMreg,r/m128; 

Packed byte addition in XMM registers. Performs parallel element by element 
addition of all of the bytes in the source and destination. Extended version for 
XMM registers. Memory operands must be 16-byte aligned. It is not competit­
ive in speed with the MMX version unless aligned memory operands are used, 
since unaligned use requires two instructions an unaligned load followed by 
the arithmetic operation. 

var 
i: 0 .. 15; 

with XMMregdest do 
for i +--- 0 to 15 do f; +--- f; + src.f;; 

4.4.61 PADDW 

Instruction PADDW (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PADDW MMXreg, r /m64; 
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Packed word addition in MMX registers. Performs parallel element by element 
addition of all of the words in the source and destination. 

var 
i: 0 .. 3; 

with MMXregdest do 
for i +--- 0 to 3 do c; +--- c; + src.c;; 

4.4.62 PADDW _sse 

Instruction PADDW_ sse (dest:regid;src:XMM); 

** P4 
NASM PADDWXMMreg,r/ml28; 

Packed word addition in XMM registers. Performs parallel element by element 
addition of all of the words in the source and destination. Extended version for 
XMM registers. Memory operands must be 16-byte aligned. It is not competit­
ive in speed with the MMX version unless aligned memory operands are used, 
since unaligned use requires two instructions an unaligned load followed by 
the arithmetic operation. 

var 
i: 0 .. 7; 

with XMMregdest do 
for i +--- 0 to 7 do d; +--- d; + src.d;; 

4.4.63 PADDD 

Instruction PADDD (dest:regid;src:MMX); 

*** PentiumMMX,K6.P3.P4.ATHLONXP 
NASM PADDDMMXreg,r/m64; 

Packed doubleword addition in MMX registers. Performs parallel element by 
element addition of all of the 32-bit integers in the source and destination. 

var 
i: 0 .. 3; 

begin 
with MMXregdest do 

begin 
bo +--- bo + src.bo; 
b1 +--- b1 + src.b1; 

end; 

4.4.64 PADDD_sse 

Instruction PADDD_sse (dest:regid;src:XMM); 

** P4 
NASM PADDDXMMreg,r/ml28; 
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Packed double word addition in XMM registers. Performs parallel element by 
element addition of all of the 32-bit integers in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. It is not competitive in speed with the MMX version unless aligned 
memory operands are used, since unaligned use requires two instructions an 
unaligned load followed by the arithmetic operation. 

var 
i: 0 .. 3; 

with XMMregdest do 
for i +--- 0 to 15 do c; +--- c; + src.c;; 

4.4.65 PADDQ 

Instruction PADDQ (destregid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PADDQMMXreg,r/m64; 

Quadword addition in MMX registers. Performs addition of the 64-bit 
integers in the source and destination. The EFLAGS are not set on overflow. 

var 
i: 0 .. 3; 

with MMXregdest do a+--- a+ src.a; 

4.4.66 PADDQ_sse 

Instruction PADDQ_sse (destregid;src:XMM}; 

** P4 
NASM PADDQXMMreg,r/m128; 

Packed quadword addition in XMM registers. Performs parallel element by 
element addition of all of the 64-bit integers in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. It is not competitive in speed with the MMX version unless aligned 
memory operands are used, since unaligned use requires two instructions an 
unaligned load followed by the arithmetic operation. 

var 
i: 0 .. 1; 

with XMMregdest do 
for i +--- 0 to 1 do h; +--- h; + src.h;; 

4.4.67 PADDSB 

Instruction PADDSB (destregid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PADDSBMMXreg,r/m64; 
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Packed byte addition in MMX registers with saturation. Performs parallel 
element by element addition of all of the bytes in the source and destination. 
Source can be in memory. 

var 
i: 0 .. 7; 

with MMXregdest do 
for i +-- 0 to 7 do 

e; +--saturate ((e; + src.e;), -128, 127); 

4.4.68 PADDSB__sse 

Instruction PADDSB_sse (dest:regid;src:XMM); 

** P4 
NASM PADDSBXMMreg,r/ml28; 

Packed saturated signed byte addition in XMM registers. Performs parallel 
element by element addition of all of the bytes in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. It is not competitive in speed with the MMX version unless aligned 
memory operands are used, since unaligned use requires two instructions an 
unaligned load followed by the arithmetic operation. 

var 
i: 0 .. 15; 

with XMMregdest do 
for i +-- 0 to 15 do 

f; +--saturate (f; + src.f;, -128, 127); 

4.4.69 PADDUSB 

Instruction PADDUSB (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PADDUSBMMXreg,r/m64; 

Packed byte addition in MMX registers with unsigned saturation. Performs 
parallel element by element addition of all of the bytes in the source and destina­
tion. Source can be in memory. 

var 
i: 0 .. 7; 

with MMXregdest do 
for i +-- 0 to 7 do 

f; +-- saturate ((f; + src.f;), 0, 255); 
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4.4.70 PADDUSB....sse 

Instruction PADDUSB_sse (dest:regid;src:XMM); 

** P4 
NASM PADDUSBXMMreg,r/ml28; 

Packed saturated unsigned byte addition in XMM registers. Performs parallel 
element by element addition of all of the bytes in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. It is not competitive in speed with the MMX version unless aligned 
memory operands are used, since unaligned use requires two instructions an 
unaligned load followed by the arithmetic operation. 

var 
i: 0 .. 15; 

with XMMregdest do 
fori+- 0 to 15 do 

g; +---saturate (g; + src.g;, 0, 255); 

4.4.71 PAND 

Instruction PAND (destregid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PANDMMXreg,r/m64; 

Quadword and in MMX registers. Performs and of the 64-bit integers in the 
source and destination. 

var 
i: 0 . .3; 

with MMXregdest do 
for i +--- 0 to 3 do 

d; +--- d; 1\ src.d;; 

4.4.72 PAND....sse 

Instruction PAND_sse (dest:regid;src:XMM); 

** P4 
NASM PANDXMMreg,r/ml28; 

Packed quadword and in XMM registers. Performs parallel and of all of the 
bits in the source and destination. Extended version for XMM registers. 
Memory operands must be 16-byte aligned. It is not competitive in speed with 
the MMX version unless aligned memory operands are used, since unaligned 
use requires two instructions an unaligned load followed by the arithmetic 
operation. 
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var 
i: 0 . .3; 

with XMMregdest do 
fori+-Oto3do 

C; +- c; 1\ src.c;; 

4.4.73 PANDN 

Instruction PANDN (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PANDNMMXreg,r/m64; 
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Quadword and in MMX registers. Performs and of the bits in the source and 
the negated destination. 

var 
i: 0 .. 1; 

for i +- 0 to 1 do 
with MMXregdest do b +- (not b) and src.b; 

4.4.74 PANDN..sse 

Instruction PANDN_sse (dest:regid;src:XMM); 

** P4 
NASM PANDNXMMreg,r/m128; 

Packed quadword and in XMM registers. Performs parallel element by element 
and of all of the bits in the source and the negated destination. Extended 
version for XMM registers. Memory operands must be 16-byte aligned. It is 
not competitive in speed with the MMX version unless aligned memory 
operands are used, since unaligned use requires two instructions an unaligned 
load followed by the arithmetic operation. 

var 
i: 0 .. 3; 

with XMMregdest do 

for i +- 0 to 3 do c; +- (not c;) and src.e;; 

4.4.75 PAVGB 

Instruction PAVGB (dest:regid;src:MMX); 

*** PentiumMMX.K6,P3,P4,ATHLONXP 
NASM PAVGBMMXreg,r/m64; 

Packed byte unsigned average. Performs parallel element by element average of 
all of the pairs of bytes in the source and destination. Source can be in 
memory. 



76 

var 
i: 0 . .7; 

with MMXregdest do 
for i +-- 0 to 7 do 

f; +-- (f; + src.f;); 

4.4.76 PAVGB_sse 
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Instruction PAVGB_sse (destregid;src:XMM); 

** P4 
NASM PAVGBXMMreg,r/m128; 

Packed unsigned byte average in XMM registers. Performs parallel element by 
element average of all of the pairs of bytes in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. 

var 
i: 0 .. 15; 

with XMMregdest do 
for i +-- 0 to 15 do 

g. g1+src.g1• 
I t- 2 I 

4.4.77 PAVGW 

Instruction PAVGW (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PAVGW MMX reg, r /m64; 

Packed word unsigned average. Performs parallel element by element average of 
all of the pairs of words in the source and destination. Source can be in memory. 

var 
i: 0 . .3; 

with MMXregdest do 
for i +-- 0 to 3 do 

d. +-- d1 + src.d1• 
I 2 ' 

4.4.78 PAVGW_sse 

Instruction PAVGW_sse (dest:regid;src:XMM); 

** P4 
NASM PAVGbXMMreg,r/m128; 

Packed unsigned word average in XMM registers. Performs parallel element by 
element addition of all of the pairs of words in the source and destination. 
Extended version for XMM registers. Memory operands must be 16-byte 
aligned. 
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var 
i: 0 . .7; 

with XMMregdest do 
for i <--- 0 to 1 5 do 

e; +-- e, +~rc.e,; 

4.4.79 PCMPEQB 

Instruction PCMPEQB (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PCMPEQBMMXreg,r/m64; 
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Packed byte comparison. Performs parallel element by element comparison of 
all of the pairs of bytes in the source and destination. Generates a vector of 
mask bytes with Off indicating true. Source can be in memory. 

var 
i: 0 . .7; 

with MMXregdest do 
for i <--- 0 to 7 do 

(; { 255 if (f; = src.f;). 
1 +- 0 otherwise ' 

4.4.80 PCMPEQB_sse 

Instruction PCMPEQB_sse (dest:regid;src:XMM); 

** P4 
NASM PCMPEQBXMMreg,r/ml28; 

Packed byte comparison. Performs parallel element by element comparison of 
all of the pairs of bytes in the source and destination. Generates a vector of 
mask bytes with 0 f f indicating true. Source can be in memory, but if so must 
be 16-byte aligned. 

var 
i: 0 .. 15; 

with XMMregdest do 
fori<--- 0 to 15 do 

g. { 255 if (gi = src.gi). 
If- I 

0 otherwise 

4.4.81 PCMPEQW 

Instruction PCMPEQW (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PCMP EQW MMX reg, r /m64; 
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Packed word comparison. Performs parallel element by element comparison 
of all of the pairs of bytes in the source and destination. Generates a vector of 
mask words with 0 f f f f indicating true. Source can be in memory. 

var 
i: 0 . .3; 

with MMXregdest do 
for i <--- 0 to 3 do 

c- <--- { -1 if (ci = src.ci) . 
1 0 otherwise ' 

4.4.82 PCMPEQW _sse 
Instruction PCMPEQW_sse (dest:regid;src:XMM); 

** P4 
NASM PCMPEOWXMMreg,r/ml28; 

Packed word comparison. Performs parallel element by element comparison 
of all of the pairs of words in the source and destination. Generates a vector of 
mask words with 0 f f f f indicating true. Source can be in memory, but if so 
must be 16-byte aligned. 

var 
i: 0 .. 7; 

with XMMregdest do 
for i <--- 0 to 7 do 

d· { -1 if (di = src.di). 
' +-- 0 otherwise ' 

4.4.83 PCMPEQD 

Instruction PCMPEQD (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PCMPEODMMXreg,r/m64; 

Packed doubleword comparison. Performs parallel element by element 
comparison of all of the pairs of 32-bit words in the source and destination. 
Generates a vector of mask words with 0 f f f f f f f f indicating true. Source can 
be in memory. 

var 
i: 0 .. 1; 

with MMXregdest do 
for i <--- 0 to 1 do 

b· <--- { -1 if ( bi = src.bi) 
1 0 otherwise; 
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4.4.84 PCMPEQD_sse 

Instruction PCMPEQD_sse (destregid;src:XMM); 

** P4 
NASM PCMPEQDXMMreg,r/m128; 

Packed doubleword comparison. Performs parallel element by element 
comparison of all of the pairs of 32-bit words in the source and destination. 
Generates a vector of mask words with 0 f f f f f f f f indicating true. Source can 
be in memory, but if so must be 16-byte aligned. 

var 
i: 0 .. 3; 

with XMMregdest do 
fori+-Oto3do 

C. { -1 if (c; = src.c;). 
I+--- ' 0 otherwise 

4.4.85 PCMPGTB 

Instruction PCMPGTB (dest:regid;src:MMX); 

*** PentiumMMX.K6,P3.P4,ATHLONXP 
NASM PCMPGTBMMXreg,r/m64; 

Packed byte comparison. Performs parallel element by element comparison of 
all of the pairs of bytes in the source and destination. Generates a vector of 
mask bytes with Off indicating true. Source can be in memory. 

var 
i: 0 .. 7; 

with MMXregdest do 
for i +--- 0 to 7 do 

&. { 255 if (f; > src.f;). ,, +-- , 
0 otherwise 

4.4.86 PCMPGTB_sse 

Instruction PCMPGTB_sse (destregid;src:XMM); 

** P4 
NASM PCMPGTBXMMreg,r/m128; 

Packed byte comparison. Performs parallel element by element comparison of 
all of the pairs of bytes in the source and destination. Generates a vector of 
mask bytes with 0 f f indicating true. Source can be in memory, but if so must 
be 16-byte aligned. 
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var 
i: 0 .. 15; 

with XMMregdest do 
fori+- 0 to 15 do 

g. { 255 if (gi > src.gi). 
I+- ' 0 otherwise 

4.4.87 PCMPGTW 

Instruction PCMPGTW (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PCMPGTWMMXreg,r/m64; 

Packed word comparison. Performs parallel element by element comparison 
of all of the pairs of bytes in the source and destination. Generates a vector of 
mask words with 0 f f f f indicating true. Source can be in memory. 

var 
i: 0 . .3; 

with MMXregdest do 
for i +- 0 to 3 do 

c· { -1 if (ci > src.ci). 
1 +- 0 otherwise ' 

4.4.88 PCMPGTW __sse 
Instruction PCMPGTW_sse (dest:regid;src:XMM); 

** P4 
NASM PCMPGTWXMMreg,r/ml28; 

Packed word comparison. Performs parallel element by element comparison 
of all of the pairs of words in the source and destination. Generates a vector of 
mask words with 0 f f f f indicating true. Source can be in memory, but if so 
must be 16-byte aligned. 

var 
i: 0 .. 7; 

with XMMregdest do 
for i +- 0 to 7 do 

d. { -1 if (di > src.di). 
I+- ' 0 otherwise 

4.4.89 PCMPGTD 

Instruction PCMPGTD (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PCMPGTDMMXreg,r/m64; 
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Packed doubleword comparison. Performs parallel element by element 
comparison of all of the pairs of 32-bit words in the source and destination. 
Generates a vector of mask words with 0 ff ff ff ff indicating true. Source can 
be in memory. 

var 
i: 0 .. 1; 

with MMXregdest do 
for i +--- 0 to 1 do 

b. { -1 if (b; > src.b;). 
I+--- I 

0 otherwise 

4.4.90 PCMPGTD_sse 

Instruction PCMPGTD_ sse (dest:regid;src:XMM); 

** P4 
NASM PCMPGTDXMMreg,r/ml28; 

Packed doubleword comparison. Performs parallel element by element 
comparison of all of the pairs of 32-bit words in the source and destination. 
Generates a vector of mask words with 0 ff ff f ff f indicating true. Source can 
be in memory, but if so must be 16-byte aligned. 

var 
i: 0 .. 3; 

with XMMregdest do 
for i +--- 0 to 3 do 

c· { -1 if (c; = src.c;). 
1 +--- 0 otherwise I 

4.4.91 PEXTRW 

Instruction PEXTRW (r,m:regid;wordno:0 . .3); 

** P4 
NASM PEXTRWreg32,MMXreg,imm8; 

Extract word from MMX register. The word in the MMX register m selected 
by wordno is copied to the general register r. 

general,+--- MMXregm.dwordno; 

4.4.92 PEXTRW _sse 

Instruction PEXTRW_sse (r~x:regid;wordno:0 .. 7); 

** P4 
NASM PEXTRWreg32,XMMreg,imm8; 

Extract word from MMX register. The word in the XMM register x selected by 
wordno is copied to the general register r. 

general,+--- XMMregx.ewordno; 
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4.4.93 PINSRW 

Instruction P/NSRW (r,x:regid;wordno:uintB); 

** P4 
NASM PINSRWMMXreg,r/ml6,imm8; 

Insert word in MMX register. Copies bottom 16 bits of a general register into 
word of MMX register. 

MMXregx.ewordno ,_general,; 

4.4.94 PMADDWD 

Instruction PMADDWD (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PMADDWDMMXreg,r/m64; 

Packed Multiply accumulate. Used for computing inner product of two 
vectors of int16s. An example is given in Alg. 16. On entry we assume that two 
arrays x, y each contain 4n words, and that ecx is initialised to n. At exit the 
inner product is held in the bottom 32 bits of mmO. 

lea esi ,[x-8] 
lea edi ,[y-8] 
pxor mm2,mm2 
ll:movq mm0,[esi+ecx*8] 
pmaddwd mm0,[edi+ecx*8]; 
paddd mm2,mm0 
loop 11 
movq mmO,mm2 
psrlq mm0,32 
padd mmO,mm2 

clear register 
get first 4 ints from array x 

loop for all sub vectors 
copy subtotal 
shift down high word 
add high and low words 

Algorithm 16. Inner product in assembler 

var 
temp:mmx; 
i; 

for i ,_ 0 to 1 do 
begin 

j f- 2 Xi; 
temp.bi ,_ MMXregdest·Cj x SfC.Cj + MMXregdest·Cj+l x src.ci+l; 

end; 
MMXregdest ,_ temp; 

4.4.95 PMAXSW 

Instruction PMAXSW (d:regid;src:MMX); 



Chapter 4 • Intel SIMD Instructions 83 

*** P4 
NASM PMAXSWMMXreg,r/m64 

Packed 16-bit signed integer Maximum. Destination is an MMX register; 
source is MMX register or memory location. Element by element comparison 
is performed. 

var 
i: 0 .. 3; 

with MMXregd do 
for i +-- 0 to 3 do 
if c; < src.c; then 
C; +-- src.c;; 

4.4.96 PMAXUB 

Instruction PMAXUB (d:regid;src:MMX); 

*** P4 
NASM PMAXUBMMXreg,r/m64 

Packed Unsigned Byte Maximum. Destination is an MMX register; source is 
MMX register or memory location. Element by element comparison is 
performed. 

var 
i: 0 . .7; 

with MMXregd do 
fori+-Oto7do 

if f; < src.f; then 
f; +-- src.f;; 

4.4.97 PMINSW 

Instruction PMINSW (d:regid;src:MMX); 

*** P4 
NASM PMINSWMMXreg,r/m64 

Packed 16-bit signed integer Minimum. Destination is an MMX register; 
source is MMX register or memory location. Element by element comparison 
is performed. 

var 
i: 0 . .3; 

with MMXregd do 
for i +-- 0 to 3 do 

if C; > src.c; then 
c; +-- src.c;; 
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4.4.98 PMINUB 

Instruction PM/NUB (d:regid;src:MMX); 

*** P4 
NASM PMINUBMMXreg,r/m64 

Packed Unsigned Byte Minimum. Destination is an MMX register; source is 
MMX register or memory location. Element by element comparison is 
performed. 

var 
i: 0 . .7; 

with MMXregd do 
for i +--- 0 to 7 do 

if f; > src.f; then 
f; +--- src.f;; 

4.4.99 PMOVMSKB 

Instruction PMOVMSKB (d,m:regid); 

* P4 
NASM PMOVMSKBreg32,MMXreg 

Move Byte Mask to Integer Register. Source is an MMX register; destination a 
general register. 

The sign bits of the bytes are put into a mask byte stored in a general register. 

var 
i: 0 . .7; 
t:integer; 

t+- 0; 
with MMXregm do 

for i +--- 7 downto 0 do 
begin 

if e;< 0 then 
t+-t+1; 

t +--- t X 2; 
end; 
generald +--- t; 

4.4.100 PMULHUW 

Instruction PMULHUW (dest:regid;src:MMX); 

** P4 
NASM PMULHUW MMXreg, r/m64 

Packed Multiply High Unsigned Word. Destination is an MMX register; 
source is MMX register or memory location. Element by element multi­
plication is performed and the top 16 bits of the results are retained. 
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var 
i: 0 .. 3; 
t:integer; 

with MMXregdesr do 
for i +--- 0 to 3 do 
begin 

t +--- d; x src.d;; 
d;+- t 16; 

end; 

4.4.101 PMULHW 

lnstrudion PMULHW (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PMULHWMMXreg,r/m64 
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Packed Multiply High Signed Word. Destination is an MMX register; source is 
MMX register or memory location. Element by element multiplication is 
performed and the top 16 bits of the results are retained. This is ideal for 
multiplying together vectors of signed binary fractions or fixed point numbers 
represented as 16-bit integers. 

var 
i: 0 .. 3; 
t:integer; 

with MMXregdest do 
fori+-Oto3do 
begin 

t +--- d; x src.d;; 
d;+- t 16; 

end; 

4.4.102 PMULLW 

lnstrudion PMULLW (dest:regid;src:MMX); 

** PentiumMMX.K6,P3,P4,ATHLONXP 
NASM PMULLWMMXreg,r/m64 

Packed Multiply High Signed Word. Destination is an MMX register; source is 
MMX register or memory location. Element by element multiplication is 
performed and the bottom 16 bits of the results are retained. 

var 
i: 0 .. 3; 
t:integer; 

with MMXregdest do 
for i +--- 0 to 3 do 
begin 
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t +--- d1 x src.d1; 

d; +--- t 1\ 65535; 
end; 

4.4.103 POR 
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Instruction POR (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PORMMXreg,r/m64; 

Quadword OR in MMX registers. Performs OR of the 64-bit integers in the 
source and destination. 

var 
i: 0 .. 3; 

with MMXregdest do 
for i +--- 0 to 3 do 

d1 +--- d1 V src.d1; 

4.4.104 PREFETCHNTA 

Instruction PREFETCHNTA (loc:integer); 

** P3,P4,ATHLONXP 
NASM PREFETCHNTAmem 

Loads a cache line into the level 1 data cache. This is equivalent to the 
PREFETCH instruction used by AMD. 

leve/1 bank, (foe 6)/\31,0 .. 61 +--- mem.bytememloc..loc+63; 
bank+--- (bank+ 1 )mod 4; 

4.4.1 OS PREFETCHT1 

Instruction PREFETCHT7 (loc:integer); 

** P3,P4,ATHLONXP 
NASM PREFETCHTl mem 

Loads a cache line into the level 2 data cache. It leaves level 1 unchanged. 

leve/2bank, (loc.;-64)/\51 1, o .. 61 +--- mem.bytememtoc..loc+63; 
bank+--- (bank+ 1 )mod 4; 

4.4.1 06 PREFETCHTO 

Instruction PREFETCHTO (loc:integer); 

** P3,P4,ATHLONXP 
NASM PREFETCHTO mem 
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Loads a cache line into the level 1 and level 2 data cache. 

/eve/7 bank, (lac +64) A 31, o,61 <-- mem. bytemem toc .. toc+63; 

fevef2bank, (/oc+64)A511, 0 .. 61 <-- mem.bytemem/oc../oc+63; 
bank<-- (bank+ 1 )mod 4; 

4.4.1 07 PSADBW 

Instruction PSADBW (dest:regid;src:MMX); 

** P4 
NASM PSADBWMMXreg,r/m64; 
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Computes the sum of the absolute differences of the signed bytes in the 
destination register and those in the source operand. It then places this sum in 
the lowest word of the destination register and sets the three other words to 
zero. 

begin 
with MMXregdest do 

begin 

end; 

co <-- I: abs(f"' - src.f"' ); 
C1 . .3 <-- 0; 

end; 

4.4.1 08 PSHUFD 

Instruction PSHUFD (dest:regid;src:XMM;immB:uintB); 

** P4 
NASM PSHUFDXMMreg,r/ml28,imm8; 

Performs a permutation of the 32-bit source words using the four 2-bit integer 
fields in the 8-bit immediate operand. 

var 
p: array [0 .. 3] of 0 .. 3; 
i: 0 .. 3; 

Po <-- immB mod 4; 
P1 <-- em:;s) mod 4; 

P2 <-- e~~8) mod 4; 
P3 <-- (i";,~8 ) mod 4; 

with XMMregdest do 
for i <-- 0 to 3 do 

4.4.109 PSHUFW 

Instruction PSHUFW (dest:regid;src:MMX;immB:uintB); 

** P4 
NASM PSHUFWMMXreg,r/m64,imm8; 
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Performs a Permutation of the 16-bit source words using the four 2-bit integer 
fields in the 8-bit immediate operand. 

var 
p: array [0 .. 3] of 0 .. 3; 
i: 0 .. 3; 

Po +- immB mod 4; 
PI +- em:a) mod 4; 
P2 +- e~~8) mod 4; 
P3 +- emt;8) mod 4; 
with MMXregdest do 

fori+-0to3do 

4.4.11 0 PSxxf 

lnstrudion PSxxf (dest:regid;count:uintB;xx-shifts;f:formats); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PSLLWMMXreg,r/m64; 

PSLLW MMXreg, i mm8; 
PSLLDMMXreg,r/m64; 
PSLLDMMXreg,imm8; 
PSLLQ MMXreg, r/m64; 
PS LLQ MMX reg, i mm8; 
PSRAW MMXreg, r/m64; 
PS RAW MMX reg, i mm8; 
PSRADMMXreg,r/m64; 
PSRAD MMXreg, i mm8; 
PSRLWMMXreg,r/m64; 
PSRLW MMX reg, i mm8; 
PSRLDMMXreg,r/m64; 
PSRLDMMXreg,imm8; 
PSRLQ MMX reg, r /m64; 

Packed shift instructions. The LL instructions shift left logically, the RL right 
logically shifting in 0. The RA shift right arithmetically, propagating the sign 
bit. The count can either be in an MMX register, in memory or in an 
immediate field. 

var 
i:integer; 

if f=q then 
with MMXregdest 
do 

case xx of 
LL: a+- a X 2count; 

RA: a +- 2C~n,; 
RL: a+- shrl(a, count, 64); 
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end 
else 

if f=d then 
with MMXregdesr do 
for i +--- 0 to 1 do 

case xx of 
LL: b;+- b; X 2count; 

R'"· b +--- ...EL_. n. i 2countf 

RL: b; +--- shr/ (b;, count, 32); 
end 
else 

with MMXregdest do 
for i +--- 0 to 3 do 

4.4.111 PSUBx 

case xx of 
LL: C; +--- C; X 2count; 

RA : C; +--- -Fok; 
RL: C; +--- shrl (c;, count, 16); 

end; 

Instruction PSUBx (destregid;src:MMX;x:formats); 

*** PentiumMMX.K6,P3,P4,ATHLONXP 
NASM PSUBW MMX reg, r /m64: 

PSUBDMMXreg,r/m64; 
PSUBWMMXreg,r/m64; 
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Perform signed unsaturated subtraction on two MMX register sized vectors. 

var 
i:integer; 

case x of 
b: fori+--- 0 

MMXregdesr·e; +--- MMXregresr.e; - src.e;; 
w: fori+- 0 

MMXregdest·Ci +--- MMXregdesr.C; - src.c;; 
d: fori+--- 0 

MMXregdest·b; +--- MMXregdest·bi - src.b;; 
end; 

4.4.112 PSUBSx 

Instruction PSUBSx (dest:regid;src:MMX;x:formats); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
Nasm Syntax PSUBSB MMX reg, r /m64; 

PSUBSW MMX reg, r /m64; 

Perform signed saturated subtraction on two MMX register sized vectors. 
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var 
i:integer; 

case x of 
b: fori+--- 0 
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MMXregdesr.e; +-Saturate (MMXregdest·e;- src.e;, -128, 127); 
w: fori +--- 0 

MMXregdest·C; +--- saturate(MMXregdest·C; - src.c;, - 32768, 32767); 
end; 

4.4.113 PSUBUSx 

Instruction PSUBUSx (dest:regid;src:MMX;x:formats); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PSUBUSBMMXreg,r/m64; 

PSUBUSWMMXreg,r/m64; 

Perform unsigned saturated subtraction on two MMX register sized vectors. 

var 
i:integer; 

case x of 
b: fori+- 0 

MMXregdest·f; +--- saturate(MMXregdest·f; - src.f;, 0, 255); 
w: fori+- 0 

MMXregdest·d; +--- saturate(MMXregdest·d; - src.d;, 0, 65535); 
end; 

4.4.114 PSWAPD 

Instruction PSWAPD (destregid;src:MMX); 

** PentiumMMX,K6,P3,P4.ATHLONXP 
NASM PSWAPDMMXreg,r/m64; 

Packed Swap Doubleword. Copies the source operand to the destination 
register, swapping the upper and lower halves in the process. 

MMXregdest·bo +--- src.b,; 
MMXregdest·b, +--- src.bo; 

4.4.115 PUNPCKHBW 

Instruction PUNPCKHBW (destregid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKHBWMMXreg,r/m64; 

Packed interleave high bytes. Top 4 bytes from each operand are interleaved. If 
the first operand held Ox? A6A5A4A3A2A1AOA and the second held 
Ox? B6B5B4B3B2Bl BOB, then PUN PC KHBW would return Ox?B 7 A6B6A5-
B5A4B4A. 
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var 
t:MMX; 
i:integer; 

fori+-Oto3do 
begin 

t.e;x2 +- src.e;+4; 
t.e;x2+1 +- MMXregdest·ei+4; 

end; 
MMXregdest +- t; 

4.4.116 PUNPCKLBW 

Instruction PUNPCKLBW (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKLBWMMXreg,r/m64; 
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Packed interleave low bytes. Bottom 4 bytes of each operand are interleaved. 

var 
t:MMX; 
i:integer; 

fori+-Oto3do 
begin 

t.e;x2 +- src.e;; 
t.e;x2+1 +- MMXregdest·e;; 

end; 
MMXregdest +- t; 

4.4.117 PUNPCKHWD 

Instruction PUNPCKHWD (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKHWDMMXreg,r/m64; 

Packed interleave high words. Top 2 words from each operand are interleaved. 

var 
t:MMX; 
i:integer; 

for i +- 0 to 1 do 
begin 

t.C;x2 +- src.c;+2; 
t.C;x2+1 +- MMXregdest·Ci+2; 
MMXregdest +- t; 

4.4.118 PUNPCKLWD 

Instruction PUNPCKLWD (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKLWDMMXreg,r/m64; 
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Packed interleave low words. Bottom 2 words of each operand are interleaved. 

var 
tMMX; 
i:integer; 

for i +- 0 to 1 do 
begin 

t.C;x2 +- src.c;; 
t.C;x2+1 +- MMXregdest·C;; 
MMXregdest +- t; 

4.4.119 PUNPCKHDQ 

Instruction PUNPCKHDQ (destregid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKHDOMMXreg,r/m64; 

Packed interleave high double words. Top double words from each operand 
are interleaved. 

var 
tMMX; 
i:integer; 

t.bo +- src.b,; 
t.b1 +- MMXregdest·b,; 
MMXregdest +- t; 

4.4.120 PUNPCKLDQ 

Instruction PUNPCKLDQ (dest:regid;src:MMX); 

** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PUNPCKLDOMMXreg,r/m64; 

Packed interleave low double words. Bottom double words from each operand 
are interleaved. 

var 
tMMX; 
i:integer; 

t.bo +- src.bo; 
t.b1 +- MMXregdest·bo; 
MMXregdest +- t; 

4.4.121 PXOR 

Instruction PXOR (dest:regid;src:MMX); 

*** PentiumMMX,K6,P3,P4,ATHLONXP 
NASM PXORMMXreg,r/m64; 
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Quadword XOR in MMX registers. Performs XOR of the 64-bit integers in the 
source and destination. 

var 
i: 0 . .3; 

with MMXregdest do 
fori+-Oto3do 

d; +--- (d; v src.d;)/\ not (d; 1\ src.d;); 

4.4.122 RCPPS 

Instruction RCPPS (dest:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM RCPPSXMMreg,r/m128; 

SSE Packed Single-FP Reciprocal Approximation. For each of the four 32-bit 
floating-point numbers in the source operand RCPPS calculates an approxi­
mation of the reciprocal and stores it in the corresponding quarter of the 
destination register. The absolute value of the error for each of these 
approximations is at most 3/8192. It use is illustrated in Alg. 17. 

var 
i: 0 .. 3; 

for i +--- 0 to 3 do 
XMMregdest·Oi +--- sr~.01; 

; for i:=O to 3 do x[i]:=y[i]/z[i] 
movdqu xmmO,[ebp+lOOJ 
movdqu xmml,[ebp+ll6] 
rcpps xmml,xmml 
mulps xmmO.xmml 
movdqu [ebp+32],xmm0 

Algorithm 17. Use of RCPPS. 

4.4.123 RCPSS 

Instruction RCPSS (dest:regid;src:ieee32); 

*** P3,P4,ATHLONXP 
NASM RCPSSXMMreg,XMMreg/mem32; 

SSE Scalar Single-FP Reciprocal. This is a scalar equivalent to RCPPS. 

XMMregdest·Oo +--- 5k; 

4.4.124 RSQRTPS 

Instruction RSQRTPS (dest:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM RSQRTPSXMMreg,r/m128; 
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SSE Packed Single-FP Square Root Reciprocal Approximation. For each of the 
four 32-bit floating-point numbers X; in the source operand RCPPS calculates 
an approximation of 1/ jXi and stores it in the corresponding quarter of the 
destination register. The absolute value of the error for each of these 
approximations is at most 3/8192. 

var 
i: 0 . .3; 

for i +--- 0 to 3 do 
XMMregdest·Gi +--- J,c.a;; 

4.4.125 RSQRTSS 

Instruction RSQRTSS (dest:regid;src:ieee32); 

*** P3,P4,ATHLONXP 
NASM RSORTSSXMMreg,XMMreg/mem32; 

SSE Scalar Single-FP Reciprocal Square Root. This is a scalar equivalent to 
RSQRTPS. It use is illustrated in Alg. 18. This normalises a four element 
single-precision vector, i.e. it takes an arbitrary vector in 4-space and projects 
it on to the unit hyper-sphere. 

XMMregdest·Go +--- Jrc; 

movdqu xmmO.[ebp+lOOJ load vector 
movdqu xmml.xmmO copy it 
mulps xmml,xmml square it 
pshufd xmm2 ,xmml, OOOOlllOb; move high words to low 
addps xmml,xmm2 add top and bottom halves 
pshufd xmm2. xmml, OOOOOOOlb ; word[OJ<-word[l] 
addss xmml,xmml form sum of squares 
rsqrtss xmml,xmml form sqrt 
pshufd xmm2 ,xmml, OOOOOOOOb; replicate to vector 
mulps xmmO.xmm2 normalise 
movdqu [ebp+32J,xmm0 store 

Algorithm 18. Use of RSQRTSS to normalise a vector. 

4.4.126 SFENCE 

Instruction SFENCE; 

** P3,P4 
NASM SFENCE 

SFENCE guarantees that all store instructions which precede it in the program 
order are globally visible before any store instructions which follow it. This 
relates to the use of the MOVNTPS instruction. The non-temporal store instruc­
tion minimizes cache pollution while writing data. The main difference between 
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a non-temporal store and a regular cacheable store is in the write-allocation 
behaviour. With a normal store the processor will fetch the corresponding cache 
line into the cache hierarchy prior to performing the store. For a non-temporal 
store, if the data are not present in the cache hierarchy, the transaction will be 
weakly ordered; consequently, you are responsible for maintaining coherency. 
Non-temporal stores will not write allocate cache lines. Different implementa­
tions may choose to collapse and combine these stores inside the processor. 

Since the cache may not have been updated, a subsequent fetch may obtain 
outdated copies of the data. Within well-defined assembler loops one may be 
able to guarantee that the data written with MOVNTPS will not be accessed 
again within your loop. When the assembler loop exits, however, then code 
outside the assembler loop may access the data so written. To ensure 
coherence, the SPENCE instruction should be issued after any sequence or 
loop that uses non-temporal stores. 

4.4.127 SQRTPS 

Instruction SQRTPS (dest:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM SQRTPSXMMreg,r/m128; 

SSE Packed Single-FP Square Root. For each of the four 32-bit floating-point 
numbers Xi in the source operand RCPPS calculates y'Xi and stores it in the 
corresponding quarter of the destination register. 

var 
i: 0 . .3; 

for i +- 0 to 3 do 
XMMregdest·Gi +- y'src.a;; 

4.4.128 SQRTSS 

Instruction SQRTSS (dest:regid;src:ieee32); 

*** P3,P4,ATHLONXP 
NASM SQRTSSXMMreg,XMMreg/mem32; 

SSE Scalar Single-FP Square Root. This is a scalar equivalent to SQRTPS. 

XMMregdest·Go +- v'sfC; 

4.4.129 SUBPS 

Instruction SUBPS (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM SUBPSXMMreg,r/m128 

Subtract packed single-precsion floating point. Source can be register or 16-
byte aligned memory vector. 

XMMregd.a +- src.a- XMMregd.a 



96 SIMD Programming Manual for Linux and Windows 

4.4.130 SUBSS 

Instruction SUBSS (d:regid;src:XMM); 

** P3,P4,ATHLONXP 
NASM SUBSSXMMreg,XMMreg/mem32 

Scalar single floating-point subtract. Source memory or XMM register. This 
instruction is useful if one wants to do floating-point scalar arithmetic without 
corrupting the MMX registers. 

XMMregd.ao +-- src.ao- XMMregd.ao 

4.4.131 UNPCKHPS 

Instruction UNPCKHPS (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM UNPCKHPSXMMreg,r/m128 

Unpack High Packed Single-FP Data. Source can be register or 16-byte aligned 
memory vector. 

begin 
with XMMregd do 
begin 

ao +-- a2; 
a1 +-- src.a2; 
a2 +-- a3; 
a3 +-- src.a3; 

end; 
end; 

4.4.132 UNPCLPS 

Instruction UNPCLPS (d:regid;src:XMM); 

*** P3,P4,ATHLONXP 
NASM UNPCKLPSXMMreg,r/m128 

Unpack Low Packed Single-FP Data. Source can be register or 16-byte aligned 
memory vector. 

begin 
with XMMregd do 

begin 
ao +-- ao; 
a1 +-- src.ao; 
a2 +-a1; 
a3 +-- src.a1; 

end; 
end; 
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4.4.133 XORPS 

Instruction XORPS (dest:regid;src:XMM); 

** P4 
NASM XORPSXMMreg,r/m128; 
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Quadword XOR in MMX registers. Performs XOR of the 128-bit integers in 
the source and destination. Because the memory operand must be 16-byte 
aligned, use PXOR in preference to this. For most uses it will be faster. 

var 
i: 0 .. 7; 

with XMMregdest do 
for i +-- 0 to 7 do 

d; +-- (d; v src.d;)l\ not(d; A src.d;); 



3DNOW Instructions 

These instructions assume the data structures declared in the previous chapter. 

5.0.1 FEMMS 

Instruction FEMMS; 

* K6, At hlon 
NASM FEMMS 

Fast Empty MMX State. This is a faster AMD version of EMMS. 

ftw +-Sff; 

5.0.2 PF21D 

Instruction PF2/D (destregid;src:MMX); 

*** K6, Ath l on 
NASM PF2IDMMXreg,r/m64; 

3DNOW Packed floating point to integer. Converts two floating-point values 
to a pair of integers using truncation. Source can be in memory or a register. 

with MMXregdest do 
begin 

b0 +--- trunc(src.g0 ); 

b1 +--- trunc(src.g1 ); 

end; 

5.0.3 PFACC 

Instruction PFACC (dest:regid;src:MMX); 

** K6,At hlon 
NASM PFACCM MXr eg , r / m64; 

3DNOW Packed floating-point accumulate. This is useful in multiply accumu­
late sequences such as those involved in inner product operations, or in 
summing a vector. 
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with MMXre9dest do 
begin 

9o +-- 9o + 91; 
91 +-- src.91 + src.9o; 

end; 

5.0.4 PFADD 
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lnstrudion PFADD (dest:re9id;src:MMX); 

*** K6,Athlon 
NASM PFADDMMXreg,r/m64: 

3DNOW Packed floating-point add. Parallel add of two floating-point values. 
Source can be in memory or a register. 

with MMXre9dest do 
begin 

9o +-- 9o + src.9o; 
91 +-- 91 + src.91; 

end; 

5.0.5 PFCMPEQ 

lnstrudion PFCMPEQ (destre9id;src:MMX); 

*** K6,Athlon 
NASM PFCMPEOMMXreg,r/m64; 

3DNOW Packed floating-point comparison. Element by element comparison 
of two pairs of floating-point numbers. If comparison succeeds destination set 
to Offffffff, otherwise set to 0. Source can be in memory or a register. 

with MMXre9dest do 
begin 

bo +-- { ~ 1 

b1 +-- { ~ 1 

end; 

if 9o = src.9o. 
otherwise ' 

if 91 = src.91. 
otherwise ' 

5.0.6 PFCMPGT 

lnstrudion PFCMPGT (destre9id;src:MMX); 

*** K6,Athlon 
NASM PFCMPGTMMXreg,r/m64: 

3DNOW Packed floating-point comparison. Element by element comparison 
of two pairs of floating-point numbers. If comparison succeeds destination set 
to Offffffff, otherwise set to 0. Source can be in memory or a register. 
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with MMXregdest do 
begin 

bo +-- {~ 1 

b, +-- { ~1 
end; 

if go > src.go. 
otherwise ' 
if g1 > src.g,. 
otherwise ' 

5.0.7 PFCMPGE 

Instruction PFCMPGE (dest:regid;src:MMX); 

*** K6,Athlon 
NASM PFCMPGEMMXreg,r/m64; 
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3DNOW Packed floating-point comparison. Element by element comparison 
of two pairs of floating-point numbers. If comparison succeeds destination set 
to Offffffff, otherwise set to 0. Source can be in memory or a register. 

with MMXregdest do 
begin 

bo +-- {~ 1 

b, +-- { ~1 
end; 

if 9o ~ src.go. 
otherwise ' 
if g1 ~ src.g,. 
otherwise ' 

5.0.8 PFMAX 

Instruction PFMAX (destregid;src:MMX); 

*** K6,Athlon 
NASM PFMAXMMXreg,r/m64; 

3DNOW Packed floating-point maximum. Finds the greater of each of two 
pairs of floating-point values. Source can be in memory or a register. 

with MMXregdest do 
begin 

+--{go 
9o src.go 

+-- {g, g, src.g1 

end; 

5.0.9 PFMIN 

if go > src.go. 
otherwise ' 

if g1 > src.g1• 

otherwise ' 

Instruction PFMIN (destregid;src:MMX); 

*** K6,Athlon 
NASM PFMINMMXreg,r/m64; 
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3DNOW Packed floating-point minimum. Finds the minimum of each of two 
pairs of floating-point values. Source can be in memory or a register. 

with MMXregdest do 
begin 

<--- { 9o 90 src.go 

{ g, 
g, <--- src.g1 

end; 

5.0.1 0 PFMUL 

if 9o < src.go, 
otherwise ' 
if g1 < src.g1• 

otherwise ' 

Instruction PFMUL (dest:regid;src:MMX); 

*** K6,Athlon 
NASM PFMULMMXreg,r/m64; 

3DNOW Packed floating-point multiply. Parallel mutiply of two floating­
point values. Source can be in memory or a register. 

with MMXregdest do 
begin 

9o <--- 9o x src.go; 
g1 <--- g1 x src.g1; 

end; 

5.0.11 PFNACC 

Instruction PFNACC (dest:regid;src:MMX); 

* Athlon 
NASM PFNACCMMXreg,r/m64; 

3DNOW Packed floating-point negative accumulate. This is the subtraction 
equivalent of PFACC; it is of little use. 

with MMXregdest do 
begin 

9o <--- 9o- g,; 
g1 <--- src.g1 - src.go; 

end; 

5.0.12 PFPNACC 

Instruction PFPNACC (dest:regid;src:MMX); 

* Athlon 
NASM PFPNACCMMXreg,r/m64; 

3DNOW Packed floating-point negative accumulate. This is an odd mix of 
PFNACC and PFACC; it is of little use. 
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with MMXregdest do 
begin 

9o +--- 9o- g,; 
g, +--- src.g, + src.g0; 

end; 

5.0.13 PFRCP 

Instruction PFRCP (destregid;src:ieee32); 

** K6,Athlon 
NASM PFRCPMMXreg,r/m32; 
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3DNOW Floating point Reciprocal. The divide operation takes longer on com­
puter hardware than other mathematical operators. Some high-performance 
machines avoid using a divide and substitute a reciprocal operation. The 
PFRCP operation computes a reciprocal approximation accurate to 14 bits. 
Note that unlike other 3DNOW instructions, this instruction takes a scalar 
argument. This is either a 32-bit memory operand or the lower 32 bits of an 
MMX register. The approximate reciprocal is stored in both halves of the 
result register. 

This instruction has two deficiencies: 

1. the fact that it operates on scalars rather than on vectors 
2. its limited accuracy. 

In combination, these make it difficult for a parallelising compiler to make use 
of it. It remains possible for hand coded instructions to use it, for instance in 
normalising a vector. 

with MMXregdest do 
begin 

9o +--- sk; 
g, f- sk; 

end; 

5.0.14 PFRCPIT 

Instruction PFRCPIT (destregid;src:ieee32); 

** 
Syntax 

K6,Athlon 
PFRCPIT1MMXreg,r/m32; 
PFRCPIT2MMXreg,r/m32; 

3DNOW Floating-point Reciprocal Iteration step 1. This applies Newton­
Raphson iteration to converge on the result of the floating-point reciprocal. 
Both PFRCPITl and PFRCPIT2 must be executed in succession. The iteration 
relation is 

Xi+I = x;(l - b x Xi) 
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Newton-Raphson 
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to compute 1/ b. It can be used in conjunction with PFRCP to perform division 
as shown in Alg. 19 will perform the assignment z -t ~- The first argument of the 
instruction must have been the source of a PFRCP instruction and the second 
argument must have been the output of the same PFRCP instruction. 

movd mmO, [x] 
pfrcp mml,mmO 
punpckldq mmO,mmO 
pfrcpitl mmO,mml 
pfrcpit2 mmO,mml 
movd mmO, [y] 

pfmul mmO,mm2 
movd [z],mmO 

var 

Algorithm 19. Use of PFRCP. 

x: array [0 .. 1] ofieee32; 
b: ieee32; 

begin 
b +--- MMXregdest·go; 
xo +--- src; 
X1 +--- Xo X (2 - b X Xo); 

with MMXregdest do 
begin 

go+--- x1; 
g1 +-X1; 

end; 

5.0.15 PFSUB 

Instruction PFSUB (destregid;src:MMX); 

*** K6,Athlon 
NASM PFSUBMMXreg,r/m64; 

3DNOW Packed floating-point subtract. Parallel subtraction of two floating­
point values. Source can be in memory or a register. 

with MMXregdest do 
begin 

go +---go- src.go; 
g1 +--- g1 - src.g1; 

end; 

5.0.16 PFSUBR 

Instruction PFSUBR (destregid;src:MMX); 

*** K6,Athlon 
NASM PFSUBRMMXreg,r/m64; 
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3DNOW Packed floating-point reverse-order subtract. Parallel subtraction of 
two floating-point values. Source can be in memory or a register. 

with MMXregdesr do 
begin 

9o <---- src.go - 9o; 
91 <---- src.g1 - 91; 

end; 

5.0.17 PI2FD 

Instruction P/2FD (dest:regid;src:MMX); 

*** K6,Athlon 
NASM PI2FDMMXreg,r/m64; 

3DNOW Packed integer to floating-point conversion. Converts two integers 
to floating-point values. There may be a loss of precision. Source can be in 
memory or a register. 

with MMXregdesr do 
begin 

9o <---- src.bo; 
91 <---- src.b1; 

end; 

5.0.18 PI2FW 

Instruction P/2FW (dest:regid;src:MMX); 

*** Athlon 
NASM PI2FWMMXreg,r/m64; 

3DNOW Packed int16 to floating-point conversion. Converts two 16-bit 
integers to floating-point values. Source can be in memory or a register. 

with MMXregdest do 
begin 

9o <---- src.co; 
91 <---- src.c2; 

end; 

5.0.19 PREFETCH 

Instruction PREFETCH (loc:integer); 

*** K6, Athlon 
NASM PRE FETCH mem 

Loads a cache line into the level 1 data cache. PREFETCHW does the same, 
but also marks the cache line as modified. 

leve/7 bank,(loc 6)/\31,0 .. 61 <---- mem.bytememloc..loc+63; 
bank <---- (bank+ 1) mod 4; 
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Another Approach: 
Data Parallel Languages 

There has been sustained research within the parallel programming community 
into the exploitation of SIMD parallelism on multi-processor architectures. 
Most work in this field has been driven by the needs of high-performance 
scientific processing, from finite element analysis to meteorology. In particular, 
there has been considerable interest in exploiting data parallelism in Fortran 
array processing, culminating in High Performance Fortran, Fortran 90 and F 
(Metcalf and Reid, 1996). Typically this involves two approaches. First, operators 
may be overloaded to allow array-valued expressions, similar to APL. Second, 
loops may be analysed to establish where it is possible to unroll loop bodies 
for parallel evaluation. Compilers embodying these techniques tend to be archi­
tecture specific to maximise performance and they have been aimed primarily 
at specialised super-computer architectures, even though contemporary general 
purpose microprocessors provide similar features, albeit on a far smaller scale. 

In the period since SIMD programming was pioneered on super-computers, 
a set of well-defined programming abstractions has been developed to enable 
coders to take advantage of the parallelism offered by SIMD processors (Ewing 
et al., 1999): 

• operations on whole arrays 
• array slicing 
• conditional operations 
• reduction operations 
• data reorganisation. 

We will next consider these abstractions in more detail and look at their 
support in existing languages, in particular J, Fortran 90 (Ewing et al., 1999) and 
NESL (Blelloch, 1995). These languages are not currently available as tools to the 
MMX programmer, but it is instructive to see how they deal with array 
abstraction. J is an interpretive data parallel language which runs on PCs. Being 
interpretive, it is of interest not so much for its speed as for its conceptual 
model. Fortran 90 is a compiled language typically targeted at super-computers. 
NESL is a compiled functional language targeted at highly parallel machines. 

6.1 Operations on Whole Arrays 

The basic conceptual mechanism for whole array operations is the map, which 
takes an operator and one or more source arrays, and produces a result array 
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by mapping the source(s) under the operator. Thus, if x,y are arrays of integers 
k = x + y is the array of integers where lq = x; + yi: 

Similarly, if we have a unary operator J.L:(T ~ T) then we automatically 
have an operator J.L:(T[] ~ T[]). Thus, z = sqr(x) is the array where Zi = ;xf: 

l4l9l2sl = sqr( 12 13 Is I) 

Map replaces the bounded iteration or for loop abstraction of classical imperat­
ive languages. The map concept is simple, and maps over lists are widely used in 
functional programming. For array-based languages there are complications to 
do with the semantics of operations between arrays of different lengths and 
different dimensions. Iverson ( 1980) provided a consistent treatment of these. 
Recent languages built round this model are J, an interpretive language (Iverson, 
1991, 2000; Burke, 1995), High Performance Fortran (Ewing et al., 1999), F 
(Metcalf and Reid, 1996) a modem Fortran subset and NESL an applicative data 
parallel language and ZPL (Snyder, 1999). In principle any language with array 
types can be extended in a similar way. 

The map approach to data parallelism is machine independent. Depending 
on the target machine, a compiler can output sequential, SIMD or MIMD 
code for it. In particular map may be exploited through implementation­
independent algorithmic skeletons (Cole, 1989) based on parallel templates for 
process farms which are instantiated with appropriate sequential arguments 
from the original source program (Michaelson et al., 2001). 

Recent implementations of Fortran, such as Fortran 90, F and High Perfor­
mance Fortran, provide direct support for whole array operations. Given that 
A,B are arrays with the same rank and same extents, the statements 

1. REAL,DIMENSIONC64): :A,B 
2. A=3.0 
3. B=B+SQ RTC A) *0. 5 

would be legal, and would operate in a pointwise fashion on the whole arrays. 
Thus, line 1 initialises every element of array A to 3 . 0 and line 2 sets each 
element of array B to 0 . 5 times the corresponding element of A. 

Intrinsic functions, such as SQRT, are defined to operate either on scalars or 
arrays, but are part of the language rather than part of a subroutine library. User­
defined functions over scalars do not automatically extend to array arguments. 

J1 similarly allows direct implementation of array operations, although here 
the array dimensions are deduced at run time: 

l.>a=.1235 
2. >a 

1 We will give examples from J rather than APL here for ease of representation in ASCII. 
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3. 1 2 3 5 
4. > b=.1 2 4 8 
5. > a+b 
6. 2 4 7 13 

The pair = • is the assignment operator in J so line 1 initialises a new array a of 
length 4 and line 4 initialises a new array b of length 4. Line 2 displays the 
value of a and line 5 calculates and displays the array formed by summing 
corresponding elements of a and b. 

Unlike Fortran, J automatically overloads user defined functions over arrays: 

7. > sqr=:&2 
8. > c=.1 2 4 8 
9. > c+(sqr a)*0.5 

10. 1. 5 4 8. 5 20. 5 

Here, line 7 defines a new monadic function s q r by partially applying the 
binary power function " to the exponent 2. Line 8 then initialises array c and 
line 9 calculates and displays the array formed by adding each element of c to 
half the square of the corresponding element of a. 

The functional language NESL provides similar generality. The first J example 
above could be expressed as 

1. a+b: a in [1 , 2, 3, 5 J ; b in [1 , 2, 4, 8 J ; 
2. ==*' [ 2 , 4 , 7 , 13 J : [ i n t J 

and the second example as 

3. b+sqr(a)*0.5: a in [1,2,3,5]; bin [1,2,4,8]; 
4. ==*' [ 1. 5 , 4 , 8 . 5 , 2 0 . 5 J : [flo a t J 

The Apply-to-Each construct, also known as comprehensions, are descended 
from the ZF notations used in SETL (Schwartz et al., 1986) and MIRANDA 
(Turner, 1986). Thus line 1 finds the sum of the successive elements of the 
sequences [ 1 , 2, 3, 5 J bound to a and [ 1 , 2 , 4, 8 J bound to b. Similarly, line 
3 finds the sum of successive elements of b and half the square of the 
successive elements of a. 

Again, user-defined functions can be applied element-wise to sequences. 

6.1.1 Array Slicing 

It is advantageous for many applications to be able to specify sections of arrays 
as values in expression. The sections may be rows or columns in a matrix or 
a rectangular sub-range of the elements of an array, as shown in Figure 6.1. 
In image processing, such rectangular sub-regions of pixel arrays are called 
regions of interest. It may also be desirable to provide matrix diagonals 
(van der Meulen, 1977). 
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1 1 1 1 
1 2 4 8 
1 2 4 16 
1 2 8 512 

1 1 1 1 
1 2 4 8 
1 2 4 16 
1 2 8 512 

1 1 1 
1 2 4 1 8 
lL_____!j 16 

2 8 512 

Figure 6.1. Different ways of slicing the same array. 

The notion of array slicing was introduced to imperative languages by 
ALGOL 68 (Tannenbaum, 1976). In ALGOL 68 if x has been declared as 
[ 1 : 10] I NT x, then x [ 2: 6] would be a slice consisting of the second through 
the sixth elements inclusive that could be used on the right of an assignment or 
as an actual parameter. 

Fortran 90 extends this notion to allow what it calls triplet subscripts, giving 
the start position end position and step at which elements are to be taken from 
arrays. For example: 

REAL. 0 I MENS I 0 N (1 0 , 10) : :A, B 
A(2:9,1:8:2)=B(3:10,2:9:2) 

would be equivalent to the loop nest 

DOl,J=l,8,2 
DO 2, J=2. 9 

A(l,J)=B(l+1,J+1) 
2 CONTINUE 
1 CONTINUE 

J allows a similar operation to select subsequences. For example: 

1. >a=. 2*i .10 
2. >a 
3. 0 2 4 6 8 10 12 14 16 18 
4. >3 {a 
5. 6 

Here, i . n is a function which produces a list of the first n elements of an array 
starting with element 0. Line 1 constructs an array where each element is 
double its subscript. The symbol { is the sequence subscription operator so 
line 4 selects the element at index 3. 
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Selection of a subsequence is performed by forming a sequence of indices. 
For example: 

6. > ( 2+i . 3 ){a 
7. 4 6 8 

In line 6, the expression 2+i . 3 forms the sequence 2 3 4 which then 
subscripts the array a. 

NESL does not offer a direct equivalent to slicing. 

6.1.2 Conditional Operations 

Much data parallel programming is based on the application of some 
operation to a subset of the data selected through a mask. This can be thought 
of as providing a finer grain of selection than sub-slicing, allowing arbitrary 
combinations of array elements to be acted on. For example, one might want 
to replace all elements of an array A less than the corresponding element in 
array B with that element of B: 

1 2 4 8 A 
2 3 4 5 B 
1 1 0 0 A<B 
2 3 4 8 

Fortran 90 provides the WHERE statement to update selectively a section of 
an array under a logical mask: 

REAL, DIMENSION ( 64):: A 
REAL, DIMENSION ( 64):: B 
WHERE CA>=B) 

A=A 
ELSE WHERE 

A=B 
END WHERE 

The WHERE statement is analogous to ALGOL 68 and C conditional expressions, 
but extended to operate on arrays. It can be performed in parallel on all 
elements of an array and lends itself to evaluation under a mask on SIMD 
architectures. 

NESL provides a generalised form of Apply-to-Each in which a sieve can be 
applied to the arguments. For example: 

1. a+b: a in [ 1,2,3]; bin [4,3,2] I a<b 
2. => [ 5 , 5 J : [ i n t J 

In line 1, a and b are constrained by the requirement that each element of a 
must be less than the corresponding element of b. 

Notice that in NESL, as in J, values are allocated dynamically from a heap so 
that the length of the sequence returned from a sieved Apply-to-Each can be 
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less than that of the argument sequences in its expression part. In Fortran 90, 
the W H ERE statement applies to an array whose size is known on entry to the 
statement. 

6.1.3 Reduction Operations 

In a reduction operation, a dyadic operator is injected between the elements of 
a vector or the rows or columns of a matrix to produces a result of lower rank. 
Examples include forming the sum or finding the maximum or minimum of a 
table. For example, + would reduce: 

to 1 + 2 + 4 + 8 = 15 
The first systematic treatment of reduction operations in programming 

languages is due to Iverson (1962). His it reduction functional takes a dyadic 
operator and, by currying, generates a tailored reduction function. In APL and 
J the reduction functional is denoted by I. Thus +I is the function which 
forms the sum of an array: 

l.>a 
2. 1 2 3 5 
3. >+I a 
4. 11 

In line 3, the reduction +I a expands to (1 + (2 + (3 + (4 + 0)))). 
The interpretation of reduction for non commutative operators is slightly 

less obvious. Consider: 

5. > -I a 
6. 3 

In line 6, _3 is the J notation for -3, derived from the expansion of (1 - (2-
( 3 - 4( -0)))) from - I a in line 5. In J as in APL, reduction applies uniformly 
to all binary operators. 

Fortran 90, despite its debt to APL, is less general, providing a limited set 
of built-in reduction operators on commutative operators: SUM, PRODUCT, 
MAX VAL, MIN VAL. NESL likewise provides a limited set of reduction functions 
s u m, m i n v a l , max v a l , any, a l l . where a n y and a l l are Boolean reductions: 
a n y returns t rue if at least one element of a sequence is true, i.e. disjunctive 
reduction; a l l returns true if they are all true, i.e. conjunctive reduction. 

6.1.4 Data Reorganisation 

In both linear algebra and image processing applications, it is often desirable 
to be able to perform bulk reorganisation of data arrays, for example to 
transpose a vector or matrix or to shift the elements of a vector. 

For example, one can express the convolution of a vector with a three-element 
kernel in terms of multiplications, shifts and adds. Let a = II 1214181 be a 
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vector to be convolved with the kernel k = I 0.25 I 0.51 0.251. This can be 

expressed by defining two temporary vectors: 

b = 0.25a = I 0.25 I 0.5 II 12 I 
c = 0.5a = I 0.511 12141 

and then defining the result to the sum under shifts of b,c: 

II 12141 8 I convolve I 0.251 0.5j 0.25 I = 

0.5 1 2 2 b << 1 
0.5 1 2 4 c 
0.25 0.25 0.5 1 + b >> 1 

1.25 2.25 4.5 7 

This example replicates the trailing value when shifting. In other circum­
stances, for example when dealing with cellular automata, it is convenient to 
be able to define circular shifts on data arrays. 

~8 
transposes to 2 16 

4 32 

Figure 6.2. Reorganising by transposition. 

Fortran 90 provides a rich set of functions to reshape, transpose and circu­
larly shift arrays. For example, given a nine-element vector v, we can reshape it 
as a 3 by 3 matrix: 

V= (I 1. 2. 3. 4, 5. 6, 7, 8, 9 /) 
M=RESHAPECV.C/3,3/)) 

to give the array 

1 2 3 
4 5 6 
7 8 9 

We can then cyclically shift this along a dimension 

M2=CSHIFTCM,SHIFT=2,DIM=2) 

to give 

3 1 2 
6 4 5 
9 7 8 
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NESL provides similar operations on sequences to those provided on arrays 
by Fortran 90. For example, if 

v=[l,2,3,4,5,6,7,8,9J 
s=[3,3,3] 

then 

partition(v,s) * [[1,2,3][4,5,6][7 ,8,9]] 
rotate(v,3) 
=} [7,8,9,1,2,3,4,5,6] 

is equivalent to the Fortran above. 

6.2 Design Goals 

In seeking to exploit new programming concepts, one may either design a new 
language or adapt an existing language. Designing a new language is high risk 
in terms of the effort to be expended in developing new tools and promoting a 
core community before any wider take-up is likely. There seems to be a strong 
case for the extension of popular programming languages to operate on vector 
data in a fashion that is processor independent. The constructs which make 
use of SIMD parallelism should appear as natural and simple extensions to the 
underlying language so that programmers who are already familiar with the 
language can immediately understand what is being computed. 

Occam represents a salutary object lesson. This language was intended for a 
novel architecture, the Transputer, and had its own formal logic, CSP. How­
ever, Occam was never made adequately available on non-Transputer architec­
tures, and the Transputer was overpriced and complex compared with the 
Intel!Motorola hegemony. Now only CSP survives, having found a niche as a 
language- and architecture-independent formal notation. 

For data parallelism, APL (Iverson, 1962) and J (Iverson, 1991) represented 
radical breaks from their contemporaries, introducing novel notations. We 
think that this was an important factor in limiting their wider use. Overall, 
experience suggests that new concepts gain provenance if they are presented in 
a familiar guise and if their use involves low additional cost for the benefits 
they bring. 

An existing language may be adapted through the introduction of new nota­
tion or through the overloading of existing notation. Both approaches involve 
modifications to existing language processors or the development of new ones. 
Furthermore, both approaches may lose backwards compatibility with the 
original. Finding a principled basis for adding a new notation to an extant 
language is problematic. 

For example, the late 1980s and 1990s saw a variety of attempts to extend C 
and C++ with parallel programming concepts. Johnston (1995) lists 

• CC++ with par and par for constructs 
• C** with aggregate classes and concurrent element nomination 
• Mentat with aggregate classes and explicit parallel methods 
• pC++ with concepts from High Performance Fortran. 
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In the same period. Lattice Logic Limited (3L) developed their Parallel C based 
on Occam-like constructs (3L Limited, 1995). All of these represent well­
thought through extensions but none of these languages has gained wide­
spread acceptance. We speculate that, in part, this was because the extensions 
did not build naturally on existing constructs. 

NESL (Blelloch, 1995) was strongly grounded in the functional language 
tradition. For example, its sequences and Apply-to-Each are effectively over­
loadings of lists and list comprehensions. NESL has influenced recent research 
into extending Standard ML for data parallelism. However, because overall the 
functional paradigm is far less familiar than the imperative paradigm, func­
tional languages in general have still to gain wider currency beyond their 
academic constituencies. 

High Performance Fortran (HPF) (Ewing et al., 1999) and Fortran 90 are 
based on a a combination of overloading standard Fortran notation for arrays 
and operators, and the introduction of new notation, for example for condi­
tional operations and slicing. HPF provides a relatively transparent extension 
to the widely used Fortran and represents the most successful SIMD language 
to date, enjoying wide use in the scientific and technical communities. 

The language Vector Pascal has been designed to meet similar needs for 
high-performance computing on PCs. It takes as its base a well-known pro­
gramming language, Pascal, for which many excellent implementations exist 
on PCs, and with which many programmers are already familiar. It extends the 
language through a few simple extensions of the type rules to allow the concise 
expression of data parallel operations. The data parallel operations can then be 
compiled either to scalar code on machines without SIMD instructions, or to 
parallel code on newer machines. Whether scalar or parallel code is generated, 
the source program itself is unchanged. 

Alg. 20 shows the example program coded in Vector Pascal. Compared with 
the C++ code in Alg. 9: 

• No non-standard types are used. 
• No explicit iteration is used for the vector addition. Instead, it is simply 

written as v3: =v 1 +v 2. 
• It is much faster, at about 770 million operations per second (see Table 6.1). 

Vector Pascal extends the array-type mechanism of Pascal to provide 
support for data parallel programming in general, and SIMD processing in 
particular. 

PROGRAM vecadd; 
VAR vl,v2,v3:ARRAY[0 .. 6399] OF byte; 

i :integer; 
BEGIN 

FOR i:=l to 100000 DO v3:=vl+v2; 
END. 

Algorithm 20. Example program in Vector Pascal. 
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Table 6.1. Speeds of different implementations 

Implementation 

c 
C++ with SIMD classes 
Vector Pascal 
Assembler 

Elapsed time 

72 
4.56 
0.83 
0.77 

Basic operations per second 

8.9 million 
140 million 
771 million 
831 million 

Wherever possible, rather than introducing new constructs, we have sought 
to increase orthogonality in Strachey's sense (Strachey, 1967) by overloading 
extant notation. As most MMX extensions support arithmetic and 
logical operations over byte sequences, a central concern in choosing a host 
language was the degree to which the corresponding operators were already 
overloaded. 

Pascal (Jensen and Wirth, 1978) was chosen as a base language over the 
alternatives C and Java. C overloads arithmetic operators to include address 
manipulation, often with implicit type coercions. Hence these operators could 
not also be used to express data parallelism over structures. Java overloads + 
both for string concatenation and to coerce other base types to string when 
they are +ed with strings. This precludes the use of+ as a data parallel opera­
tion for combining, as opposed to joining, arrays. 

Pascal has other advantages in providing additional notations which can be 
overloaded consistently for data parallelism. For example, the sub-range 
notation is a natural basis for slicing. 

6.2.1 Target Machines 

The aim was to produce a language and associated compiler technology that 
would target the machines that most programmers have on their desks. This 
essentially means PCs and Apples using the Intel and Motorola families of 
CPUs. This aim is different from that of the developers of HPF, who were 
targeting super-computers and highly parallel machines. Although it should be 
possible to develop Vector Pascal compilers for such machines, the main aim 
has been to provide a tool that would run on affordable, widely used, single­
processor computers. 

The initial development work was done with Intel and AMD processors in 
mind, because these are by far the most commonly used machines. Although 
these machines were the first target, Vector Pascal does not depend upon any 
machine-specific features. A processor does not need to have a SIMD 
instruction-set to run it. A Vector Pascal program can run correctly and 
efficiently on a classical SISD instruction-set such as the Intel 486 (see 
Table 13.1). 

Processor technology develops fast, and software support for them typically 
lags well behind. A major design goal has been to develop a compiler tech­
nology that enables Vector Pascal to be re-targeted at new machines with 
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minimal effort. Apple machines using the G4 processor were immediately 
identified as possible targets, as were the Alpha and SPARC chips. The aim was 
to provide along with Vector Pascal, a notation ILCG (see Appendix A) by 
which the instruction-sets of future machines, including their SIMD capa­
bilities, could be described. Given a machine description in ILCG, the Vector 
Pascal compiler could automatically generate code for the new processor 
which made use of its data-parallel facilities. 

Operating System Portability 

Another aim of the language was that it should be readily portable between 
operating systems. Initially this meant portable between Microsoft operating 
systems and Linux. This has been achieved by implementing the compiler in 
Java, so that the Java environment allows a machine- and operating system­
independent binary implementation of the compiler. Dynamic loading of code 
generator classes at run time then allows the code produced to be targeted at 
particular machines. 

6.2.2 Backward Compatibility 

There exists a large body of legacy code in Pascal. Some of this is in Standard 
Pascal, but a larger body of it is in Turbo Pascal. The Borland compilers for the 
PC probably did more to popularise Pascal than any prior implementation. 
Other compilers, such as TMT Pascal and Free-Pascal, have also supported the 
Turbo Pascal syntactic extensions, in particular the provision of Units for 
modular programming. 

It was a design aim of Vector Pascal to allow such code to be compiled and 
run by the Vector Pascal compiler except in so far as it depends upon machine­
specific MS-DOS calls. 

Linkage Model 

Turbo Pascal provides a very good model for type-safe linking together of 
Pascal units, but this is not enough. A language is much easier to use if it 
allows one to call out to other languages. This is particularly true if one is 
going to make use of graphics libraries. These are typically designed to be 
called from C with all that implies. Vector Pascal has thus chosen to make use 
of standard C linkers and C calling conventions. The syntactic notations used 
to import C procedures into Pascal code are those used in Turbo Pascal. 

To reduce dependence on proprietary code, on current implementations the 
g c c linker is used to produce the final binaries. 

6.2.3 Expressive Power 

Compilers are there to make things easier for coders. Where possible they 
should allow the coder to say what they want done rather than how it should 
be done. It is the task of the compiler writer to automate the low-level details 
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of programming, leaving the coder to concentrate on algorithm strategy. It has 
long been the claim of array programing language advocates that they improve 
programmer productivity by raising the expressive power of the language. 
Programmers using them learn to think differently. By thinking in a data­
parallel way they hit upon strategies that might not occur to a coder used to 
the word at a time approach of C. 

One way that the expressive power of a language can be raised is by the 
removal of restrictions. If the context-free grammar of the language seems to 
suggest that something should be allowed, but the type rules forbid it, then the 
lack of orthogonality reduces the power of the language. It forces the coder 
to use work-arounds to achieve their intention. For instance, Standard Pascal 
allows the expression a+b provided that the variables are scalars but not if they 
are arrays. For arrays a FOR loop has to be written. 

Vector Pascal goes some way towards orthogonalising Standard Pascal.2 

Another source of expressive power is the provision of type-complete 
operations. The only type-complete operations supported by Standard Pascal 
are assignment, parameter passing and array access. Vector Pascal provides a 
small number of additional type-complete syntactic forms, mostly associated 
with array manipulation. A concern at all times has been that orthogonalisa­
tions should be compatible with efficient implementation. 

6.2.4 Run-time Efficiency 

Syntactic extensions and orthogonalisations in Vector Pascal have been 
allowed, provided either that 

• they can be provided at compile time with no run time cost, or 
• they actually speed up run time code by making it easier to optimise, or 
• their run time cost is no more than the equivalent hand -coded Pascal. 

2There remain several non-orthogonal features, most obviously those associated with array index 
types. Pascal only allows finite sub-ranges types to be used as indices for arrays. This is both an 
implementation issue - allowing array access by address arithmetic - and a semantic issue. If 
infinite types were allowed as indices, then arrays would become partial maps rather than total 
maps, giving rise to the possibility of undefined values. 
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Basics of Vector Pascal 

In this and following chapters we will present an introduction to the Vector 
Pascal programming language. The introduction will assume that the reader is 
familiar with imperative programming but not necessarily with Standard 
Pascal. Some space is therefore given to explaining Standard Pascal features. 
Marginal notes indicate the origin of features. 

A paragraph marked thus describes a feature retained in Vector Pascal from 
Standard Pascal (Jensen and Wirth, 1978; ISO, 1991b). 

A paragraph marked thus describes a feature introduced by Extended Pascal 
(ISO, 1991a) and retained in Vector Pascal. 

A paragraph marked thus describes a feature Vector Pascal inherits from the 
popular Turbo Pascal compiler. 

A paragraph marked thus describes a feature introduced in Vector Pascal, 
but not used in Standard, Extended or Turbo Pascal. Some of these features 
are also implemented by yet other Pascal compilers. 

7.1 Formating Rules 

A Pascal program is made up of lexemes, spaces and and comments. Lexemes 
are either words, literal values, operators or punctuation characters. 

7 .1.1 Alphabet 

Pascal is a comparatively old programming language, having been under 
development since the end of the 1960s (Jensen and Wirth, 1978). It was 
originally implemented on CDC mainframe computers that had a 60-bit word 
and that used a 6-bit character set which supported upper-case characters only. 

ISO Pascal extended this to use an alphabet of symbols, all of which can be 
represented with ASCII. The most significant extension was to allow the use of 
lower-case letters and the bracket symbols { and } . Vector Pascal extends this 
further to use Unicode, which permits a far wider range of symbols to be used 
in programs. 

Programs should be submitted to the compiler in UTF-8 encoded Unicode. 
Since the 7-bit ASCII is a subset of UTF-8, all valid ASCII-encoded Vector 
Pascal programs are also valid UTF-8 programs. 
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7 .1.2 Reserved Words and Identifiers 

A word is either a reserved word or an identifier. In ISO Pascal all words have the 
same lexical form. They are sequences of characters, the first of which must be a 
letter; subsequent characters can be either letters or digits. 

Thus the lexemes begin, end, wh i 1 e, hope, x, a 1, b 1 ue, b 1 i ste ring, 
b a rna c 1 e s are all valid formats for reserved words or identifiers. On the 
other hand, ==toys, 9b, ?**! ! ! are not. 

In Vector Pascal, the rule for the formation of words is extended by 

1. Allowing the under-bar character to be used as a letter. Thus b 1 ue_ 
b a rna c 1 e s is a valid identifier in Vector Pascal. An under-bar may even 
be used in the leading position of an identifier, as with _END LIN E. This 
feature is provided only to allow compatibility with external libraries in C. 
Its use in Pascal is deprecated. 

2. Allowing the use of several other Unicode alphabetic scripts: Greek, Cyrillic, 
Katakana or Hiagana characters in words. 

3. Allowing the use of the Unicode unified Chinese, Japanese and Korean 
ideographs as characters in words. 

A reserved word in the language has a pre-defined meaning which cannot be 
altered in a Pascal program. A list of the reserved words in Vector Pascal is 
provided in Table 7.1. An identifier is a word that, although it may be pre­
defined in the language, can have its meaning defined or redefined within a 
program. Identifiers are typically used to name types, variables and procedures. 

Table 7 .1. Vector Pascal reserved words 

English Chinese Unicode 

ABS ~x-j"{il 7EDD,5BF9,503C 
ADDR :lt!!.:!ll: 5730,5740 
AND 2227 
ARRAY J&m 6570,7EC4 
BEGIN tf!lft 5F00,59CB 
BOOLEAN ;{fj${il 5E03, 5(14, 503( 
BYTE2PIXEL ~$#-It 5857, 8F6C, 50CF 
CASE 1'~ 4E2A,6848 
CHR ~N 5861,7826 
CONST 'if; :I: 5E38,91CF 
cos ~~ 4F59,5F26 
DIA !IJWi 5224,65AD 
DIV + OOF7 
DO tf!lft 5FAA,73AF 
DOWNTO r~ 4EOB,81F3 
END ~* 7ED3,675F 
ELSE ~vw 5426,5219 
EXIT l/!:±1 9000,S1FA 
EXTERNAL j~$a<J 5916, 90E8, 7684 
FALSE m~ 9534,8BEF 
FILE )Cflj: 6587,4EF6 
FOR ~ 4ECE 
FUNCTION Pl!i!& 51FD,6570 
GOTO Wt$# 8DF3,8F6C 
IF ~* 5982,679( 
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English 

IMPLEMENTATION 
IN 
INTERFACE 
LABEL 
LIBRARY 
LN 
MAX 
MIN 
MOO 
NAME 
NEW 
NOT 
OF 
OPERATOR 
OR 
ORO 
OTHERWISE 
PACKED 
PERM 
PIXEL2BYTE 
POINTER 
POW 
PREO 
PROCEDURE 
PROGRAM 
PROTECTED 
READ 
REAOLN 
REAL 
RECORD 
REPEAT 
ROUND 
SET 
SHL 
SHR 
SIN 
SIZEOF 
STRING 
SQRT 
succ 
TAN 
THEN 
TO 
TRANS 
TRUE 
TYPE 
VAR 
WITH 
WHILE 
WRITE 
WRITELN 
UNIT 
UNTIL 
USES 

Table 7.1. (Continued) 

Chinese 
:!);fJII. 
3 

jj(Q 
;fjj;~ 

w 
I~H't.X>J"iij: 
:lil:kffi 
:lil!J\{1.[ 
% 
1'1~ 
JE/i}t 

I¥J 
JE:.~ 

'f'#!ij: 
'i'l'Y!U 
M~ 
tHU 
~#'¥ 
mtt 
'IJ 
§u'f$ 
ttf§! 
;f§!(i' 
fJiHP 
ill; 
i!l;ff 
:!);!ij: 
hl:ill: 
:1:][ 
lm*EA 
~1::­
le{IL'¥$ 
;tJ{I'[f$ 
IE5t 
tE:J:t 

* .[ 
!~'if$ 
l[t)J 

jj~~ 

iU 
R!!ll$-'it~ 

• ~ll'i 
-'it ::I: 
~ 
~ 
1:3 
E31T 
.ljij[; 
1l.3:'U 
f!ffl 

Unicode 

5B9E,73BO 

63A5,53E3 
6807,7B7E 
5E93 
81 EA, 7136, 5BF9, 6570 
6700,5927,503C 
6700, 5COF, 503C 
0025 
5400,79FO 
65B0,5EFA 
OOAC 
7684 
8F00,7B97,7B26 
2228 
5B57, 8F6C, 6570 
5426,6570 
5C01,88C5 
6392,5217 
50CF, 8F6C,SB57 
6307,9488 
5E42 
5240,79FB 
8FOB,7AOB 
7AOB,5E8F 
4F00,62A4 
8BFB 
8BFB,884C 
5B9E,6570 
8BB0,5F55 
91C0,5900 
560B, 8200, 4E94, 5165 
96C6,5408 
50E6,4F40,79FB 
53F3,4F40,79FB 
6B63,5F26 
957F,5EA6 
4E32 
221A 
540E, 79FB 
6B63,5207 
90A3,4E48 
5230 
8000,9635,5308,6362 
771F 
7C7B,578B 
5308,91CF 
4EOE 
5F53 
5199 
5199,884C 
5355,5143 
76F4,5230 
4F7F, 7528 

Both the English and Chinese variants are shown. The canonical Unicode 
representation of the Chinese variant is also shown. 
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7 .1.3 Character Case 

Because of its original 6-bit character code, Pascal has the rule that case is not 
significant in variables or reserved words. Thus beg i n, BEG I N and Beg i n are 
equivalent forms for the one reserved word. Vector Pascal retains this 
convention and extends it to the Greek and Cyrillic alphabets, where character 
case is again disregarded, so that ~ is equivalent to 8, etc. In the example 
programs in this book, the reserved words are sometimes capitalised, but this 
is purely conventional and not necessary. 

When writing identifiers in Pascal, it is a common convention to use the 
under-bar and/or capitalisation to mark any component words imported from 
natural languages, thus Capt a i n_Haddock, Pi nkCrabs. 

7 .1.4 Spaces and Comments 

In Pascal, space characters are not significant between lexemes. The space 
characters are space, carriage return, newline and tab. This means that space 
characters can be freely inserted between word operators or literal values. 
Spaces cannot be inserted into words or into numbers. 

It is conventional in Pascal to make judicious use of space characters to 
indent programs to improve their legibility. 

Comments may be placed at will between lexemes. They take two forms: 

{this is the first form of comment} 
(*this is the other form of comment*) 

A comment that starts with { includes all characters up to the next } . A 
comment that starts with (* includes all characters up to the next *). Thus a 
comment starting with { can be used to bracket out both text and comments 
starting with (* and vice versa. It is advantageous to stick to the use of one of 
these comment forms, allowing the other to be reserved for commenting out 
large blocks of code whilst developing programs. 

It should be noted that this use of comments it not portable to Standard 
Pascal, where a comment starting with { can end with*) and vice versa. 

A comment starting with(*! and ending with*) is treated as a TEX comment, 
that is, the body of the comment is passed through unmodified when the 
VPTEX literate programming tool is used (see Section 7.7). 

7 .1.5 Semicolons 

Since carriage returns are not significant in Pascal, statements are separated by 
semicolons. This is not the same as having semicolons terminate statements. A 
semicolon need not occur after the last statement in a block. However, placing 
a semicolon after the last statement has no ill effect, amounting to the 
insertion of a null or do nothing statement at the end of the block. No run 
time code is executed for the null statement. For example: 

BEGIN 
x:=a+c; 



Chapter 7 • Basics of Vector Pascal 125 

VECTOR 

150-7185 

150-10206 

TURBO 

150-7185 

y:=x*pi {nosemicolonneededherel 
END 

whereas 

BEGIN 
x:=a+c: 
y:=x*pi: {null statement after: here} 

END 

In the last example the second semicolon is not needed since there is no 
following statement before the END. 

7.2 Base Types 

7 .2.1 Booleans 

The Boolean type is the set {true. false}. The words true and false are 
reserved in Pascal. In Vector Pascal but not Standard Pascal the relation 
true< fa l s e holds. Internally in Vector Pascal true is held as the value -1, 
which in two's complement is a string of binary ls. 

7.2.2 Integer Numbers 

The normal way to denote an integer constant in Pascal is to use a decimal 
integer. Thus 12, 012, -9, 999 are valid integer constants. For certain 
purposes it is convenient to work with other number bases, in particular 
binary, octal and hexadecimal. Vector Pascal allows the use of the based 
number format introduced in Extended Pascal (ISO, 1991a). In this a number 
base is given first, followed by a # sign, and then a number in that base. Thus, 
the decimal number 33 could be written in binary as 2#100001, in octal as 
8#41 and in hexadecimal16#21. 

Less obviously, one could write 32#11, 20#1D or 17#1G. 
The use of letters in based numbers is a generalisation of their use in 

hexadecimal numbers. 'A' stands for 10, 'B' for 11, ... 'Z' for 35. Lower-case 
letters can be substituted for upper-case letters. For backwards compatibility 
with Turbo Pascal it is also possible to write hexadecimal numbers preceded by 
a $ sign, e.g. 3 3 = $ 21. Integers written as hexadecimals must be within the 
range $00000000 ... $FFFFFFFF. The sign of an integer written in hexa­
decimal notation is determined by the leftmost (most significant) bit of its 
binary representation. 

The largest integer supported on an implementation is given by the integer 
constant maxi n t. The smallest integer will be -maxi n t - 1. 

7 .2.3 Real Numbers 

Real numbers are denoted in standard floating point formats. Thus 12. 0, 0. 12, 
- 9 . 9 are valid floating-point numbers. Exponent notation is allowed: 2 506 000 
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can be written as 2. 506E6, meaning 2.506 x 106, or 0.12 can be denoted by 
1 . 2 E- 1. The exponent character can be either a lower- or an upper-case E, and 
the exponent can be signed, thus 2. 506E6 = 25. 06e5 = 250. 6e+4. 

The largest real number supported on an implementation is given by the 
constant max rea l . The smallest real number greater than 0 that can be 
represented on an implementation is given by the constant m i n rea l . 

Since real numbers are stored in floating-point format with an exponent 
and a mantissa, they can span a huge range of numbers. However, when 
representing very large numbers the limited length of the mantissa means that 
whole ranges of large integers are mapped to the same real number. This can 
pose a problem in algorithms which are designed to converge numerically. 
Such algorithms typically define some small E such that iteration continues 
until successive approximations differ by less than E. The value of E that is 
meaningful in such an algorithm depends upon the numerical accuracy with 
which real numbers are held. The constant e p s rea l can be used to determine 
this. If r is a real number then the smallest E which when added to r will result 
in a value distinguishable from r is r * e p s real . 

Complex Numbers 

Complex numbers are supported by Vector Pascal; they are formed by 
invoking a constructor function cmp l x. Thus cmp l x ( 1. 0, 0. 5) returns the 
complex number whose real part is 1.0 and imaginary part is 0.5. 

7 .2.4 Characters and Strings 

Characters and strings in Pascal are enclosed in single quotes, thus the 
following are strings or characters: 'A', 'B', 'Book'. If the single quote character 
is to be included in a character literal or string it is indicated by two successive 
single quotes. Thus the character ' is written ' ' '', and the string 'Joe' 's' 
would print out as: 

Joe's 

Discrete characters which have no printable denotation can be produced 
using the c h r operator. Thus c h r ( 13) is the ASCII newline character. How­
ever, unlike C, Standard Pascal does not allow such unprintable characters to be 
embedded in string literals. 

The current Vector Pascal implementation uses 16-bit Unicode as its 
internal character set and allows any Unicode character to be embedded in a 
character string. Thus a newline is embedded in a string simply by running it 
over two lines (see Alg. 21). Hence Chinese and other characters can be 
embedded in Vector Pascal strings. 

The ord operator returns the integer value of a character, thus ord('A') 
will return the integer value of the letter A in the current character set. 

The lowest value character in the character set supported on an imple­
mentation is given by the constant m i n c h a r. The highest valued character in 
the character set supported on an implementation is given by the constant 
maxcha r. 



Chapter 7 • Basics of Vector Pascal 127 

150-7185 

150-7185 

150-10206 

PROGRAM newlnstr; 
CONST sl='a 
new line'; 
BEGIN 

WRITELN(sl); 
END. 

outputs 

a 
new line 

Algorithm 21. Illustrating the embedding of a newline in a string. 

7.3 Variables and Constants 

7.3.1 Declaration Order 

Pascal was designed to be parsed by a single-pass compiler. Since the language 
is also strongly typed, this means that the compiler can only type check 
statements if all identifiers are declared before they are used. This contrasts 
with more recent languages such as Java, where the declaration of identifiers 
can follow their use. Although the Vector Pascal compiler has distinct syntax 
analysis and code generation passes, it retains the requirement that declaration 
of identifiers must precede use. Further, it is a requirement that all identifiers 
used in a program context must be declared before the first executable state­
ment of that context. 

Consider the example given in Alg. 22. Everything between the line starting 
CONST to the line finishing with END. makes up what is termed in Pascal a 
block. The block is made up of a declaration part, which goes from the line 
starting CONST to just before the BEGIN, and an execution part which goes 
from BEGIN to END. 

Three user-defined identifiers, a, v, t, are used within the execution part. 
They are introduced in the declaration part. The declaration part is divided 
into two portions, one preceded by the word C 0 N S T, which introduces cons­
tants, a in this case, and the other preceded by the word VA R, which introduces 
variables, t, v in this case. 

In Standard Pascal, the constant declaration must precede the variable 
declarations. The motivation for this is that the variable section may include 
arrays whose sizes are defined by constant identifiers. Hence the constant 
identifiers had to be introduced prior to the variable identifiers. 

In Extended Pascal, this restriction was relaxed, allowing constant and 
variable declarations to be optionally interleaved in any order, so long as this 
does not cause any identifier to be used prior to its introduction. It remains 
good practice, however, to follow the standard ordering of constants and 
variables. 
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PROGRAM velocity; 
CONST 

a=9.8; {acceleration due to gravity} 
VAR 

t,v:real; 
BEGIN 

WRITE('How many seconds has the fall lasted'); 
READLN(t); 
v:=0.5*a*t POW 2; 
WRITELN('Velocity =' ,v, 'm/s'); 

END. 

Algorithm 22. Program to compute the velocity of a falling body. 

7.3.2 Constant Declarations 
A constant is an identifier which denotes the same value throughout its existence. 
The identifier a in Alg. 22 is an example. The declaration associates an identifier 
with a value. The compiler deduces the type of the identifier from the type of the 
value. Here are some examples of constant declarations: 

CONST 

Lo=O; 
Hi=lOO; 
Mean=( Lo+Hi) di v 2; 
Zed=' Z'; 
Err=' Name too 1 ong ·; 
SecsPerYear=pi*lE7; 

{an integer constant} 
{an integer constant} 
{integer given by expression} 
{a character constant} 
{string constant} 
{real defined by expression} 

In Standard Pascal, the values associated with the identifiers have to be 
literal constants. In Vector Pascal, this restriction is relaxed to allow numeric 
expressions whose value can be calculated at compile time to occur in constant 
declarations. Thus a constant expression in Vector Pascal can include arith­
metic operators, other previously declared constants and literal constants. In 
the example above, Mean and Sees PerYea r are examples of constants intia­
lised by compile time expressions. 

In order to keep code readable and to simplify maintenance, Pascal pro­
grammers are encouraged to make wide use of constant identifiers to replace 
literal constants. If this is done, changing a single constant declaration will 
change all places in the code where the relevant constant is used. 

There exists a notation for the declaration of array constants (see 
Section 7.5.1). 

In addition to the predeclared constants associated with numeric preci­
sion, a floating-point approximation to 1r is available as the pre-declared 
constant p i . 
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7.3.3 Variable Declarations 
All variables must be declared before use. A variable declaration consists of a 
comma-separated list of identifiers followed by a colon followed by a type and 
terminated by a semicolon. All the identifiers in the list are defined as having 
the same type. Additional variables of different types, or more of the same 
type, can follow in the same way until all the required identifiers have been 
declared. For example: 

VAR 
boxlen,boxwidth,boxheight:real: 
boxcount:integer: 
isopen:boolean: 

A variable when declared has an undefined value. The declaration merely 
reserves space for the variable. A program error is likely to occur if a variable is 
used before a value has been assigned to it. 

7 .3.4 Assignment 

A variable can have its value set by the assignment operator : = as shown in 
Alg. 22. The assignment operator is generic to all types. Arrays and records 
can be assigned to variables of the appropriate type by a single assignment 
operator. 

7 .3.5 Predefined Types 

There exists in Pascal a system for declaring new types (see Chapter 9), but 
there exists a set of predefined types available to all programs. Six of these have 
already been introduced: boolean, integer, real, complex, char, 
s t r i n g. Any of these can be used in a variable declaration. 

In addition, there are a set of auxiliary types provided to allow the program­
mer to tailor the store used by variables to the arithmetic precision required by 
the algorithm. The auxiliary types should be used sparingly as their use hinders 
portability. The circumstances in which their use is advantageous are as 
follows: 

1. When the numeric precision of an algorithm requires less accuracy than 
that provided by the standard types, and where economy in the use of 
memory is important. Under these circumstances, variables may be defined 
to be oftype byte, pixel or shortint. 

2. Where the range of numbers is sufficiently small and the programmer 
wants to take advantage of greater SIMD parallelism, types byte, pixel or 
s h o r t i n t should be used. 

3. Where the range of numbers being used is too great to represent as an 
integer or a· real. Under these circumstances, a double-precision real 
double, or a 64-bit integer i nt64, representation may be stipulated. 
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7.4 Expressions and Operators 

An expression is a sequence of identifiers, constants or bracketed expressions 
linked by operators. An expression is used to calculate new values from already 
existing ones. 

a+b 
5*a 
x+y*z 
4/b+c 

are expressions. 

7 .4.1 Arithmetic 
Pascal supports the basic arithmetic operations using the familiar operator 
symbols: 

+ addition 
subtraction 
multiplication 

X Vector Pascal synonym for* Unicode 2715 
I division with real or complex valued result 

Expressions are evaluated such that multiplication and division are per­
formed left to right before addition and subtraction. To ensure that the evalua­
tion is as intended parentheses can be used. 

a/b+x/y*z 

is evaluated as 

which must be distinguished from 

a x -+-­
b yxz 

to achieve which one would have had to write 

a/b+x/(y*z) 

Arithmetic is not allowed on characters. The + operator is allowed on strings 
where it is interpreted as string concatenation. Since single-character strings and 
individual characters have the same representation, + between characters is 
also interpreted as string concatenation. As a generalisation of multiplication 
being repeated addition, * is allowed between integers and strings, thus 

expression value 
'abc'+'case' 'abccase' 
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'a'+' b' 
'abc'*3 

'ab' 
'abcabcabc' 

Pascal also supplies two further operators that operate exclusively on integer 
arithmetic: 

MOD remainder after division of integers 
D I V truncated division of integers 

Vector Pascal synonym for DIV Unicode 00f7 

The effects of the various division operators are summarised below: 

a/b+xdivy*z 

is evaluated as 

expression value 
16/5 3.2 
16div5 3 
16 mod 5 1 
8div3*3 6 
13-5mod3 11 

which must be distinguished from 

-+ --a lxxzj 
b y 

for which one would have to write 

a/b+(x*z) divy 

since the effect of truncation will cause loss of precision in the first case. 
Vector Pascal provides other dyadic operators on numbers which are not 

provided in Standard Pascal but which were introduced in subsequent systems. 
First there are the exponential operators: 

a**b 
a POW b 

raises a to the fractional power b 
raises a to an integral power b 

16**0.5 4.0 
4**1.5 8.0 

16** -0.25 0.5 
16 POW 2 256 

The exponential operators have higher priority than any other dyadic 
operators. 

There are also a set of operators that allow integers to be treated as bit vectors: 

a S H R b shift the integer a right by b bits 
a S H L b shift the integer a left by b bits 
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a AND b 
a ORb 

perform a bitwise and of a with b 
perform a bitwise or of a with b 

Expression 
2#101 SHL 2 
2#101 SHR 1 
2#1100 AND 24 
2#1100 OR 24 

Value 
20 
2 
8 
28 

The operators AND and 0 R are also defined on Boo leans. The shift operators 
can be used as alternatives for multiplication and division by powers of2 so that: 

a SHR n is equivalent to a DIV (2 POW n) 

and 

a SHL n is equivalent to a*(2 POW n) 

It should not be assumed that the use of shift operators will necessarily be 
faster than the equivalent divide and multiply operators. 

Finally, there are selection operators allowing the larger or smaller of two 
values to be chosen. 

a M I N b returns the lesser of a, b 
a MAX b returns the larger of a, b 

7.4.2 Operations on Boolean Values 

Boolean values can be manipulated using the operators AND, OR, NOT in 
addition to the comparison operators. The AND operator produces a TRUE 
result if and only if both operands are true. If a is T R U E and b is T R U E then ( a 
AND b ) = T R U E. The 0 R operator produces a T R U E result if either of its 
operands is T R U E. The N 0 T operators maps T R U E to FA L S E and vice versa. 

These results are summarised in the composite truth table: 

a b a AND b a ORb NOTa 
true true true true false 
true false false true false 
false true false true true 
false false false false true 

Vector Pascal allows single Unicode characters to be used for the boolean 
operators: 

Synonym Unicode 
NOT --, OOac 
AND 1\ 2227 
OR V 2228 
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7 .4.3 Equality Operators 

The equality operator = takes two operands from a comparable type and 
returns a Boolean T R U E if the operands are the same. Otherwise it returns 
false. Equality is defined on integers, reals, Booleans, characters, strings, 
ordinals, sets (see Section 9.6) and pointers (see Section 9.5). 

The not-equals operator<> takes two operands of a comparable type and 
returns T R U E if and only if the operands are not the same. 

7.4.4 Ordered Comparison 

Pascal provides the standard ordered comparison operators <, >, <=, >=, 
which can be applied between pairs of elements drawn any ordered type. That 
is, any pair of Boo leans, any pair of integers or reals, any pair of characters, any 
pair of strings or a pair of elements drawn from the same ordinal type may be 
compared. 

program compare; 
canst data:array[l .. 4] of string[4J= 

(·abc'.· abed·,· Abc·,· aba ·); 
begin 
writeln('compare''abc'' to:'); 
write(· ·,data, 

· <> ·. ·abc· <>data, 
'abc'=data. 

'< ', 'abc'<data, 
'> ·, 'abc'>data, 
'<=', 'abc'<=data. 
'>=', 'abc'>=data); { l 

end. 

Output produced: 

compare 'abc' to: 
abc abed 

<> false true 
true false 

< false true 
> false false 
<= true true 
>= true false 

Abc aba 
true true 
false false 
false false 
true true 
false false 
true true 

Algorithm 23. Effect of string length and character values on string order. 

When ordered comparisons are applied to strings both the character 
values and the lengths of the strings have to be taken into account. A string 
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PROGRAM truthtab; 
CONST a:ARRAY[l .. 4] OF boolean= 

(true,true,false,false); 
b:ARRAY[l .. 4] OF boolean= 

(true,false,true,false); 
BEGIN 
WRITE('a', a, 

'b'' b, 
'a and b'' a AND b, 
'a or b', a OR b, 
'a<>b', a<>b, 
'a=b', a=b, 
· a<b', a<b, 
'a>b', a>b. 
'a<=b', a<=b, 
'a>=b', a>=b); 

END. 

Output produced: 

a true true 
b true false 

a and b true false 
a or b true true 

a<>b false true 
a=b true false 
a<b false true 
a>b false false 

a<=b true true 
a>=b true false 

false false 
true false 
false false 
true false 
true false 
false true 
false false 
true false 
false true 
true true 

Algorithm 24. t ruth t a b, a program to print the truth tables for all of the dyadic Boolean operators. 

is equal to another if it is the same length and has identical characters in all 
positions. 

A string a is less than another string b if there exists a character in some 
position i in string b such that aj = bj V j < i and either the length of a is less 
than i or a; < b;. 

The comparison operators when applied to Boolean types provide 
additional dyadic Boolean operators. The most useful of these are < >, which 
is the XOR operator when applied to Booleans and = which is equivalent to 
NOT XOR. 

The ordered comparison operators give results that are not portable between 
Vector Pascal and ISO Pascal. The truth tables provided by all of the dyadic 
operators over the Booleans are shown in Alg. 24. 
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7.5 Matrix and Vector Operations 

The most significant difference between Vector Pascal and other implementa­
tions of Pascal are the extensions that Vector Pascal provides to allow operations 
on simple variables to be transparently extended to work on arrays. Consider the 
program in Alg. 25. Invoking the program produces the following result: 

C:\book>add1 

(* 
Program to Add 1 to the first 4 primes and then print 
this, followed by twice the first 4 primes+ 1 
*) 
PROGRAM Add1; 
CONST c:ARRAY[1 .. 4] OF INTEGER=C1,2,3,5); 
BEGIN 

WRITE(c,c+1,1+2*c); 
END. 

1 
2 
3 

2 
3 
5 

3 
4 
7 

5 
6 

11 

Algorithm 25. Simple example of array operations. 

Add 1 declares a constant array c to hold the first four primes. The program 
then prints out c, followed by the effect of adding 1 to each element of c, 
followed by the sum of the previous two lines. 

7 .5.1 Array Declarations 

Before any array is used, it must be declared. In Add 1 the array c is a constant 
array. A similar variable array could be declared as 

VAR v :ARRAY[1 .. 4] OF integer; 

However, the values of the variable array, as with any variable, are undefined 
when the program starts. 

An array declaration specifies the range of the array, in this case 1 ... 4 and the 
type of the array elements, in this case integer. The range specifies two things: 

1. how many storage locations are to be allocated by the compiler for the array 
2. the logical numbering of these storage elements. 

It is possible to declare multi-dimensional arrays. Thus 

VARmat:ARRAY[l. .3,1. .3] OF real; 
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declares a 3 by 3 matrix of locations to hold real numbers, whilst a constant 
matrix could be declared as 

C 0 N S T i dent : ARRAY[ 1. . 3 , 1 .. 3] 0 F real = ( (1 . 0 • 0 . 0 • 0 . 0 ) • 
(0.0,1.0,0.0). 
(0.0,0.0,1.0)); 

which is the 3 by 3 identity matrix. Note that when declaring a constant 
matrix, one must indicate the rows by brackets. 

A two-dimensional array can conceptually be thought of as a single object 
with two dimensions, or as a one-dimensional array whose elements are them­
selves one-dimensional arrays. Pascal allows one to declare arrays in either of 
these formats but treats the two forms as synonymous. Hence the following 
two array variables are of identical type: 

VA R v 1 : ARRAY[ 1. . 2 • 1. . 3] 0 F i n t e g e r ; 
v 2 : ARRAY[ 1 .. 2] 0 F ARRAY[ 1 .. 3] 0 F i n t e g e r ; 

There will be an implementation-defined maximum number of array 
dimensions supported by any given Vector Pascal compiler. This is provided 
in the predefined constant max d i m s. 

7 .5.2 Matrix and Vector Arithmetic 
Basic Arithmetic 

In the examples given in Algs 20, 25 and 30, arithmetic is performed on arrays 
in a fairly obvious and intuitive way. In a programming language however, 
simple intuition, although helpful, is not enough. One needs to know the 
precise meaning of a construct. Array arithmetic follows a set of consistent 
principles: 

1. Vector Pascal allows any arithmetic operator that can be applied to a pair of 
elements of a data type t to be used between arrays of type t. 

2. Vector Pascal performs array arithmetic on an element by element basis. 
Thus in Alg. 20, the zeroth element of v 1 is the sum of the zeroth elements 
of vectors v 2, v 3. This is precisely what is required for the addition and 
subtraction of vectors and matrics. 

Note that for multiplication and division this will not be the same as 
vector or matrix multiplication in linear algebra. Matrix multiplication is 
dealt with in Section 7 .6. 

3. When performing arithmetic on a pair of arrays, the bounds of the arrays 
must exactly match. An attempt to add an array whose bounds are 1 ... 4 to 
an array whose bounds are 0 ... 3 will give rise to either a compile time or a 
run time error. 

4. The result of performing element by element array arithmetic is another array 
whose bounds will be the same as those of the arrays which gave rise to it. 

5. A scalar x and an array y may be combined using dyadic operators. The 
result is an array whose bounds are those of y. This means that the scalar is 
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PROGRAM Printident2; 
CONST ident:ARRAY[l .. 3,1 .. 3] OF integer=((l,Q,O), 

(0 ,1,0). 
(0. 0 ,1)); 

factor:ARRAY[l .. 3] OF integer=(l00,200,400); 
BEGIN 

WRITE(factor*ident); 
END. 

this produces when invoked: 

C:\book>printident2 
100 

0 
0 

0 
200 

0 

0 
0 

400 

Algorithm 26. Element by element multiplication of each row of a matrix by a vector. 
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combined under the operator with every element in y. This form of con­
struction is illustrated in Alg. 25. This implements the mathematical 
operation of multiplying a vector by a scalar. The same rule allows multi­
plication of a matrix by a scalar. 

6. An array x of dimension n, and an array y of dimension m, where n < m, 
can be combined under a dyadic operator provided that the bounds of the 
rightmost n dimensions of each array match. This is illustrated in Alg. 26. 

7. Assignment to an array is allowed if the value on the right-hand side of the 
assignment is an array of the same type. 

8. Assignment to an array is allowed if the value on the right-hand side of the 
assignment is a scalar of the same type as the elements of the array or is 
castable to an element of the same type as the elements of an array [in some 
array languages this is called flood fill (Snyder, 1999)]. This is illustrated in 
Alg. 27, where 1 is cast to a real and used to filly. 

9. An array x of dimension n may be assigned to an array y of dimension m, 
where n < m provided that the bounds of the rightmost n dimensions of 
each array match and that the elements of y are the same type as or 
implicitly castable to the type of those of x. 

Reduction Operations: Forming Generalised Totals 

The total of the numbers (1, 2, 3, 5) is formed by injecting the + operator 
between them, thus (1 + 2 + 3 + 5) = 11. Similarly, the product of these 
numbers is formed by injecting the multiplication operator between them, 
thus (1 X 2 X 3 X 5) = 30. 

It is clear that this sort of operator injection is a general method by which a 
vector of numbers can be reduced to a scalar, forming in the process 'totals' 
that are parameterised by operators. In Vector Pascal and other array 
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PROGRAM flood; 
VAR y:ARRAY[l. .2,1. .3] OF real; 
BEGIN 

END. 

y:=1; 
WRITE Cy); 

which produces on invocation: 

C:\book>flood 
1.00000 
1.00000 

1.00000 
1.00000 

1.00000 
1.00000 

Algorithm 27. Flood filling an array with a scalar. 

(*! Program to find the arithmetic and 
geometric means of the first 4 primes *) 

PROGRAM Mean1; 
CONST c:ARRAY[1 .. 4] OF integer=(1,2,3,5); 
BEGIN 

WRITECC\+ cJ/4,(\* c)**0.25); 
END. 

Algorithm 28. An example of operator reduction. 

programming languages, this process is called a reduction operation.1 An 
illustration is given in Alg. 28, which prints out 2 . 7 5 2 . 3 4 0 3 5 as the means. 

The arithmetic mean is computed by the expression ( \ + c) /4. The key to 
this is the reserved word RDU or \, the reduction functional. This must be 
followed by a dyadic operator and an array expression. The operator is then 
injected between the elements of the rightmost dimension of the array 
delivering a result of rank one less than that of the array. 

In the program Me an 1 the + operator is injected forming a total which is 
then divided by 4 to give the mean. Analogously, the geometric mean is found 
by injecting the * operator between the elements of c and raising the result to 
the power of 0.25. 

Reduction by any of the commutative operators yields the obvious results. 
For example, one can find the largest of four integers as shown in Alg. 29. 

Care must be taken when performing reduction using non-commutative 
operators and operators whose result is not of the same type as their arguments. 
Consider what the expression RDU- c would mean in the program Mean 1. At 
one level it obviously means 1 - 2 - 3 - 5 but, depending on the bracketing 
convention used, this could either evaluate to -9 = ((1 - 2)- 3) - 5 or to 
-3 = (1- (2- (3- 5))) = 1- 2 + 3- 5. 

1The reduction functional was introduced in APL (Iverson, 1962), where it was written as I. For 
those who are familiar with APL, a form with similar flavour has been retained in Vector Pascal. 
Thus as an alternative to writing RDU+c one can write \+c. 
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(* Program to find the largest of 4 integers *) 
PROGRAM Max1; 
VAR x:ARRAY[1 .. 4] OF integer; 
BEGIN 

READ(x); 
WRITE(RDU MAX x); 

END. 

Given the input: 
3 100 -9 99 
this produces the output: 

100 

Algorithm 29. Reduction using MAX. 
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The convention used for reduction in Vector Pascal is the second. This is 
partly for compatibility with APL, but also because one of the few uses for 
reduction by - is in the evaluation of power series, where one wants just the 
alternation of positive and negative terms in the series, that evaluation of 
reduction from right to left gives. 

When reducing by a relational operator such as =, one has to beware of 
generating type errors. If the array to which the reduction is applied is 
numeric, like c in Mean1, then RDU=c would translate as 1 = (2 = (3 = 5)). 
This fails at compile on type consistency grounds, since 3 = 5 generates a 
Boolean, which is then to be compared with 2, an integer. 

The relational operators can only be used to reduce Boolean arrays. Thus 
RDU=b for b=(TRUE, TRUE, TRUE) will return TRUE. 

7 .5.3 Array Input/Output 

When arrays are passed to a write statement as a parameter, the arrays are 
printed a row at a time, with newlines at the end of each dimension. Thus, 
when printing a two-dimensional array, each row is on a distinct line, followed 
by a blank line at the end of the array. This is illustrated by the code in Alg. 30, 
which when run prints 

C:\book>printpowers 

1 2 
2 4 

2 4 
4 8 

3 9 
9 81 

9 81 
81 6561 
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PROGRAM PrintPowers; 
CONST powers:ARRAY[1 .. 2,1 .. 2,1 .. 2] OF integer=(((1,2), 

(2,4)), 

((2,4), 

(4,8))); 
VAR v:ARRAY[1 .. 2,1 .. 2,1 .. 2] OF integer; 
BEGIN 

END. 

WRITE C powers l; 
v:=3 POW powers; 
WRITECvl; 

Algorithm 30. Illustration of how a multi-dimensional array is printed. 

When reading data into an array, the elements of the array should be separated 
by spaces along the rows, and by newlines at the end of each dimension. 

7.5.4 Array Slices 
In many applications one wants to operate on parts of an array. For instance, 
in image processing there is the concept of a region of interest or a window, 
a rectangular sub-section of a two-dimensional array of pixels. Vector Pascal 
supports this with a syntax to refer to slices of arrays. 

For instance, given the two-dimensional array dataset declared in Alg. 31, 
then WRITE ( data set [ 2 .. 3 ] : 3 ) will print out the second and third rows in 
fields three characters wide; 

1113171923 
1215202430 

whereas WRITE (dataset [ J [ 3 .. 5 J : 3) will output columns 3-5: 

3 5 7 
171923 
20 24 30 
37 43 53 
57 6 7 83 

and W R I TE ( dataset [ 2 .. 3 ][ 3 .. 5 J : 3 ) will output 

17 19 23 
20 24 30 

We can select out a column with the syntax data set [ J [ 2 J, which prints 
out as 

2 
13 
15 
28 
43 
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(*Demonstrate array slicing*) 
PROGRAM slice; 
CONST dataset:ARRAY[1 .. 5,1 .. 5] OF integer= 

(( 1, 2, 3, 5, 7), 

(11,13,17,19,23), 
(12,15,20,24,30), 
(23,28,37,43,53), 
(35,43,57,67,83)); 

BEGIN 
WRITELN('dataset'); 
WRITE(dataset:3); 
WRITELNC'dataset[2 .. 3]'); 
WRITE(dataset[2 .. 3]:3); 
WRITELN('dataset[][3 .. 5]'); 
WRITECdataset[J[3 .. 5]:3); 
WRITELN( 'dataset[2 .. 3][3 .. 5]'); 
WRITE (dataset [ 2 .. 3 J [ 3 .. 5 J : 3) ; 
WRITELNC'dataset[J[2]'); 
WRITE(dataset[][2]:3); 
WRITELNC'dataset[2]'); 
WRITE(dataset[2]:3); 
WRITELNC'dataset[2,3]'); 
WRITE(dataset[2][3]:3); 
WRITELNC'dataset[2,3]'); 
WRITE(dataset[2 .. 2][3 .. 3] :3); 

END. 

Algorithm 31. The use of array slices. 

and a row using data set [ 2 J, which prints out as 

1113171923 

or a single-array element with dataset [ 2 ] [ 3 ] , which simply prints as 

17 

as does the more complex data set [ 2 .. 2 ] [ 3 .. 3]. 
Array selections can be used wherever entire variables can be used subject to 

type restrictions. It is worth taking care to understand the types of each of the 
selections above: 

Selection 
1 dataset 
2 dataset[2 .. 3] 
3 dataset[2 .. 3][3 .. 5] 
4 dataset[][3 .. 5] 
5 dataset[][2] 
6 dataset[2] 

Type 
ARRAY[l..S] OF ARRAY[l..S] OF integer 
ARRAY[O .. l] OF ARRAY[l..S] OF integer 
ARRAY[O .. l] OF ARRAY[0 .. 2] OF integer 
ARRAY[0 . .4] OF ARRAY[0 .. 2] OF integer 
ARRAY[0 . .4] OF ARRAY[O .. O] OF integer 
ARRAY[l..S] OF integer 
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7 dataset[2] [3] integer 
8 dataset[2 .. 2][3 .. 3] ARRAY[O .. O] OF ARRAY[O .. O] OF integer 

Some of them select matrices, some vectors and one a scalar. In particular, 
one should distinguish between selecting a row and selecting a column. 
Row selection is like dataset [ 2 ] and column selection like dataset [ ] [ 2 ] . 
A row is a one-dimensional array and a column is a two-dimensional array 
whose second dimension consists of arrays of length 1. 

One should also distinguish between dataset [ 2 J [ 3 J, an individual element 
of the array, and data set [ 2 .. 2 ] [ 3 .. 3], a two-dimensional array each of 
whose dimensions is singular. Consider the following example assignments: 

1 dataset[2] [3] := 3 
2 dataset[2 .. 2][3 .. 3] := 3 

valid 
valid, produces same effect 
as example 1 

3 dataset[2 .. 2][3 .. 3] := dataset[1][2] valid 
4 dataset[2][3] := dataset[1..1][2 .. 2] invalid, rank on the right> left 

In several cases the effect of selecting a singular array is identical with that of 
selecting an array element, but when an assignment is made, the expression on 
the right hand-side of the assignment must have rank lower than or equivalent 
to that on the left. 

7.6 Vector and Matrix Products 

In addition to the element by element arithmetic operations on vectors and 
matrices described above, Vector Pascal provides a vector and matrix product 
operator. This allows vectors to be multiplied by vectors, vectors to be multi­
plied by matrices or matrices to be multiplied by matrices. 

7 .6.1 Inner Product of Vectors 

Given that v, w are one-dimensional arrays, then v . w is the scalar formed by 
the equation 

b 

v.w= LVi x Wj 

i=a 

(7.1) 

where a, b are the lower and upper bounds of the two arrays. This is referred to 
as the dot product or inner product of vectors. The inner product has direct 
geometric interpretations in computer graphics. 

A first use of it is in computing the length of vectors. The length of a vector 
v written as I vi is given by the generalisation of Pythagoras's equation: 

Vtv1 ~ lvl (7.2) 
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Figure 7 .1. Projection of one vector on to another. In the example, v2 = (1 ,2), vl = (1, 1 ). 

but 

(7.3) 

so the dot product operator is a key step in the calculation of vector lengths. 
Another use is in measuring the projection of one vector against another. 

Consider Figure 7.1: suppose we want to measure how far v2 extends in the 
direction of vl. Geometrically this can be done by constructing the right­
angled triangle 0, P, v2 shown, and then measuring its base 0, P. This is the 
projection of v2 on to the extension of vl. The dot product operation is the 
computational key to this. 

Given the vector v2 = ( 1, 2), it is clear that its projections on to the x- and y­
axes, respectively, are 1 and 2. If we define the unit vectors2 x = (1, 0) and 
y = ( 0, 1), then by using the dot product operator we can measure the length of 
v2 in the direction of x or y. This is shown in Alg. 32. More generally, if we have 
some vector v we can measure its length in the direction of some unit vector r 
by r.v. If we have some vector of arbitrary length (vl in Figure 7.1), we can 
measure the length of v2 in the direction of vl by using the equation 

vl.v2 vl.v2 vl 
____,===--=-v2 
v'vl.vl lvll lvll' 

This can be considered as first normalising vl to produce the unit vector 1 ;~ 1 , 
having the same direction as vl, and then projecting v2 on to that normalised 
vector. 

Note that in the Vector Pascal version of the equation: 

dd:=(v2.vl)/sqrt(vl.vl); 

2 A unit vector has length 1. 
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program dotproduct; 
type vec=array[O .. l] of real; 
const 

vl:vec=(1.0,1.0); 
v2:vec=(1.0,2.0); 
x:vec=(1.0,0.0); 
y:vec=(0.0,1.0); 

var dx,dy,dd,1:real ;norm45:vec; 
begin 

dx:=v2.x; 
writeln('project' ,v2, 'against x =' ,dx); 
dy:=v2.y; 
writeln('project',v2,'against y =',dy); 
dd:=(v2.v1)/sqrt(v1.v1); 
writeln('length' ,v2, 'in direction' ,vl,' ',dd); 

end. 

when executed this produces 

project 1.00000 2.00000 
against x = 1.00000 
project 1.00000 2.00000 
against y = 2.00000 

length 1.00000 2.00000 
in direction 1.00000 1.00000 

2.12132 

Algorithm 32. The dot product of two vectors. See Figure 7.1 for explanation. 

the bracketing ensures that the division is scalar. This is more efficient than 
writing 

v2.(vl/sqrt(vl.v2)) 

since in the latter case vector division has to be performed. For short vectors 
like these, it is not important, but for longer vectors the distinction is signi­
ficant. For efficiency reasons one should rearrange equations to minimise the 
amount of vector arithmetic performed. 

When compiled for a CPU with suitable vector instructions (see Table C.l 
in Appendix C), the compiler will attempt translate the dot product of two 
vectors into vectorised code. 

7 .6.2 Dot Produd of Non-real Typed Vedors 

The example above describes the dot product operation in its classical 
mathematical form, where vectors or real numbers are multiplied together. 
The dot product operation can be decomposed into two components: 

1. an element by element multiplication 
2. a reduction step to form the total. 
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program overflow; 
type bvec=array[O .. 7] of byte; 

ivec=array[O .. ?J of integer; 
const b1:bvec=(1,2,4,8,16,32,16,8); 
var t1,t2:integer;i1:ivec; 
begin 

t1 :=bl. b1; 
i 1 :=b1; 
t2:=il.i1; 
writeln( 'byte dot product ',t1); 
writeln( 'int dot product ',t2); 

end. 

produces as output 

byte dot product 149 
int dot product 1685 

note that 149 = (1685 mod 256) 

Algorithm 33. The danger of overflow when computing dot products using limited precision. 

As such, the expression v . w is equivalent to the Vector Pascal expression 
\ + ( v *w). It therefore has meaning for any types for which the operators + 
and * are defined. The integer interpretation of this is direct, but care has to be 
taken with the possibility of overflows occurring. The type of scalar result 
returned by the dot product operator is the same as the type of the elements of 
the arrays being multiplied. When working with integers, particularly integers 
of limited precision, this gives rise to the risk of the result being greater than 
can be represented in the available precision. Alg. 33 illustrates how a dot 
product of a vector of bytes is computed to only 8-bit precision, in contrast to 
the case where the same input values are represented as 32-bit integers. 

It is also possible to perform the dot product operation between other types 
of vectors: 

1. Vectors of complex numbers. In this case, the interpretation is in terms of 
complex addition and multiplication. 

2. Vectors of sets (see Section 9.6). In this case, the interpretation is in terms 
of set union and intersection. 

3. A vector of strings may multiply a vector of integers. In this case, the 
interpretation is in terms of concatenation and repetition. This is illustrated 
in Alg. 34. 

7 .6.3 Matrix to Vector Product 

In Section 3.6, we discussed the use of matrix of the form given in Equation 
3.3 to carry out generalised linear geometry transforms. We can do this in 
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program roman; 
canst rom:array[0 .. 4J of string[l]=('C','L' .·x· .·v· ,'I'); 

numb:array[O .. 4] of integer =( 2. 1, 1, 0, 3); 
var s:string; 
begin 

s:=numb.rom; 
writel n(s); 

end. 

produces output 

[wpc@localhost tests]$ roman 
CCLXIII 

Algorithm 34. Use of the dot product operator to output the number 263 as the roman number CCLXIII. 

Vector Pascal if a two-dimensional array is used to multiply a one-dimensional 
array, using the dot product operator. If M is a two-dimensional array and v a 
vector, M • v produces the transformed vector. 

The program matvmult, shown in Alg. 35, shows the repeated application of 
a rotation and translation matrix to the unit x vector. When the matrix 

I -I 0 0 .fi .fi 
I I 0 0 .fi .fi 
0 0 1 0.2 
0 0 0 1 

is applied to a vector of the form [x, y, z, 1], it rotates it by 45° and moves it up 
by 0.2. 

7 .6.4 Data-flow Hazards 

Note that in Alg. 35, one cannot simply write v 1 : =M . v 1; instead, one has to 
write 

v2:=M.v1; 
v1:=v2; 

since the vector v 1 might be changing whilst it was being read. Had the 
compiler encountered this statement, it would have generated the error 
messages: 

compilation failed 
17: Error assignment invalid 
17: Errorinprimaryexpressionstartedbym 
17: Error attempting to reduce rank of variable 
17: Error data hazard found. Destination v1 is used with 

ani ndex permutation on right hands ide of :=which 
can cause it to be corrupted. 
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You can get round this by assigning to a temporary 
array instead and then assigning the temporary to 
destination vl 
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A check for data-flow hazards is applied to all array assignment state­
ments. If array expressions could all be evaluated in parallel, then there would 
be no hazards. The problem arises because only simple array expressions can 
be evaluated entirely in parallel. In other cases the array assignment has to be 

program matvmult; 
type vec=array[0 .. 3] of real; 

mat=array[O .. 3] of vee; 
canst 

{ 1/sqrt(2)} rr2=0. 7071067 ; 
M:mat=((rr2,-rr2,0.0,0.0l, 

(rr2,rr2,0.0,0.0l, 
(0.0,0.0,1.0,0.2), 
(0.0,0.0,0.0,1.0)); 

{45degree spiral matrix} 

v:vec=(1.0,0.0,0.0,1.0l; 
var v1,v2:vec;i :integer; 
begin 

write(M, vl; 
v1:=v; 
(* perform 8 45degree rotations *) 
for i :=1 to 8 do begin 

v2:=M.v1; 
v1 :=v2; 
write( v1); 

end; 
end. 

produces as output 

0.70711 
0. 70711 
0.00000 
0.00000 
1.00000 
0. 70711 
0.00000 

-0.70711 
-1.00000 
-0.70711 
-0.00000 
0.70711 
1.00000 

-0.70711 0.00000 
0.70711 0.00000 
0.00000 1.00000 
0.00000 0.00000 
0.00000 0.00000 
0.70711 0.20000 
1.00000 0.40000 
0.70711 0.60000 

-0.00000 0.80000 
-0.70711 1.00000 
-1.00000 1.20000 
-0.70711 1.40000 
-0.00000 1.60000 

0.00000 
0.00000 
0.20000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

Algorithm 3S. Using a spiral rotation matrix to operate on the unit x vector. 
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broken down by the compiler into a sequence of steps. This gives rise to the 
danger that an array location may be altered by an early step prior to it being 
used a source of data by a subsequent step. 

In most cases there will be no problem even where the destination vector 
appears on the right-hand side of an assignment. Thus: 

M:=M+v; 

for some matrix M and vector v is acceptable, since here each element of M 
depends only on its own prior value. However, for v 1 : = M . v 1, we have the 
equations 

3 

vlo = L MojVlj 
j=O 

3 

vl1 = L M1jvlj 
j=O 

(7.4) 

(7.5) 

Whatever the order in which the code for these equations is evaluated, either 
v10 or v1 1 will be altered before it is used in the other equation. Given that 
such hazards can arise in any language that allows parallel array assignments, 
there are two design approaches that can be taken to avoid them: 

1. One can check for data-flow hazards at compile time and flag them as 
programming errors. 

2. One can define the semantics of the language so that each array expression 
computes its full result before any assignment occurs. 

Vector Pascal takes the first approach whereas APL NIAL and Fortran 90 take the 
second. For an interpretive language in which arrays are dynamically generated 
on the heap, such as APL and NIAL, this is the natural applicative semantics to 
adopt. For imperative languages where arrays are in the main statically allocated, 
there are advantages to each approach. The second approach gives rise to more 
natural semantics, requiring less thought on the part of the programmer, but it is 
less efficient. If each array expression generates a new array of values, then store 
must be allocated for this purpose. On modern machines one is not likely to be 
short of main memory, but frequent allocation of temporary buffers will have an 
impact on cache occupancy which might not have occurred in the equivalent 
sequential algorithm. In Vector Pascal, all array expressions are interpreted as 
loops around derived scalar expressions. The temporary store required by the 
scalar expressions can then be allocated in registers. 

7 .6.5 Matrix to Matrix Multiplication 

The dot operator can be used between matrices to perform matrix multiplica­
tion as illustrated in Alg. 36. This applies the standard equation for matrix 
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program matmmult; 
canst 

A:array[1 .. 2,1 .. 3] of integer=((3,1,2), 
(2,1,3)); 

B:array[l..3,1..2] of integer=((l,2), 
(3, 1)' 

( 2 '3)) ; 

var C:array[1 .. 2,1 .. 2] of integer; 
begin 

C:=A.B; 
writel n(C); 

end. 

Produces output 

multiplication: 

10 
11 

13 
14 

Algorithm 36. Matrix by matrix multiplication. 

p 

Cik = L a;sbsk 
s=l 

149 

(7.6) 

where A is of order ( m x p) and B is of order (p x n) to give a resulting matrix 
C of order (m x n). 

7.7 Typography of Vector Pascal Programs 

Vector Pascal makes use of a number of other publicly available software tools. 
One of these is the TEX. typesetting sytem. 

There exists a canonical TEX. representation of Vector Pascal programs, 
VPT:EX. This representation can be obtained either by use of a compiler flag 
(the -L flag), which causes the compiler to output a program listing as a . tex 
file, or by using the VIPER Integrated Development Environment discussed in 
Sections 16.1-16.6. The program shown in Alg. 28 would look like Figure 7.2 
once formated through VPTEX and ID':EX. 

program Mean 7; 
const 

c:array [1..4] of integer= (1 ,2,3,5); 
begin 

write( II.(Ilc)0·25); 

end. 

Figure 7.2. Illustration of VPTEX formating applied to the program shown in AI g. 28 to find the mean of 
the first 4 primes. 
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program forms; 
var a:array[l .. 4] of real; 

b:integer; 
begin 

end. 

b:=3; {initialise bl 
a:=7/b;{flood fill} 
a[b]:=sqrt(a[b]*b); 
write(a); 

program forms; 
var 

Let a E array[1 . .4] of real; 
Let bE integer; 

begin 
b~3; 

a~{;; 
ab~ Jabx b; 
write( a); 

end. 

Figure 7.3. The mapping from ASCII to ~X format. 

In VPT£X the reserved words ofVector Pascal are rendered in bold sans-serif 
font. User-defined identifiers are rendered in italic sans-serif font. 

Comments that are preceeded by a special comment opening sequence ( * ! 
are treated as IM£X source and passed directly to the . tex output file. By 
default these will be printed in roman face. Comments at the end of a line are 
printed by VPT£X as marginal notes. The example in Figure 7.3 of Vector 
Pascal in ASCII format shows some of the conversions performed when going 
to VPT£X format. 

Note how array subscripting is printed using typographic subscripts and 
standard mathematical notation is used for square root. The VPT£X format is 
intended for both documentation and communication purposes, wherever the 
mathematical meaning of an algorithm has to be concisely expressed. The 
higher order operators in Vector Pascal lend themselves well to mathematical 
notation. In subsequent chapters VPT£X format will be used where it helps 
communicate algorithms and where the ASCII forms of the constructs used 
have already been introduced. 



Algorithmic Features 
of Vector Pascal 

Chapter 7 presented the key features of Vector Pascal's expression language. 
These allow it to be used as, in essence, a sophisticated calculator working 
on both scalars and arrays. In order to write general-purpose algorithms, 
one needs to add facilities for conditional evaluation and either recursion or 
unbounded iteration. 

8.1 Conditional Evaluation 

Vector Pascal reintroduces an old construct, the conditional expression. This 
was present in Algol~60 but was deleted from Pascal by Wirth because he 
considered that it could be bewildering (Wirth, 1996). It has been included in 
Vector Pascal because it is useful as a means of expressing conditional 
computation in a data-parallel way. 

Suppose that we wish to grade some examination marks. All marks of 70 
and above qualify for the first grade, all marks in the range 50 to 69 qualify for 
the second and those below for the third. Figure 8.1 shows a program that will 
grade an array of eight marks based on this rule. Invoking it produces the 
following results: 

C:\book >gra de 
60 45 55 67 83 12 90 61 

2 3 2 2 1 3 1 2 

PROGRAM grade ; 
VAR marks, grades:ARRAY [l .. 8] OF byte; 
BEGIN 

READ(marks) ; 
grades:=IF ma rks>=70 THEN 1 

ELSE IF marks>=50 THEN 2 
ELSE 3; 

{format i n 3 cha racter wide f ields) 
WRITE(GRADES :3) ; 

END. 

Figure 8.1. An example of conditional evaluation. 

151 
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The conditional evaluation IF ... THEN ... ELSE takes a Boolean argument 
between I F and THEN and two arguments of matching type after the THEN and 
ELSE keywords. As shown in the example, conditional evaluation is allowed 
over array arguments provided that the normal rules for rank and dimen­
sionality are met. 

The conditional expression lends itself well to parallel evaluation on SIMD 
instruction -sets. 

8.2 Functions 

Functions are abstractions over expressions which allow certain terms of the 
expressions- the parameters- to be substituted in when the function is invoked. 
Vector Pascal provides a library of pre-given functions and prefix operators to 
perform common mathematical tasks; here we discuss user-written functions. 

8.2.1 User-defined Fundions 

A Pascal function has a name whose format follows the rules for identifiers, an 
optional parameter list and a return type. Within a context functions should 
be declared after constants and variables. Figure 8.2 illustrates three functions, 
one with no parameters, the second with one parameter and the third which 
recurses on its one parameter. 

Functions return their value by making an assignment to an implicit write­
only variable with the same name as the function. The function does not 
return control to its calling environment on this assignment. This is different 
from languages such as C and Java where returning a value and returning 
control are done by the same construct. 

Vector Pascal allows any type, including array types, to be returned from a 
function. This contrasts with Standard Pascal, which limited function return 
types to scalars. 

FUNCTION Pi4:real; 
BEGIN 

Pi4:=pi/4 
END; 
(*Compute log_2(X)*) 
FUNCTION Log2(x:real):real; 
CONST Log2e=l.442695; {log_2 of e) 
BEGIN 

Log2:=ln(x)*log2e; 
END; 
FUNCTION Fact(i:integer):integer; 
BEGIN 

Fact:=IF i<=l THEN 1 ELSE Fact(i-l)*i 
END; 

Figure 8.2. Three functions. 
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Vector Pascal has an extension to allow C style returning of values. The 
construct EXIT ( x) would cause the current function to return with the value x. 

Function declarations create a new scope within which new identifiers can be 
declared. These can be variables or constants used for temporary calculation 
within the function or other functions that perform a subtask within the func­
tion. Figure 8.3 illustrates this with a function that declares two local variables 
and two local functions for its computation. 

Name Hiding 

If a function or procedure declares a local identifier, that local identifier has 
the effect of hiding any lexically equivalent identifiers declared outside the 
function. 

Value Parameters 

The default parameter passing mechanism in Pascal is call by value. This means 
that when a parameter is passed into a function or procedure, a copy is made 
of the parameter. The parameter passed in is termed an actual parameter and 
the name declared in the parameter list is the formal parameter. Since the 
formal parameter is a copy of the actual one, any assignment to the formal 
parameter leaves the actual parameter unchanged. 

Programmers should be aware of the efficiency considerations inherent in 
making copies of arrays passed as value parameters. 

Var Parameters 

A parameter preceded by the keyword VA R is passed by reference. This means 
that an assignment to the formal parameter will have exactly the same effect as 
assigning to the corresponding actual parameter. An implication of this is that 

CONST elems=lOO; 
VAR dataset:ARRAY[l .. elems] OF real; 
FUNCTION getrange:real; 
{returns the range of values used in the dataset} 
VAR top,bottom:real; 

FUNCTION highest: real; 
BEGIN highest:=RDU MAX dataset END; 

FUNCTION lowest: real; 
BEGIN lowest:=RDU MIN dataset END; 

BEGIN 

END: 

top:=highest; 
bottom:=lowest; 
getrange:=top-bottom 

Figure 8.3. Use of local identifiers within a function. 
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(* scanb returns the index of the largest item in a 
and also updates big to hold the value of the largest 
item in a *) 

FUNCTION scanbCVAR big: real ;a:ARRAY[l .. lOJ OF real):integer; 
FUNCTION findCi :integer); 
BEGIN 

find:=IF a[i]=big THEN ELSE i+l; 
END; 

BEGIN 
big:=RDU MAX a; 
scanb:=fi nd(l); 

END; 
(* return the least element of a *) 
FUNCTION scanCVAR a:ARRAY[l .. 10] OF real):real; 
BEGIN 

scan:=RDU MIN a 
END; 

Figure 8.4. Two uses of var parameters. 

the actual parameters must themselves be variables. It is an error to attempt to 
pass a constant or an expression as a var parameter. 

Var parameters should be used in the following circumstances: 

1. When a procedure or function needs to update its actual parameters. This is 
illustrated in function scan b in Figure 8.4, where two results are returned: 
the largest value in an array and its index. 

2. For efficiency considerations when passing large parameters, in particular 
large arrays. Since only a reference to the array is passed in, this will typi­
cally be faster than copying the whole array. For example, see function 
scan in Figure 8.4. 

It should be noted that whereas in implementations of Standard Pascal, array 
var parameters are typically passed as addresses, this is not necessarily true in 
Vector Pascal, where additional information may in some cases be passed 
concerning array bounds. 

Protected Parameters 
A parameter declaration may be prefixed by the word PROTECTED. A pro­
tected parameter may not be assigned to within the body of the function. 
Protected parameters are useful for obtaining the semantic effect of a value 
parameter where efficiency considerations lead an array to be passed as a var 
parameter. 

Parameter Types 
Standard Pascal requires the types of parameters to be given by type names. 
Where arrays are passed as parameters they must be of user-defined array types 
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FUNCTION a(i:integer):real ;FORWARD; 

FUNCTION b(z:real):real 
BEGIN 

b:=IF z>5 THEN a(trunc(z)) ELSE 2*z; 
END; 

FUNCTION a(i:integer):real; 
BEGIN 

a:=IF i>2 THEN 0.0 ELSE b(i/10); 
END; 

Figure 8.5. Mutual recursion requires forward declaration. 

(see Chapter 9). Vector Pascal allows array types to be explicitly given in the 
parameter declarations as in Figure 8.4. 

Forward Declaration 

Where two functions a and b are mutually recursive there is a potential clash 
with the Pascal rule that an identifier must be declared before it is used. To 
avoid a contradiction one of the functions must be declared as being FORWARD 
(Figure 8.5). A forward function has only its header given followed by the 
word FORWARD. Following this forward declaration, other functions can call 
it. At some later point in the program text the function is redeclared with its 
function body present this time. 

8.2.2 Procedures 

Functions provide a model of programming in which data are passed in through 
the parameters and a result is returned. A function that returns no result, which 
would be a void function in Java or C, is termed in Pascal a procedure. 
Declarations of procedures are similar to those of functions except that 

1. The reserved word PROCEDURE substitutes for the word FUNCTION. 
2. No return type is specified. 
3. No assignment is allowed to the procedure name within the procedure. 

Procedures communicate their effects preferably by means of var parameters. 
Alternatively, they may alter global variables, although this is regarded as a less 
ideologically sound practice. 

Example Program to Compute Entropy 

Let us now illustrate the use of the features introduced so far in a complete 
program.1 The aim of the program is to compute the entropy H or mean 

1This program, with modifications for Vector Pascal, is derived from Cherry (1980). 
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information per character of a source given p;, the probabilities of occurrence 
of each character. The formula for information is given by Shannon (1948) as 

where each term of the series is actually positive since we know that p; < 1 
by the definition of a probability distribution, hence log(p;) < 0. If we use 
log2 instead of natural logarithms, then the measure comes out in bits. Thus, 
given a distribution defined over two possible measurement outcomes { 0,1} 
each of which is equally probable, we obtain the equation -0.5log2 (0.5)-
0.Slog2(0.5) = -log2(0.5) = 1, hence the conclusion of Shannon that one 
bit is the amount of information required to choose between two equally 
probable outcomes. 

Let us assume that our program has to read in a table of probabilities, one 
for each character. The probabilities will be provided as real numbers in 
lexicographic order, one for each character in the character set which we shall 
assume to coincide with the Pascal type CHAR. The program outline, 
proceeding in a top-down fashion, might look as follows: 

program Shannon; 
var 

Let P E ARRAY [char] OF real; 
Let valid E boolean; 

function H (PROTEGED var P:array [char] of real):rea/; (see Section 8.2.4) 
procedure ReadAndVa/idate (var P:array [char] of real); (see Section 8.2.3) 
begin 

ReadAndValidate (P); 
if valid then WRITE(H (P)); 

end. 

8.2.3 Procedure ReadAndValidate 

Let us defer the refinement of H until later, and concentrate on the code to read 
and validate. In Vector Pascal reading an array is trivial, but we need to check that 

1. No p; > 1, as this would validate the axioms of probability theory. 
2. No p; < 0, as this is again meaningless in probability theory. 
3. No p; = 0; although 0 is defined as a probability, -p;log2(p;) is undefined 

at 0. 
4. The sum of the probabilities is 1. If the sum is significantly different from 

1 then this is probably an error in the input data. If it is slightly different 
then it is probably due to rounding errors and can be compensated for by 
renormalising the data. 

Here is the refinement of ReadAndValidate: 

procedure ReadAndValidate (var P:ARRA Ychar of real); 
const 

tolerance= 0.005; 
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normalise 

var 
Let low,high,sum E real; 

begin 
read (P); 
low +--- \min P; 
high +--- \max P; 
sum+- L,P; 
valid+--- (low > O) 1\ (high :S 1) 1\ (sum < 1 + tolerance) 1\ (sum > 1 -tolerance); 
if NOT valid then WRITE('data invalid'); 
p +--- p. 

sum' 
end; 

We compute the highest and lowest elements and the sum of the series. We 
update the Boolean variable valid depending on whether these values are 
within the valid ranges. We then renormalise the values to be within range 
taking into account minor errors in the precision of the source data. 

8.2.4 Function H 

We now provide a refinement ofthe function H. This uses a nested function to 
compute log2(x), shown in Section 8.2.5. 

function H (PROTECTED var P:ARRA Ychar of real):real; 
function Log2 (x:real):real;(see Section 8.2.5) 
begin 

H +--- 'L,(-PxLog2(P)); 
end; 

8.2.5 Function Log2 

We can convert from a logarithm to base e to a logarithm to base 2 by multi­
plying the natural logarithm of a number by the logarithm of 2 to the base e. 

function Log2 (x:real):real; 
const 

Log2e = 1.442695; 
begin 

Log2 +-ln(x)xlog2e; 
end; 

8.3 Branching 

8.3.1 Two-way Branches 

We have already looked at the use of the I F . . . T H EN . . . E L S E . . . 
construct in conditional expressions. In that case a Boolean variable is used to 
determine which of two alternative expressions is to be returned as a result. 
It can also be used in conditional statements to control whether a statement is 
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executed. We have given a simple example of the If statement in the program 
Shannon, where it was used to guard Write statements. The general form with 
an ELSE is illustrated in 

IF val i d THEN WRITE ( H ( P) ) 
ELSE WRITE(' No result computed·): 

Dangling Else 

It is important to realise that in Pascal the keyword ELSE binds with the 
closest preceding THEN. This rule means that code has to be read with care to 
determine its meaning. Consider the following: 

IF b1 THEN 
IFb2THEN 

WRITE( 'both true') 
ELSE write( 'b1 false'): 

From the indentation and messages it is clear that the coder wanted the 
message b 1 fa l s e to be printed out if b 1 was false. In fact nothing will be 
printed, as the compiler interprets this as: 

IF b1 THEN BEGIN 
IF b2 THEN 

WRITE('bothtrue') 
ELSE write( 'b1 false'): 

END; 

To achieve the desired end, the coder should have written 

IF b1 THEN BEGIN 
IFb2THEN 

WRITE('bothtrue') 
END 
ELSE write(' b1 false'): 

8.3.2 Multi-way Branches 

The following structure: 

IF b1 THEN statementl 
ELSE IF b2 THEN statement2 
ELSE IF b3 THEN statement3 

ELSE statementN 

selects one of n alternatives based on n - 1 Boolean expressions. This is the 
most general form of multi-way branch but it is composed of a sequence of 
two way branches which use Booleans, a bivalent type, as the selector. 
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Pascal also allows multi-way branching on subrange and ordinal types using 
the case statement 

CASE errcode OF 
1.7 :WRITEC'dividebyzero'); 
2 :WRITEC'Logofnegativenumber'); 
3 .. 6,8: WRITE( 'bounds error'); 
END; 

The example above shows a classical Pascal case statement. There is a 
selection expression, e r r code, and a series of statements, each of which is 
preceded by a list of guards. The guards are either values or ranges of values. At 
run time control is passed to that statement, if any, whose guards include the 
value of the selection expression. After this statement has executed, control 
passes to the statement following the EN D. C and Java programmers should 
note that no b rea k is required following the cases, unlike the analogous 
s w i t c h statement. 

Vector Pascal supports the 0 THE RW I S E construct in case statements: 

CASEcOF 
'a' .. 'z' :WRITEC'lowercase'); 
'A' .. 'Z' :WRITEC'uppercase'); 
OTHERWISE WRITE ('not a letter'); 
END; 

The statement guarded by OTHERWISE receives control for all selections other 
than those for which an explicit guard is provided. 

For compatibility with code written for Turbo Pascal, the word ELSE may 
substitute for 0 T H E RW I S E. 

As shown in the example above, the guards need not be integers, but they 
must be scalars known at compile time. There will be an implementation­
defined limit to the range of the types that can be used in case selections in 
Vector Pascal, which will be accessible to programmers using the predefined 
constant maxcaseswi tch. 

8.4 Unbounded Iteration 

An unbounded iteration construct allows a statement to be iterated for a 
number of times that is determined by the iteration process itself. The number 
of iterations cannot in general be predicted at compile time. Pascal provides 
two unbounded iteration constructs, W H I L E and REPEAT statements. 

8.4.1 While 

The while loop is probably the most frequently used structure for controlling 
iteration. The general form of the while statement is 

WHILEbDOs; 
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where b is a Boolean expression and s is a statement. It is evaluated as run 
time as follows: 

1. When the while statement is first encountered the processor evaluates b. 
2. If it is false, execution continues with the first statement after the while 

statement. 
3. If b is true, the processor executes s. 
4. After executing s the processor re-evaluates b and goes to step 2 above. 

The while statement should be used when the number of repetitions to be 
executed is not only unknown at compile time but also may be zero. 

While statements can have compound statements for their bodies: 

WHILEremainder>=divisorDO 
BEGIN 

remainder:= remainder-divisor; 
quotient :=quotient+1 

END; 

8.4.2 Repeat 

The second form of unbounded repetition, the REPEAT statement, should be 
used when the number of iterations is a priori unknown but is known to be at 
least one. Consider the example 

{skip blanks} 
REPEAT 

read(ch) 
UNTILch<>'' 

The repeat statement has the general form 

REPEATs1; s2; ... UNTILb; 

where s 1, s 2, ... are statements and b is a Boolean expression. It is evaluated 
as follows: 

1. Statements s 1, s 2, . . . are executed. 
2. Expression b is evaluated. 
3. If b is false, control passes to the first statement after the repeat statement. 

Otherwise the processor goes back to step 1. 

The unbounded repetition statements are particularly useful when dealing 
with potentially infinite data types, for instance files and input streams. Whereas 
in Vector Pascal the sum of an array a can be written RDU+a, to obtain the 
sum of a file of numbers one needs unbounded iteration. Figures 8.6 and 8.7 
show how repeat and while loops could be used to provide the total of all the 
integers in a file up to and including the first zero value. The number of non­
zero values is not initially known. 
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program sum file (input,output); 
var 

Let total, x E integer; 
begin 

totalt- 0; 
repeat 

read(x); 
total f- total + x; 

untilx = 0; 
end. 

Figure 8.6. Use of unbounded iteration to sum the integers in a file up to the first 0 value. 

program sumfile2 (input,output); 
var 

Let total, x E integer; 
begin 

read(tota/); 
xt- total; 
whilex=F Odo 
begin 

total f- total + x; 
read(x); 

end; 
end. 

Figure 8.7. Use of a while loop to achieve the same result as in Figure 8.6. 

Note that these programs include parameters i n p u t and o u t put for the 
standard i/o streams in the program header. The use of these is now relatively 
obsolete, since in most Pascal implementations predeclare these files, allowing 
them to be elided as in previous examples. This form is shown for compati­
bility with the usage in older Standard Pascal implementations. 

8.5 Bounded Iteration 

Bounded iteration involves a number of repetitions of an action that is 
predetermined before the action starts. It can either be determined at compile 
time or determined by calculations performed by the program before the 
iteration commences. 

8.5.1 For to 

The most commonly used bounded iteration construct m Pascal 1s the 
FOR ... TO loop. It has the general form 

FORi :=x TOy DO s 
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const 
maximum = 1 0; 

var 
Let a E ARRAY[1 .. maximum] OF real; 
{typical Vector Pascal} 
function newsum:real; 
begin 

newsumf- I.a 
end; 
{typical Pascal J 
function oldsum:real; 
var 

Let i E integer; 
Lett E real; 

begin 
tf- 0; 
fori f- 1 to maximum do 

tf- t+ a;; 
oldsumf- t; 

end; 

Figure 8.8. The use of a for loop to perform operations on an array contrasted with the use of explicit 
array arithmetic. 

where i is a variable drawn from some integer or other scalar type t; x and y 
are expressions of type t, and sis a statement. When a FOR ••• TO statement 
is encountered the processor performs the following actions: 

1. The expression x is evaluated and assigned to i . 
2. The value of i is compared with that of y and if it is greater control passes 

to the first statement after the FOR statement. 
3. The statement s is evaluated. 
4. x is assigned the value s u c c ( x ) . 
5. The processor goes back to step 2. 

In Standard Pascal the most common use of for loops is to iterate over arrays 
whose size is known. In Vector Pascal the provision of array arithmetic makes 
this less necessary. Figure 8.8 contrasts the preferred Vector Pascal construct 
for summing the elements of an array with the preferred Standard Pascal 
construct which uses a FOR ... TO loop. 

8.5.2 For Downto 

A second form of the FOR statement iterates down through a range. It has the 
same general form as the FOR ••• TO statement except that the word DOWNTO 
is substituted for the word To. In this case the iteration variable is 
decremented as it steps through the range. In this case the starting value 
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const 

var 
maximum = 1 0; 

let a E ARRAY[1 .. maximum] OF real; 
{find number with biggest integer absolute reciprocal} 
function recipmax:integer; 
label99; 
var 

Let i, r E integer; 
Let ok E boolean; 

begin 
r+- 0; 
ok+- false; 
fori+-- 1 to maximum do 
begin 

if A; = 0 then goto 99; 
r +-- r MAX ROUND (ab~(a); 

end; 
recipmax +-- r; 
ok+- true; 
99: if NOT ok then recipmax +-- maxint 

end; 

Figure 8.9. The use of GOTO to escape from an error condition. 
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must be greater than or equal to the finishing value if the statement s is to be 
executed one or more times. 

8.6 Goto 

Pascal allows unconditional transfers between points in a program. A goto 
statement has the form GOTO n; where n is a decimal integer termed a label. 
Individual statements can be labeled by prefixing them by a label. Although 
labels take the format of decimal integers, there is no need for the order in 
which labels occur in the source to be ascending. 

Labels must be declared at the head of the program or procedure in which 
they occur. 

The most common use of goto statements is to escape from a an error 
condition to the end of a procedure, bypassing any intervening statements. 
GOTOs should only be used to perform jumps within a procedure. 2 

Figure 8.9 illustrates this by using a goto to escape from a potential divide 
by zero error. The presence of a zero in the input data causes the function to 
escape to a line which returns the largest supported integer as a proxy for 
infinity. 

2In Vector Pascal, a goto that jumps to an enclosing scope will transfer control but will not 
unwind the stack. This can lead to unpredictable error conditions. 
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User-defined Types 

Thus far we have seen that data in Pascal can be of types integer, real, Boolean, 
character or string. In addition, Pascal provides a rich set of type constructors 
that allow user-defined types to be declared. A user-defined type is given a 
name which follows the normal scope rules of the language. It associates an 
identifier with the set of possible values that a variable of that type may take on 
at run time. 

The general syntactic form of a type declaration is 

TYPE i = t; 

where i is a well-formed identifier and t is a type expression. These type 
expressions are built up using several organising principles: 

1. A type may be drawn from a range of values. 
2. A type may be a specialisation of the real numbers. 
3. It may be formed as some form of array. 
4. Several types can be joined to form a composite type. 
5. A type can be defined as a power-set of some range. 
6. A type may be a pointer or reference to another type. 

9.1 Scalar Types 

A scalar type in Pascal is a set that is homomorphic to a subrange of the natural 
numbers. The types Boolean and char are predefined scalar types. 

A value of a scalar type can range over this set. A scalar type is defined in 
terms of an ordered list of identifiers. The identifiers introduced in the ordered 
list must be unique within the scope of definition. For example: 

TYPEday=( sunday,monday ,tuesday,wedne sday , 
th urs day , f rid ay , sa turd ay ) ; 

co l our=( red, green, bl ue ) ; 

This introduces eight identifiers: day, a type identifier, and seven constants, 
s unday ... sa t urd ay, all of type day. Given the type definition for day, 
variables of this type can now be declared: 

VARt oda y :day ; 

165 
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Assignments can be made to these variables provided that the value being 
assigned is drawn from the appropriate set of identifiers. Thus, 

today:=monday; 

is valid but 

today:=l; 

is not. 
The complete set of comparison operators are implicitly defined over all 

scalar types, as are the operators MIN and MAX. 

9.1.1 SUCC and PRED 

There is a pair ofbuilt-in operators, SUCC and PRED, defined over every scalar 
type t such that x = SUCC PREDxVx E t andy= PRED SUCCyVy E t. 

This definition of the successor and predecessor functions differs from that 
given in the Pascal standard, which defines S U C C as follows: 

succ(x) 

The function shall yield a value whose ordinal number is one greater 
than that of the expression x, if such a value exists. It shall be an error if 
such a value does not exist (ISO, 199lb, p. 45). 

The implication of these definitions is that in Vector Pascal the successor 
function operates in a modulo fashion. As one steps through a scalar type with 
the successor function, one eventually gets back to the starting point. This is 
illustrated in Figure 9.1. 

The intention of the ISO definition is to ensure that the result of performing 
the successor or predecessor functions is always a member of the type of its 

program ordinals; 
type 

var 

day = (sunday,monday,tuesday,wednesday, 
thursday,friday,saturday); 

Let today,tomorrow,day2 E day; 
begin 

today f- friday MAX saturday; 
tomorrow f- SUCC today; 
day2 f- SUCC(sunday,2); 
writeln(today,tomorrow,today < friday,day2 < friday); 

end. 

output generated: 

saturday sunday false true 

Figure 9.1. A program illustrating both the comparability of user-defined scalar types and their cyclical 
nature. 
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argument. The Vector Pascal approach of using modulo arithmetic achieves 
the same result in a different way. It has certain advantages: 

• For certain data types, for example the days of the week, it leads to a more 
natural approach. 

• It is congruous with the general restrictions of finite length computer 
integer arithmetic, which is inherently modular. In this way scalar types 
which typically have small ranges are brought into conformity with the 
semantics of the integer data type. For example, the program 

program wrap; 
var 

Let i E integer; 
begin 

i+-maxint; 
write(i,j + 1 ); 

end. 

will on most Pascal systems print out the largest and smallest integers 
handled by the processor. This is permitted under the Pascal standard, 
which states (ISO, 199lb, p. 49): 

Any dyadic operation on two integers in the same interval shall be 
correctly performed according the mathematical rules for integer 
arithmetic provided that the result is also in this interval. 

Since maxi n t+ 1 is outside the defined interval for integer arithmetic, the 
default modular arithmetic performed by most computer hardware is 
allowed by the standard. 

• The rule that an error will arise if S U C C is applied to the top element of the 
type forces the compiler to plant range checking code. This is typically 
slower than performing a modulus operation. 

Conformity with the Standard 

Where backward compatibility demands it, the Vector Pascal compiler can 
perform the successor and predecessor functions in the way required by the 
standard. To do this the compiler directive { $ m - } is inserted into the body of 
the program. This switches off modular arithmetic until the obverse directive 
{ $ m+ } is inserted. 

When modular arithmetic is switched off, then range checks will be placed 
after each invocation of SUCCor PRED. 

The placement of range checks can itself be controlled by the compiler 
directives { $ r-} and { $ r+} as shown in Table 9.1. The default state of the 
range checking switches is on. 

Extended Syntax for S U C C 

Extended Pascal allows a second parameter to be supplied to SUCC and PRED. 
The second parameter is an integer which specifies the size of the increment or 
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Table 9.1. Effect of the compiler directives Sm and Sr 

Means 

Default status, use modular arithmetic and array bounds checks 
Use modular arithmetic, but no array bounds checks 
Bounds checks on arrays, succ and pred 
Neither range checks nor modular arithmetic 

FUNCTION tolower(c:char):char; 
BEGIN 

tolower:=CHRCORD(c)-ORDC'Z')+ORDC 'z')); 
end; 

Figure 9.2. Illustrating how the 0 R D function can be used to allow arithmetic on a scalar type, in this 
case char. 

decrement to be performed. Thus given the definition of day above, the line 

WRITE(SUCC(sunday, 2)); 

will produce the output tuesday. This extended syntax is supported in Vector 
Pascal. As with the single-parameter format, the default in Vector Pascal is for 
the increment or decrement to be performed by modular arithmetic. 

9.1.2 ORO 

There is an operator 0 RD which returns the integer corresponding to a 
member of a scalar type. Figure 9.2 illustrates how the ORO operator can be 
used in calculations to convert letters to lower case. 

9.1.3 Input/Output of Scalars 

Standard Pascal does not support the reading and writing of scalars to and 
from text files. Vector Pascal does. A scalar type is printed out as the 
equivalent string of characters. A read operation whose target is a variable of 
scalar type will: 

1. read in the next identifier in the text file 
2. check it against the valid members of the scalar type 
3. generate an error condition if the identifier is not or the right type 
4. convert the textual form of the identifier into the appropriate binary code. 

9.1.4 Representation 

Scalar types in Vector Pascal will be stored using either octets, halfwords or 
words, depending on the range of the type. 
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PROGRAM increment; 
{Program to read in a string of decimal digits 
convert it to an integer, increment it 
and print the result. 

} 

TYPE 
decimalchar='0' .. '9'; 
decimalint = 0 .. 9; 

VAR line:string; 

FUNCTION s2int(s:string):integer; 
LABEL 99; 
VAR c:char; i ,t:integer; 

FUNCTION toint(d:decimalchar):decimalint; 
BEGIN 
toint:=ORD(d)-ORD('O') 

END; 
BEGIN 

i :=1; t:=O; 
WHILE i<length(s) DO 
BEGIN 

END; 

c:=s[i]; 
IF (c<'O') OR (c>'9') THEN GOTO 99; 
t:=lO*t+toint(c); 
i :=i+l; 

99: s2int:=t 
END; 

BEGIN 
READLN (line); 
WRITELN(s2int(line)+l); 

END. 

Figure 9.3. The use of sub-range types. 

9.2 Sub-range Types 
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A type can be defined to be a sub-range of another integer or scalar type: 

TYPEweekday=rnonday .. friday; 
decirnalchar='O' .. '9'; 
decirnalint = 0 .. 9; 

A sub-range type inherits its signature of operators from the type of which it is 
a sub-range. Thus, the type deci rna l char in the example above can have 
comparison operations, ORO, PRED and SUCC, on its values. The type 
dec i rna l i n t, on the other hand, can take part in arithmetic operations. The 
use of these types is illustrated in Figure 9.3. 
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9.2.1 Representation 

Sub-range types in Vector Pascal will be stored using either octets, halfwords 
or words, depending on the range of the type. 

Numeric sub-range types whose ranges fall within the range -128 ... 127 
are represented as signed octets. Numeric types whose lower bound is zero or 
greater and whose upper bound is in the range 128 ... 255 are represented as 
unsigned octets. 

Numeric sub-range types whose upper bound is in the range 28 ... 215 - 1 
and whose lower bound is greater than or equal to -215 will be stored in signed 
16-bit integers. 

Numeric sub-range types whose upper bound is in the range 215 ••. 216 - 1 
and whose lower bound is zero or positive will be stored in unsigned 16-bit 
integers. 

Other numeric subranges are stored as signed 32-bit numbers. As always 
when working with finite precision arithmetic, care has to be taken with 
arithmetic operations on sub-range types which could potentially take them 
out of bounds. 

9.3 Dimensioned Numbers 

One use of types in programming languages is to divide up our universe of 
discourse into different categories which are incommensurable. It does not 
make sense to compare days of the week with colours. By allocating a set of 
distinct names to days of the week and to colours using scalar types, one can 
prevent a programmer inadvertently assigning values proper to one type to 
variables of another. 

A variable of type day and a variable of type col o u r will both occupy one 
octet, and thus from the format standpoint one could be copied into another. 
Semantically it would be nonsense. Strong typing protects us from even 
attempting it. 

There is another sort of error which it would be nice to avoid, one captured 
in the aphorism that one cannot add apples to oranges. This type of error relates 
to performing arithmetic between quantities of things that are themselves 
incomensurable. Numbers are used in two senses. In the one sense they are 
abstract mathematical objects whose production and manipulation is governed 
by formal laws. The finite numerical representations used on computers along 
with the arithmetic hardware of the processor provide a partial model for these 
abstract numbers. However, in addition to this Platonic existence, numbers 
have a more mundane use in measurement. In commerce people work with 
quantities such as £35.2, $12.5, 2.3 barrels Brent Crude, where the number 
is paired with a unit of currency or a commodity. These quantities have to be 
kept distinct. Adding barrels of oil to dollars does not make sense. Concep­
tually, quantities of oil and quantities of dollars are measurements along 
orthogonal axes. 

Standard Pascal provides no means of distinguishing between these types of 
numbers, but Vector Pascal provides a way of specialising the type rea l so 
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that it can represent real valued measurements along such conceptually ortho­
gonal axes. These specialisations of the real numbers are termed dimensioned 
numbers. 

Let us consider the coding in Vector Pascal of a fragment of program to handle 
currency conversions and oil price bids in several currencies. Let us assume that 
the trading takes place in UK currency, US currency and EU currency and that 
there is only one type of oil being traded. Our system of measurement is thus 
arranged along four axes. In Pascal, the standard way to represent a fixed size 
collection of entities such as these axes is to use a scalar type: 

TYPE commodity=( oil , UKcurrency, EUcurrency, UScurrency): 

The type commodity now provides us with a set of labels for our axes of 
measurement. We can use them to define a collection of further types for 
quantities of each of these currencies. 

barrel s=real OF oil: 
pounds =real OF UKcurrency: 
euros =real OF EUcurrency; 
dollars=real OFUScurrency; 

The part of the defintion after the word 0 F gives the dimension of the type. 
The scalar type from which the dimension name is taken is termed the basis of 
the dimensioned type set. A dimensioned type set is a set of numeric types that 
share a basis. 

Suppose we now want to write a function to quote, for instance, in euros for 
a certain number of barrels of oil. In generalised commodity trading with n 
commodities, there is a matrix of r?- possible inter-commodity exchanges or 
relative values. However, in an ideal consistent system of commodity exchange 
these n2 relative values are degenerate. By using one commodity as a numeraire 
or universal equivalent (Marx, 1976), one can derive the entire matrix from 
n - 1 prices in terms of this universal equivalent. 

If we fix Sterling to be our universal equivalent, then we can use the Sterling 
price of oil and of EU currency to quote oil in euros. We therefore need three 
variables to hold the exchange rates of the other commodities against Sterling. 
What should the types of these variables be? 

The dollar rate for Sterling is typically specified as some number x of dollars 
per pound. We can write this as x$1£, or borrowing the conventions of 
the physical sciences, x$£ -l; x is thus a real number whose dimension can 
be expressed in more verbose Pascal terms as UScurrency*UKcurrency 
P 0 W - 1. We can therefore specify our exchange ratios as 

VAR 
doll arRate: real OF UScurrency*UKcurrency POW -1: 
euroRate :real OF EUcurrency*UKcurrency POW -1: 
oil Rate :real OF oil *UKcurrency POW -1: 

Here the dimension is given as a product of sub-dimensions each raised to a 
power. All of the sub-dimensions must be drawn from the same basis. 

We can now write a function that will quote a price in euros for a quantity 
of oil (see Figure 9.4). 
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function oillnEuros(b:barrels):euros; 
begin 

oillnEuros f- b x euroRate. 
d oilrate ' 

en ; 

Figure 9.4. Function oillnEuros. 

Let us look at the expression used to calculate the function. The parameter b 
is of dimension oil, and e u r o Rate is of dimension EU currency per 
UKcurrency. Hence the expression b * e u r oR ate is of dimension oil times 
EUcurrency per UKcurrency. If we divide this by the oilrate, which is of 
dimension oil per UKcurrency, then the dimensions oil and UKcurrency cancel 
out, leaving the dimension EUcurrency, which is what we want. 

Now suppose we want to read from the keyboard a quantity of oil and print 
out the euro price. We immediately have a problem, since the built-in read 
procedure only supports the system rea l type. We can read the quantity of oil 
wanted into a real valued variable, but how do we pass it to the function 
oilinEuros? 

VARoilwanted:real; 
BEGIN 

READ(oilwanted); 
WRITE<oilinEuros(oilwanted)); 

will not work for two reasons: 

1. The system real type is dimensionally incompatible with the type b a r r e l s 
wanted by the function oil In Eu ros. 

2. The type e u r o s returned by the function is incompatible with the types 
supported by the system write routine. 

The answer to these problems is provided by the use of dimensioned constants 
to encode units of measurement. Suppose we have the constants shown in 
Figure 9.5. By multiplying the variable oil wanted in procedure eu roq uote 
by the constant b a r r e l it is converted to the type b a r r e l s. Similarly, by 
dividing the p r i c e variable through by the constant e u r o, it is converted 
from a dimensioned real constant to a dimensionless constant suitable for 
printing. 

The dimensioned constants can also be used to initialise the relative prices 
using statements of the form 

dollarRate:=1.45*dollar/pound; 

One should note that the relationship between the names dol l a r s and 
dol l a r is purely conventional. What matters from the standpoint of the 
compiler is that the name of the dimensioned constant denoting the unit of 
account is distinct from the name of the type of the unit of account. This is 
illustrated by the declaration of the constant cent (see Figure 9.5), which 
shares the type dol l a r s but has a different value. 
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program trade; 
type 

commodity = (oi/,UKcurrency,EUcurrency,UScurrency); 
barrels = real of oil; 
pounds = real of UKcurrency; 
euros = real of EUcurrency; 
dollars = real of UScurrency; 

const 
barrel:barrels = 1.0; 
megabarrel:barrels = 1 E6; 
dollar:dollars = 1.0; 
cent:dollars = 0.01; 
pound:pounds = 1.0; 
euro:euros = 1; 

var 
Let dollarRate E real OF UScurrency * UKcurrency POW -1; 
Let euroRate E real OF EUcurrency * UKcurrency POW -1; 
Let oil Rate E real OF oil * UKcurrency POW -1; 

function oillnEuros (b:barrels):euros; (see Figure 9.4) 
procedure euroquote; (see Figure 9.6) 

begin 
dollarRate ~ 1.45 x dollar. 

pound ' 
eurorate ~ 1.62 x euro; 

pound 
oil Rate ~ o 04 x barrel; 
euroquote; pound 

end. 
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Figure 9.S. A simple program which uses dimensioned types in the context of a commodity trading 
problem. 

procedure euroquote; 
var 

Let oilwanted E real; 
Let price E euros; 

begin 
WRITE('Oilin barrels:'); 
readln(oi/wanted); 
price~ oillnEuros(oilwanted x barrel); 
WRITELN(chr($ee), price); 

end; 
euro 

Figure 9.6. Procedure euroquote. 

9.3.1 Arithmetic on Dimensioned Numbers 

At compile time, a vector of integers is associated with each dimensioned 
number type. The dimension vector is indexed by the basis of the dimensional 
type set. 
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Dimensioned values can be added or subtracted provided that they have the 
same basis and the same values in their dimension vectors. Dimensionless 
numbers cannot be added to or subtracted from dimensioned numbers. 

Dimensioned values can be multiplied by dimensionless numbers. The opera­
tion leaves the dimensions unchanged. Two-dimensioned numbers may be 
multiplied provided that they share the same basis. The result type's dimension 
vector is the sum of the dimension vectors of the types being multiplied. 

Dimensioned values can be raised to an integer power n using the POW 
operator. In the statement b: =a POW n, let ai denote the ith element of the 
dimension vector of the type of a and bi the corresponding element of the 
dimension vector of the type of b. Then the rules of dimensional algebra 
require that bi = nai. 

Dimensioned quantities can be divided by dimensionless numbers. Such 
division leaves the dimensions unchanged. Dimensioned quantities can be 
divided provided that they share the same basis. Consider c :=a I b, then using 
the same notation as before, Ci = ai - bi. 

9.3.2 Handling Different Units of Measurement 

Consider the problem that arises when working with different systems of 
measurement, for example the metric system of kilograms, and metres and the 
American or imperial system of pounds and feet. Serious errors can arise if 
quantities in one system are confused with those in the other. Dimensioned 
numbers provide a way of avoiding this danger, but there are some potential 
pitfalls in using them. 

One approach would be to use two distinct enumerated types as the bases 
for the systems of measurement: 

TYPEimperial=(lbs,ft,secs); 
Metric=(kgs,mtrs,secs); 

This falls foul of the rule that the identifier sec s cannot be a member of two 
distinct scalar types. One might alternatively try defining a composite scalar 
type that includes identifiers for both imperial and metric units: 

TYPEmeasurements=(kgs,mtrs,secs,lbs,ft); 

This will work, and would provide a basis for the definition of dimensioned 
numbers for the different units: 

kilograms=REALOFkks; 
meters =REAL OF mtrs; 
seconds =REALOFsecs; 
pounds =REALOFlbs; 
feet =REAL OF ft; 

This type system is secure, in the sense that it is as impossible to assign a 
quantity of type pounds to a variable of type k i l o grams as it is to assign a 
variable of type feet to one of type pounds. This approach, however, fails to 
model accurately the properties of the real-world measurement systems that 
we are using. The difference between feet and pounds is of a different order to 
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that between kilograms and pounds. Kilograms and pounds are both units of 
mass whereas the foot is a unit of length. In terms of dimensional analysis, 
kilograms and pounds are dimensionally identical but differ in scale, whereas 
pounds and feet are dimensionally distinct. If we fail to make this distinction 
we are forced into making a needless duplication of dimensional types. For 
instance, we would need to define two types for acceleration: 

metri cacc=REAL OF mtrs*secs POW -2: 
i mperacc =REAL OF ft*secs POW- 2: 

A function to compute velocity from acceleration and time would work for 
metric or imperial units but not both, since its formal parameters would only 
be consistent with one of the types of acceleration. 

The preferred approach to the problem is first to define the basis of the 
dimensioned type system in a way that is independent of our measuring rods 
as illustrated in Figure 9.7. We then go on to define a number of different 
measuring rods. Using these constants, one can initalise variables of type 
l eng t h with expressions such as 3 . 0 * m i l e s or 7 * mt r s. The expressions 
directly express what is done when we measure a distance, the laying out of a 
measuring rod a certain number of times. Using the same approach, we define 
a set of standard intervals for time: seconds, hours, days, weeks, etc. A function 
to compute distance traveled will now work whichever dimensionally correct 
units we use to supply its parameters: 

FUNCTION compDC a: acceleration: t: interval): length: 
BEGIN 

compD:=(a*t*t)/2.0: 
END: 

BEGIN 
WRITE(compd(9.8*metersPerSecond/secs,3*hrs)/miles); 
WRITELN(compd(2*miles/(hrs*hrs),l*yrs)/mtrs); 

END. 

9.4 Records 

A record type defines a set of similar data structures. Each member of this set, 
a record instance, is a Cartesian product of number of components or fields 
specified in the record type definition. Each field has an identifier and a type. 
The scope of these identifiers is the record itself: 

TYPEmonthname=(jan,feb,mar,apr,may,jun, 
jul,aug,sep,oct,nov,dec): 

date= RECORD 

END: 

year: integer: 
month:monthname: 
day:l. .31: 
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type 
measure = (matter,space,time); 
length = REAL of space; 
interval = REAL of time; 
mass = REAL of matter; 
acceleration = REAL of space* time pow - 2; 
velocity = REAL of space* time pow -1; 
force = REAL of matter* space* time pow - 2; 

const 
{-measures of space} 
em/en = 0.01; 
inch/en =2.54 *em/en; 
foot/en = 12 * inch/en; 
kilometer/en = 1 000; 
mile/en = 1760 * 3 * foot/en; 
mtrs:length = 1.0; 
cms:length = em/en; 
ins:length = inch/en; 
ft:length = foot/en; 
kms:length = kilometer/en; 
miles:length = mile/en; 
{-measures of time} 
minute/en = 60.0; 
hour/en = 60 * minute/en; 
day/en = 24 * hour/en; 
year/en = 365.25 *day/en; 
secs:interval = 1.0; 
mins:interval = minute/en; 
hrs:interva/ = hour/en; 
yrs:interval = year/en; 
{- measures of velocity} 
metersPerSecond:ve/ocity = 1; 
milesPerHour.velocity = milelen/hourlen; 

Figure 9.7. The preferred approach to using dimensioned numbers to handle different units of measure. 

Date is now the name for a type each of whose elements has a yea r, month 
and a day field. The type can be used to declare variables in the usual way: 

VARtoday,eid:date; 

Record variables can be assigned just like any other: 

today:=eid; 

The names of the fields of the record are hidden until a record variable is 
subscripted using the full-stop operator. This allows the fields to be addressed 
as component parts of the entire variable: 

today.day:=succ(today.day); 
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IF today. day= 1 THEN today. month: =succ (today. month); 
IF today. month= jan THEN today. year:= today. year+ 1; 

A record type may have as a final component a variant part. The variant 
part, if a variant part exists, is a union of several variants, each of which may 
itself be a Cartesian product of a set of fields. If a variant part exists there may 
be a tag field whose value indicates which variant is assumed by the record 
instance: 

TYPE val code=( strva l. numva l, textva l. rangeva l); 
value=RECORD 

seqnum: integer; 
CASEvaldist:valcodeOF 
strva l , textva l: ( thestri ng: stri ng[20];); 
numval :(thenum:real;); 
rangeval :(first,last:integer;); 

END; 

All field identifiers, even if they occur within different variant parts, must be 
unique within the record type. The variant parts, where they exist, will typi­
cally be aliased to the same store locations. Assignment to one of the variants 
will typically corrupt all of the others. 

9.5 Pointers 

Variable names in Pascal are tokens for storage addresses in computer memory. 
The compiler associates with the name a type and a statically defined formula 
for calculating the address at which that variable will reside at run time. Store 
for variables is allocated either on the run time stack or in a global data segment. 
In order that the compiler can calculate where these addresses will be, Pascal 
requires that all variables, including array variables, have a predefined size. A 
benefit of this strategy is that variable accesses, including array accesses, can be 
translated into very efficient machine code. The obvious disadvantage is that 
the memory requirements of algorithms may not be known at compile time. 

Suppose that we want to read a list of names in from a file and sort them. 
We could allocate an array that we thought would be large enough, read the 
file into the array and sort it as shown in Figure 9.8. 

If we use a fixed-size buffer, we have to be sure that the data will fit into the 
buffer. This encourages us to make the buffer substantially larger than we 
expect to need, just for safety. The consequence is that in a large program with 
many buffers a great deal of space is wasted. 

Pascal provides a mechanism for store to be dynamically allocated at run time 
in a distinct area of memory termed the heap. The built-in procedure NEW will 
allocate a buffer and return a typed pointer to it. 

The type constructor " can be used to define the type of a pointer to a 
buffer. Suppose we have the definition 

TYPEpint="integer; 
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PROGRAM sortf; 
{Program to sort a file of lines alphabetically} 
CONST maxsize=100; 
TYPE t=STRING[80]; 

index=1 .. maxsize; 
dataarray=ARRAY[1 .. maxsize] OFt; 

VAR buf:dataarray; 
count,i:integer; 

PROCEDURE bubblesort(VAR a:dataarray; n:index); 
VAR i ,j:integer; 

temp:t; 
BEGIN 

END; 

FOR i :=1 TO n-1 DO 
FOR j:=1 TO n-1 DO 

IF a[j]>a[j+1] THEN BEGIN {swap pair} 
temp:=a[j]; a[j]:=a[j+1]; a[j+1]:=temp; 

END; 

{Read lines up until a blank line} 
PROCEDURE readdata(VAR a:dataarray; var n:integer); 

VAR s:t; 
BEGIN 

END; 
BEGIN 

END. 

n:=O; 
REPEAT 

READLN(s); 
IF s<>'' THEN BEGIN 

n:=SUCC(n); 
a[n]:=s; 

END 
UNTIL (s='') OR (n=maxsize); 

readdata(buf,count); 
IF count>O THEN bubblesort(buf,count); 
FORi :=1 TO count DO WRITELN(buf[i]); 

Figure 9.8. An approach to sorting a file using a fixed-size buffer. It should be noted that the inefficient 
bubble sort procedure is presented just for simplicity. 

then we can declare a pointer variable: 

VARp:pint; 

The variable pis initially undefined. It does not point at a buffer until NEW ( p) 
is called. After the call, p contains the address of a buffer large enough to hold 
an integer. The buffer can be accessed to by de-referencing the pointer variable 
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thus: 

P" :=7; 
write(p"+l); 

The type of the expression p" is i n t e g e r, and more generally if x is of type "t 
then the expression x" is of type t. 

The main use of dynamically allocated buffers is to hold data structures 
made up of inter-linked records. We can illustrate this with an alternative 
sorting program. This will both make use of dynamically allocated buffers and 
be more efficient than the example in Figure 9.8. It will create a sorted binary 
tree of records, each of which holds a string. As lines are read in they will be 
inserted into the appropriate position in the tree. At the end, the tree will be 
traversed to print the lines out in sorted order. 

Our basic data types are 

TYPE pnode="node; 
node=record line:string[80]; l,r: pnodeend; 

The nodes will form a tree with the rule that any node reached by the field l 
must hold a string less than the current string, and any node reached by the 
field r must hold a string greater than or equal to the current string. The type 
p n o d e is declared as a pointer to the as yet undefined type n ode. This is the 
only exception to the Pascal rule that an identifier must be declared before it is 
used. The exception is necessary if one is to have recursive data types. 

9.5.1 Pointer Idioms 

The program in Figure 9.9 illustrates a number of common idioms used in 
programming with pointers. Some of these are matters of style and some 
illustrate syntactic features of Pascal designed to facilitate programming with 
pointers. 

Constructor Fundions 
It is good practice to write constructor functions to handle heap allocation and 
buffer initialisation. Thus we have a function newnode which calls new and 
allocates values to all fields of the record buffer. 

The Value n i l 
The i n s e r t function ensures that whenever a new string is inserted into the 
tree it is in the appropriate position. Given a null tree indicated by the pointer 
taking on the reserved value n i l , the function updates its parameter to point 
to a new buffer. The value n i l can be assigned to any pointer type and should 
be used as a placeholder to indicate the ends of lists or pointers which do not 
yet have a buffer allocated to them. The new buffer created by i n s e rt has 
both of its pointer fields initialised to n i l . 
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PROGRAM Tsort; 
TYPE pnode=Anode; 

textline=string[80]; 
node=RECORD line:textline; l ,r:pnode END; 

VAR l :textline; 
t:pnode; 

FUNCTION newnode(line:textline; l ,r:pnode):pnode; 
VAR p:pnode; 
BEGIN 

END; 

NEW(p); 
pA.line:=line; pA.l :=1; pA.r:=r; 
newnode:=p 

PROCEDURE insert(s:textline; VAR p:pnode); 
BEGIN 

END; 

IF p=nil THEN p:=newnode(s,nil,nil) 
ELSE IF s<pA.line THEN insert(s,pA.l) 
insert(s,pA.r) 

PROCEDURE print(p:pnode); 
BEGIN 

END; 
BEGIN 

END. 

IF p<>nil THEN WITH pA DO BEGIN 
print ( l ) ; write l n ( l i ne) ; print ( r) ; 

END; 

t:=nil; {an empty tree} 
REPEAT 

READLN(l); 
IF l<>" THEN insert(l,t); 

UNTILl=''; 
print(t); {output in sorted order} 

Figure 9.9. A more efficient sorting program than in Figure 9.8, one which, moreover, makes use of 
dynamic storage allocation from the heap. 

Pointer Comparison 

Pointer values can be compared for equality and inequality, but the ordered 
comparison operators >, <, >=and <=are not allowed on pointers. 

The W I T H Construct 

The fields in a record normally have to be accessed by explicit subscripting, 
using the . operator. When one has to operate on several fields of a record in 
sequence, it is useful to dispense with the explicit subscripting. The reserved 
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word WITH, illustrated in the phrase 

WITH p" DO 

in the procedure p r i n t allows the fields of the buffer record pointed to by p 
to be referred to as local variables. Thus the field identifiers l i n e, l , r are used 
in the following compound statement as if they were normal variables. 

9.5.2 Freeing Storage 

In the example above, the file is read into memory once, printed and then the 
program terminates. So long as the computer has enough memory to store the 
file in RAM, the program will run. If a program keeps on allocating buffers 
then it will eventually run out of memory. The following small program will 
cause problems: 

PROGRAM evernew; 
TYPEt=string[SO]; 

pt="t; 
VARp:pt; 
BEGIN 

WHILE true DO new(p); 
END. 

Repeated calls will be made on the operating system to allocate more buffer 
space. Eventually it will run out of store to handle it, causing a crash in a 
system-dependent fashion. 

Buffers that are not needed can be returned to the system by the predefined 
Pascal procedure d i s pose. This is called with a single pointer parameter thus: 

dispose(p); 

The buffer pointed to by p is returned to the system and can be re-allocated on 
subsequent calls to new. 

Allocation Using get me m 
The procedure new will always allocate a buffer at least big enough for the data 
type referred to by its parameter. There may be occasions when this is 
inefficient. In the program t sort, the nodes contained buffers big enough to 
hold 80 character strings, although most lines would be much shorter. 

Turbo Pascal introduced an alternative store allocator, getmem, for such 
situations. It allows one to control explicitly the number of bytes of store 
allocated. Doing this is potentially dangerous, for several reasons: 

1. It can reduce portability. 
2. It requires the programmer to have a detailed knowledge of the layout of 

data types such as strings. 
3. If mistakes are made in the sizes ofbuffers allocated, then the type system is 

subverted and no protection is provided against memory corruption. 
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For compatibility, getmem is also provided in Vector Pascal. 

Garbage Collection 

In most Pascal implementations, all de-allocation from the heap has to be 
done explicitly using d i s pose. There is no reason in principle why Pascal 
cannot be made to run with an automatic storage recovery system and some 
implementations have them. For instance, the Delphi system uses reference 
counts to handle automatic freeing of long strings held on the heap. 

Vector Pascal has the option of being linked using the Boehm conservative 
garbage collector. When using this option, d i s pose can still be called and will 
free the buffer it is passed. If, however, there are either deliberate or 
inadvertent memory leaks, the garbage collector will be eventually be invoked 
to recover unused buffers. 

9.6 Set Types 

Pascal is rather unusual as imperative languages go in that it includes sets as a 
built-in data type. A set type y is declared using the syntactic form y =SET 0 F 
t, where t is some type. This would appear to allow one to construct sets of any 
predeclared type. Russell's paradox is avoided since the set type y is itself 
undeclared at this point. In practice, compiler writers have found sets hard to 
implement, so the Pascal standard only requires simplified versions in which 
the type t must be an ordinal type.1 

Thus one can declare a set of characters but not a set of records. Some 
compilers also restrict the maximum size of the sets supported to be no larger 
than the character set. 2 

9.6.1 Set Literals 
Suppose we have the type day defined in Figure 9.1. We can define a set of 
days and declare variables of that type: 

TYPE dayset=SET OF day; 
VAR days: day set; 

One can then assign set literals to the variable as in 

days:=[monday,friday,tuesday]; 

A set literal is either: 

1. the null set, written [ 

1 The term ordinal types describes a collection of types which have a common property: they are 
either numeric integers, or they can be mapped on to integers (their 'ordinal values'), and are 
indeed represented internally by these ordinal values. Some predefined types are ordinal types, in 
particular integer and integer sub-ranges such as word, char (character type). Other ordinal types 
are defined within the program: enumerated types, specified sub-ranges of ordinal types. 
2The Borland Turbo Pascal compiler did this. 
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Table 9.2. The set operators 

a+b 
a-b 
a*b 
a>< b 
a IN b 
a=b 
a<> b 
a<=b 
a>=b 

Returns a 

Set 
Set 
Set 
Set 
Boolean 
Boolean 
Boolean 
Boolean 
Boolean 

2. a singleton set, written [today] 

Meaning 

a, b:sets, union of a with b 
a, b:sets, members of a not in b 
a, b:sets, intersection of a with b 
a, b:sets, symmetric difference =(a+b)-(a*b) 
a:scalar, b:set, set membership 
a, b:sets, set equality 
a, b:sets, set inequality 
a, b:sets, a subset of b 
a, b:sets, b subset of a 

3. a comma-separated list of elements as in [monday, friday, tuesday] 
4. or it may be defined in terms of sub-ranges as in [monday .. thursday, 

sunday]. 

Note that whereas the ordinal type over which a set is defined is ordered, the 
elements of a set do not have to be listed in any particular order. 

9.6.2 Operations on Sets 

The set operators are summarised in Table 9.2. They broadly follow the oper­
ators for arithmetic with the addition of the symmetric difference operator > <, 
introduced in the ISO standard (ISO, 1991a), and with the elimination of and 
> and < operators. The priorities of the operators follow those which they have 
in Pascal numeric arithmetic. 

The semantics of the set operators are illustrated in Figure 9.10. Two other 
features of set use are brought out in this example. 

1. There is no built-in way of printing or reading sets in Pascal. Instead, it has 
to be explicitly programmed. 

2. In the example, the procedure pset is used to print sets of char. The 
procedure uses an extension to the for statement for use with sets, FORi IN 
s DO. In this, i iterates overs's members in the ascending order provided by 
the base type of s. 

9.7 String Types 

Vector Pascal's treatment of strings follows that of Turbo Pascal. A string is a 
pair consisting of a length field followed by an array of char with lower bound 
1 and a type-specific upper bound. Strings constitute a family of types 
differentiated by their upper bound. Thus, in 

TYPEtextline=string[80]; 
namefield=string[64]; 
longstring=string[200]; 
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PROGRAM setcomp (output); 
TYPE chs=SET OF char; 
(* Print the set s*l 
PROCEDURE pset(VAR s:chsl; 
VAR c:char; 
BEGIN 

FOR c INs DO WRITE(c); 
END; 
{print sl op s2 '=' l 
PROCEDURE ptrip(VAR sl,s2:chs;op:string); 
BEGIN 

pset(sll;WRITE(op:3);pset(s2);WRITE('= ':3); 
END; 
VAR v,vl,v2,v3:chs; 
BEGIN 

v:=['a' .. 'f'J; 
vl:=['A' .. 'M']; 

v2:=v+vl; 
WRITE('v =':12l;pset(vl;WRITELN; 
WRITE('vl=':l2l;pset(vll;WRITELN; 
WRITE('v2=':12);pset(v2);WRITELN; 
v3:=v2-vl; 
WRITE('v2-vl=':12);pset(v3l;WRITELN; 
v3:=(v2)*['A' .. 'c']; 
WRITE('v2*[A .. c]=':l2l;pset(v3l;WRITELN; 
ptrip(vl,v2,' =');WRITELN(vl=v2:6); 
ptrip(vl,v2.' <>');WRITELN(vl<>v2:6); 
ptrip(vl,v2,' <=') ;WRITELN(vl<=v2:6); 
ptrip(vl,v2.' >=');WRITELN(vl>=v2:6); 
v3:=v2><v; 
ptrip(v2,v,' ><'l;pset(v3l;WRITELN; 

END. 

Output produced: 

v =abcdef 
vl=ABCDEFGHIJKLM 
v2=ABCDEFGHIJKLMabcdef 

v2-vl=abcdef 
v2*[A .. c]=ABCDEFGHIJKLMabc 

ABCDEFGHIJKLM =ABCDEFGHIJKLMabcdef=false 
ABCDEFGHIJKLM<>ABCDEFGHIJKLMabcdef= true 
ABCDEFGHIJKLM<=ABCDEFGHIJKLMabcdef= true 
ABCDEFGHIJKLM>=ABCDEFGHIJKLMabcdef=false 
ABCDEFGHIJKLMabcdef><abcdef=ABCDEFGHIJKLM 

Figure 9.10. A program which illustrates the effect of the set operators. 
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three distinct types of string are defined. Text 1 i n e is a string type whose 
characters are numbered 1 ... 80, 1 on g s t r i n g has characters numbered 
1 ... 200, etc. 

There is a distinction between the upper bound of the string and the current 
length of the string. The upper bound of a string type defines how much space 
is allocated for character storage in the string. The length indicates how many 
of the characters are currently valid. The length cannot exceed the upper bound. 
There is an implementation defined constant max s t r i n g which specifies the 
maximum upper bound with which a string type can be declared. 

Individual characters of a string can be obtained by indexing the string as a 
one-dimensional array. Thus: 

vars:text1ine: 
begin 

s : =' sammy snake ' : 
write(s[l],s[3],1ength(s)): 

end: 

would produce the output 

sm 11 

Note that the length field of the string is being found using a predefined 
function3 1 ength. The characters of a string can also be assigned to using 
array index notation: 

s[2J :='i': s[3J :='1 ': s[4J :='1 ': 
write(s): 

will produce the output 

sil1ysnake 

Or one can assign to whole slices of a string at once: 

b:='BillyKing'; 
s[l .. 4]:=b[l .. 4]: 
write1n(s): 

will produce the output 

Bil1ysnake 

It is important to note that the type of s [1 .. 4] in the above is ARRAY 
[ 1 .. 4] 0 F c h a r and not S T R I N G [ 4]. Thus the following assignments would 

3Ifthe implementation is such that the value ofmaxstri ng is known to be 255, then the length 
field will be held as a single byte as in Turbo Pascal and the length could be obtained by the 
expression o rd ( s [ 0 J ) . This usage is not portable between implementations with different 
maximum string lengths. 
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be rejected by the compiler: 

s[l..4]:='bill'; 
s :=b[l. .4]; 

Each is an invalid combination of an array of char and a string.4 

To obtain a string containing the first four characters of b we would have to 
call the system function s u b s t r i n g: 

s:=substring(b,l,4); 
write(s); 

Whereas the assignment s [1 .. 4] : =b [1 .. 4] leaves the length of s 
unchanged, assigning a string to s, as the example above does, changes the 
length. The use of a distinct length field for the string has advantages over the 
C convention of null-terminating strings: 

1. The length of a string can be found faster since no search has to be done for 
null. 

2. The string can contain null characters, which is usefull when dealing with 
encoded strings. 

Between strings the + operator is interpreted as concatenation. The com­
parison operators give results as shown in Alg. 23. No other operators are valid 
on strings. 

4This is a deviation from the Pascal standard which allows assignments of string constants to 
arrays of char, requiring the constant to be blank padded up to the length of the array. 
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10.1 File Types 

Pascal provides the word F I L E as a type constructor. For any type t then F I L E 
0 F tis the type of an extensible n-tuple whose elements are of type t. Associated 
with each such n-tuple is a file cursor which defines the point within the tuple at 
which data can be read or written. Variables may be declared to have file types. 

Whereas other variables are volatile, file variables allow Pascal programs 
access to the persistent store provided by the underlying operating system. 1 

1 0.1.1 Binary Files 

A file type may be declared as, for instance, a file of integers or as a file of some 
record type: 

TYPEintfile=FILEOFinteger; 
gender=(male.female) ; 
person=RE CORD 

name : st r ing[ 50]; 
sex :gender: 

END; 
pfil e=FI LE OF person: 

Files such as these are termed binary files. The persistent data stored in them 
have a format which is implementation dependent. The arrangement of binary 
digits in the persistent store mirrors that of the bits in the volatile store. As 
such, the format of a F I L E 0 F t created by a program running on an Intel 
processor may differ from that of a F I L E 0 F t created on a Motorola processor 
because of differences in the internal binary formats used on the machines. 
This can give rise to difficulties when binary files are transported between 
different processors. 

Binary files are also unsuitable for human consumption. 

1The persistent store is often thought of as the disk and the volatile store as the RAM of the 
computer. This is not strictly accurate, as on some operating systems both will be mapped to the 
computer's virtual memory and reside either on disk or in RAM depending on frequency of use. 
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10.1.2 Text Files 

Pascal also provides a predeclared type identifier text which is defined to be 
equal to F I L E 0 F c h a r. A file of type text, as the name implies, is made up 
of a sequence of characters. Text files can be read by people, and also provide 
a relatively machine-independent2 means of recording and transferring 
numerical information. This is because numbers are represented in text files 
in terms of their decimal expansion. 

1 0.1.3 Operating System Files 

When originally released (Jensen and Wirth, 1978), Pascal provided no clearly 
defined mechanism for associating file variables with operating system files. 
This led to divergent approaches by implementors. In some systems file 
variables could only be accessed if they had first been associated with a 
persistent operating system file. In others, for instance DEC Pascal, a temporary 
file was created on disk whenever control entered a scope containing a file 
variable, and this file was automatically bound to the file variable. 

The Turbo Pascal compiler adopted the former approach, and provided 
procedures to associate file variables with operating system files which were 
later adopted as a de facto standard by the implementors of most other Pascal 
systems for the PC. 

The Pascal standardisation community recognised that there was a need for 
a standard way of binding file variables to operating system files. When the 
Extended Pascal standard, IS0-10206, was released in 1991 (ISO, 1991a), it 
introduced the concept of a bindable variable. A bindable variable in a Pascal 
program is a symbol or reference to something outside the program itself. 
IS0-10206 says that file variables are bindable. Procedures are defined for 
carrying out the bindings between file variables and operating system files. 

The concept of a bindable variable is elegant and can potentially be used for 
things other than file variables, such as graphics contexts or mice. But because 
the procedures provided for file binding in IS0-10206 are incompatible with 
those derived from Turbo Pascal, and because the latter are used by almost all 
Pascal programs that have written for the PC and Linux platforms, the author 
has chosen not to implement the IS0-10206 file binding mechanism. Instead, 
Vector Pascal derives its library of file binding routines from those introduced 
in Turbo Pascal. 

Assign 

Before a file variable is used, a call must be made to the system procedure 
a s s i g n to bind it to a named operating system file. As s i g n takes a file variable 
and an operating system file name as parameters. The file name should follow 
the naming conventions of the operating system on which the program is 
running. 

2Not absolutely machine independent, because in principle Pascal implementations may use 
EBCDIC, ISO or other character sets. 
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Example 

ass i g n ( f , • c : \ myfi l e s \ s r c \a l ph a . txt ' ) ; 

Although ass i g n established a binding with the operating system file, it 
does not open the file, which must be done using one of the following 
procedures. 

Append 

If the file already exists, is sequential in nature, and one wants to add to it, it is 
opened with append. Provided that the file variable has been bound to an 
operating system file, this will open it for writing with the file cursor indicating 
the end of the file. 

Example 

ass i g n ( f , · c : \ myfi l e s \ s r c \ a l ph a . txt ' ) ; 
append( f); 

Rewrite 

If a file is to be written for the first time or is to be overwritten, the procedure 
r e w r i t e is called. R e w r i t e can also be called if it is necessary to move the file 
cursor back to the start of the file at any point during the writing of an already 
opened file. 

Example 

assign ( f, 'c: \myfil es \s rc\data. txt'); 
rewrite(f); 

Reset 
If a file is to be opened for reading, or if an already open file is to be re-read, 
then the procedure reset must be called. It positions the file cursor at the 
start of the file. 

Example 

assign(n, 'people/names.src'); 
reset(n); 

Close 

When a file variable is no longer in use, the procedure c l o s e should be called. 
Calling this causes any buffers to be flushed to disk. After a call to c l o s e the 
file variable still has the operating system file name associated with it and 
allowing a further call to append, reset or rewrite. 
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Example 

assign(n, 'people/names.src'); 
rewrite ( n); 
write(n,namelist); 
close(n); 
reset(n); 
read(n,othernames); 

10.2 Output 

Pascal defines two standard output procedures, w r i t e and w r i tel n. Unlike 
other procedures, these may take a variable number of arguments of variable 
type. Furthermore, their names are reserved and cannot be redefined. W r i t e 
works on both text and binary files, w r i tel n only on the former. 

1 0.2.1 Binary File Output 

To write to a binary file, two formats can be used: 

1. write (j,e0 ) ; where f : FILE 0 F t, and eo : t. 
2. wri te(f,el>ez, ... ,en); where f: FILE OFt, and ei: t. 

The values of the expressions ei are transferred to the file in the order in which 
they are listed and the file cursor moved to point immediately beyond the file. 

Expressions of any type may be validly written to a binary file. 

10.2.2 Text File Output 

When outputting to a text file, there are four variants in which w r i t e can be 
called and six in which w r i tel n can be called. All these variants can be 
defined in terms of the two canonical forms l.a and 2.a, in the enumeration 
below. 

1. (a) write (j,eo); where f: FILE OF char, and eo: t and tis an integer, 
real, string, ordinal or array type. This outputs an appropriately 
formated representation of eo to the file f. 

(b) write(eo); This is equivalent to write( output, eo);. 
(c) write(f,el>ez, ... ,en): where f: FILE OF char, and each ti is an 

integer, real, string, ordinal or array type. This is equivalent to 
write(f,ei); write(f,ez) ... write(f,en) ;. 

(d) write ( el>ez, . .. ,en) ; This is equivalent to 
write( output,el>e2, ••• ,en);. 

2. (a) w r i tel n (j) ; This outputs a newline to the file f. The sequence of 
characters output will vary between operating systems. On Linux it will 
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be a line feed character3 whereas on Windows it will be a carriage 
return, line feed sequence.4 

(b) write l n ; This is shorthand for w r i tel n ( output ) ; . 
(c) write l n (j,eo) ; This is shorthand for write (/,eo) ; 

writeln(j);. 
(d) write l n ( eo ) ; This is equivalent to write ( eo ) ; write l n ; . 
(e) write l n ( el>e2, •• . ,en) ; This is equivalent to 

write(el>e2, ... ,en); writeln;. 
(f) wri tel n (f,el>e2, ••• ,en); This is shorthand for 

write(j,el>e2, ... ,en); writeln(j) ;. 

Example 

VARa:string[30]; 
b,c:integer; 

BEGIN 
b: = 9+ 12; 
c:=20; 
a:='toomuch'; 
WRITE( 'total', a); 
WRITELN; 
WRITELN(output,b,b>c); 
WRITELN(c,l/c); 
WRITE ( c*c); 
WRITE LN ( ·is c raised to the power 2 ' ) ; 

END; 

which produces the output 

total too much 
21 true 
20 0.05 

400 is c raised to the power 2 

Formating Output in Columns 

The example above shows that the default behaviour of the w r i t e procedure 
for text files is to write the data out in columns of equal width. The standard 
width of these columns is 12 for all types other than characters for which the 
standard column width is one character. 

If the textual representation of a value is shorter than the column width, the 
output field is left-padded with space characters. If the output width is greater 
then the column width, then the field overflows the column to the right. 
Where the default widths are unsuitable, Pascal provides a means by which 
column widths can be altered. 

3chr(10 ). 
4chr(l3)chr(l0). 
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Output of Integers 

For integer output one can follow the integer expression with a colon and then 
another integer expression giving the column width to be used. The decimal 
expansion of the integer is printed right justified in the column. Thus, to print 
the integer x out in a field six characters wide, one writes 

write(x:6); 

Output of Reals 

For real numbers you can specify both the the width of the field and the 
number of digits after the decimal point. Thus: 

write(x:8:2): 

Output of Characters 

When a character variable is printed, it is output in binary with no modifications 
to the text file. If the optional width field is present, the character is left padded 
with spaces before output, in a manner analogous to integers (see above). 

{Chin_prog01} 
{Print a Cosine graph going across the screen} 
{26/11/2002} 
fll¥ Graph (output); 

~· d:O .. 95; 
y:real; 

Jfltl{ BEG! N} 
'IJft; {Write l n} 
'Sft; {Writeln} 
'IJft('********COSINE GRAPH********'); {Writeln('COSINE GRAPH')} 
d:=O; 
l!f d<=90 411JF {while d<=90 do} 

71'16 {begin} 
y:=~!i (d*TI/180)*30; {y:=cos(d*pi/180)*30} 
1mJ: ~fi'JV.(y)=O {if round(y)=O} 
1M. 'IJft('*') {then writeln('*')} 
WJII~ 'Jfj'(' ':l!!lfi':E.A(y), '*'); {else writeln(' ':round(y), '*'); 

d:=d+5; 
ii!ill[; {end ; } 

fi!iJII:.{END.} 

Algorithm 37. The use of formatted output and also the use of Chinese characters in reserved words. 
The equivalent Standard Pascal program commands are shown as comments. 
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Output of Scalars 

When a scalar variable is printed, the lower-case form of the element of the 
enumerated type is output to the text file. The field is left-padded by the 
optional width field in the same way as integers are. 

Output of Strings 

A string is printed without enclosing quotes. Semantically write ( s ) is equ­
ivalent to 

for i : =1 to length ( s) do write ( s [ i J ) 

1 0.2.3 Generic Array Output 

In Standard Pascal, any type including an array can be written to a binary file, 
but output to text files must be of simple types or string types. Vector Pascal, 
in conformity with the general overloading of operations on arrays, extends 
w r i t e to operate on arrays. A one-dimensional array is written as a sequence 
of values on a line. Thus, for a one-dimensional array a with bounds 1 ... u, 
the statement write ( a) ; would be equivalent to 

FOR i:=l TO u DO write(a[i]); 

where i is a temporary integer variable. If the array b has more than one 
dimension, and the bounds of the leftmost dimension are m ... n then the 
expansion is 

FORj:=m TOn DO writel n (b[j]); 

In conjunction with the re-write rules given in Section 10.2.2, this gives an 
unambiguous definition of w r i t e for arrays. The effect is that dimensions of 
the arrays are separated by newlines. These ru1es are illustrated in Figure 10.1. 

10.3 Input 

Pascal defines two standard input procedures, read and read l n. Like the 
standard output procedures but unlike other procedures, these may take a 
variable number of arguments of variable type. Again, their names are reserved 
and cannot be redefined. Read works on both text and binary files, readl n 
only on the former. 

Other than the optional leading file variable, all parameters to a r e ad call 
must be variables. 

1 0.3.1 Generic Array Input 

In Standard Pascal, any type including an array can be read from a binary file, 
but input from text files must be of simple types or string types. Just as Vector 
Pascal extends write operations to arrays, so it extends read operations in such 



194 

VECTOR 

150-7185 

SIMD Programming Manual for linux and Windows 

PROGRAM ARRAYOUT(OUTPUT); 
CONST a:ARRAY[1 .. 2,1 .. 2,1 .. 3] OF integer= 

(((1,2,3), 

BEGIN 
write(a); 
END. 

(2,4,6)), 

( (99,2,97)' 
(98,4,94))); 

produces the output 

1 
2 

99 
98 

2 
4 

2 
4 

3 
6 

97 
94 

Figure 10.1. The formating rules for output of multi-dimensional arrays. 

a way as to ensure that if an array a is written to a file f with the call w r i t e 
(j,a) then it can be read by the call read (j,a). The expected input format for 
arrays is hence that which would have been produced by the array having been 
written by a Vector Pascal program (see Section 10.2.3). 

10.3.2 Binary File Input 

Input from a binary file involves direct binary transfers of the bytes of the 
binary representation from the file to the variable. 

10.3.3 Text File Input 

When performing input from a text file representational, conversions are 
performed between number and scalar types' ASCII text representation and 
their memory representation. The semantic expansion rules for read and for 
readl n mirror those for write and wri tel n shown in Section 10.2.2, but 
with the substitution of read wherever w r i t e occurs in the rules and the 
substitution of the file variable i n put wherever the file variable output is 
referred to in Section 10.2.3. 

Read l n simply reads the next newline sequence from its input file. 

Input of Integers or Reals 

On a call of read (j,n) with text file f and numeric variable n, the spaces in 
the text file are skipped up to the first decimal digit. Decimal to binary 
conversion is then performed on the number and the result placed in n. 
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Input of Characters 

No format conversion is performed on character input. The character is read 
in binary form from the text file and transfered to the character variable 
parameter. 

Input of Scalars 

Spaces are skipped up until the first letter. Letters and digits are then read up 
until the first non-alphanumeric character. The alphanumeric sequence is then 
converted to lower case and compared with the legitimate lower-case repre­
sentations of the identifiers in the enumerated scalar type. If one is found then 
the ordinal value of the identifier within the scalar type is returned. 

Input of Strings 

Characters are read into the string variable up until either the first newline is 
encountered in the input file or the maximum length of the string is reached. 

1 0.4 File Predicates 

Two file predicates, eo f (f) and eo l n ( f ) , are provided to test the position of 
the file cursor. eof tests for end of file and eo l n tests for end of line. 

1 0.5 Random Access to Files 

For database applications, it is necessary to be able to read and write records at 
random positions in a file. 

10.5.1 Seek 

The file cursor in a binary file may be positioned at any place in the file using 
the function seek. Its form is 

functionseek(varf:fileptr;pos,mode:integer):integer; 

The type fileptr is a generic type for any binary file type. The parameter p o s 
specifies the position to seek to in the file. The mode parameter should be one of: 

SEEK_SET pos is relative to start of file 
SEEK_CUR pos is relative to current file cursor 
SEEK.END pos is relative to the end of the file. 

10.5.2 filepos 

The current position of the cursor within a binary file can be obtained using 
the function fi l e p o s, the form of which is 

functionfilepos(varf:fileptr):integer; 
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file exists 

error in opening file 

1 0.5.3 Untyped i/o 

There are two procedures, block read and b l ockwri te, available to perform 
untyped i/o of sequences of bytes with the forms 

procedure b l oc k read ( v a r f: fi l ept r; 
varbuf; 

count: integer; 
varresultcount:integer); 

procedureblockwrite(varf:fileptr; 
varbuf; 

count:integer; 
varrcount:integer); 

where f is any binary file, b u f is any variable (where an array is to be trans­
ferred the first element ofthe array should be passed), count is the number of 
bytes to transfer and res u l t co u n t as a post -condition holds the number of 
bytes actually transferred. 

1 0.6 Error Conditions 

When performing i/o operations, error conditions can arise owing to factors 
external to the program, such as the non-existence of files or files containing 
unexpected content. These can set an internal system io-error flag. If an i/o 
operation is performed whilst the io-error flag is set the program will abort. 

The flag can be queried using the i ores u l t function, which has the form 
function i ores ul t: integer; . It returns a non-zero value if the io-error 
flag is set. Calling the function has the side effect of clearing the flag. It is good 
practice to check the io-error status after each call to file the opening pro­
cedures reset and rewrite, as shown in Figure 10.2. 

program iocheck; 
var 

Let~ E text; 
LetS E string; 

begin 
assign (~, 'message'); 
reset(~); 

if ioresult = 0 then 
begin 

read(~,5); 

write('Message is:' , 5); 
end 
else 

write( 'Could not open message file'); 
end. 

Figure 1 0.2. The use of i ores u 1 t to check the validity of file open calls. 



Permutations and 
Polymorphism 

Standard Pascal allows the assignment of whole arrays. As we have seen in 
Section 7.5, Vector Pascal extends this to allow the consistent use of mixed­
rank expressions on the right-hand side of an assignment. For example, given 

r1:real; r1:array[O .. 7] of real; 
r2:array[O .. 7 ,0 .. 7] of real 

then we can write 

1. r1:=1/2; 
2. r 2 : = r 1 * 3 ; 
3.r1:=\+r2; 
4. r 1 : = r 1 + r 2 [1 J ; 

Line 1 assigns 0 . 5 to each element of r 1. Line 2 assigns 1 . 5 to every element 
of r 2. In line 3, r 1 gets the totals along the rows of r 2. In line 4, r 1 is 
incremented with the corresponding elements of row 1 of r2. 

These may be translated directly to standard Pascal through iteration: 

1. fori :=0 to 7 do rl[i J :=1/2; 
2. fori :=0 to 7 do for j :=0 to 7 do r2[i ,j] :=rl[j]*3; 
3. fori :=0 to 7 do begin 

t:=O; 
for j:=7 downto 0 do t:=r2[i ,j]+t; 
rl[i J :=t; 
end; 

4. fori :=0 to 7 do rl[i J :=rl[i J+r2[1. i J; 

The compiler has to generate an implicit loop over the elements of the array 
being assigned to and over the elements of the array acting as the data source. 
In the above, i , j, t are assumed to be temporary variables not referred to 
anywhere else in the program. The loop variables are called implicit indices. 

The variable on the left-hand side of an assignment defines an array context 
within which expressions on the right-hand side are evaluated. Each array 
context has a rank given by the number of dimensions of the array on the left­
hand side. A scalar variable has rank 0. Variables occurring in expressions with 
an array context of rank r must have r or fewer dimensions. The n bounds of 
any n-dimensional array variable, with n :S r occurring within an expression 
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evaluated in an array context of rank r, must match with the rightmost n 
bounds of the array on the left-hand side of the assignment statement. 

Where a variable is oflower rank than its array context, the variable is repli­
cated to fill the array context. This is shown in the examples above. Because the 
rank of any assignment is constrained by the variable on the left-hand side, no 
temporary arrays, other than machine registers, need be allocated to store the 
intermediate array results of expressions. 

Maps are implicitly and promiscuously defined on both monadic operators 
and unary functions. If f is a function or unary operator mapping from type r 
to type t, then if x is an array of r then a : =f ( x) assigns an array oft such that 
a [ i J =f ( x [ i J ) . 

11.1 Array Reorganisation 

Array reorganisation involves conservative operations which preserve the number 
of elements in the original array. If the shape of the array is also conserved, we 
have an element permutation operation. If the shape of the array is not con­
served but its rank and extents are, we have a permutation of the array dim­
ensions. If the rank is not conserved we have a flattening or reshaping of the 
array. 

Vector Pascal provides syntactic forms to access and manipulate the implicit 
indices used in maps and reductions. These forms allow the concise expression 
of many conservative array reorganisations. 

When an assignment is performed to an array, the compiler creates implicit 
index variables with which to perform the iterations. These index variables 
may be accessed using the syntactic form i o t a i, where i is an integer. 1 i o t a i 
returns the ith current implicit index. Thus, the sequence 

v1:array[1 .. 3] of integer; 
v2:array[0 .. 4] of integer; 

v1:=iota0; 
v2:=iota0*2; 

would set v 1 and v 2 to 

v1 =1 
v2 =0 

2 3 
2 4 6 8 

In contrast, given the sequence 

m1:array[l .. 3,0 .. 4] of integer; 
m2:array[O .. 4,1. .3] of integer; 
m2 :=iota 0 + 2*i ota 1; 

1The reserved word ndx is a synonym for iota. 



Chapter 11 • Permutations and Polymorphism 

would set m2 to: 

m2= 2 
3 
4 
5 
6 

4 
5 
6 
7 
8 

6 
7 
8 
9 

10 
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The argument to i o t a must be an integer known at compile time within 
the range of implicit indices in the current context. 

A generalised permutation of the implicit indices is performed using the 
syntactic form 

perm[index-sel[, index-sel]*]expression 

The index-sels are integers known at compile time which specify a permutation 
on the implicit indices. Thus in e evaluated in context perm[ i,j,k]e, then 

iota 0 =iota i, iota 1 =iota j. iota 2 =iota k 

This is particularly useful in converting between different image formats. 
Hardware frame buffers typically represent images with the pixels in the red, 
green, blue and alpha channels adjacent in memory. For image processing it is 
convenient to hold them in distinct planes. The perm operator provides a 
concise notation for translation between these formats: 

typerowindex=0 .. 479; 
co1index=0 .. 639; 

varchanne1=red .. a1pha; 
screen: array [ rowi nd ex, co 1 index, chan ne 1 J of pi xe 1 ; 
img:array[channe1,co1index,rowindex] ofpixe1; 

screen:=perm[2,0,1Jimg; 

trans and d i a g provide shorthand notions for expressions in terms of 
perm. Thus, in an assignment context of rank 2, trans= perm[l, OJ and 
diag=perm[O,OJ. 

The form trans x transposes a vector, matrix, or tensor.2 It achieves this 
by cyclic rotation of the implicit indices. Thus, if trans e for some expression 
e is evaluated in a context with implicit indices: 

iotaO .. iotan 

then the expression e is evaluated in a context with implicit indices: 

iota'O .. iota'n 

where 

iota· x=i ota ( ( x+ 1) mod n+ 1) 

It should be noted that transposition is generalised to arrays of rank greater 
than 2. 

2Note that trans is not strictly an operator, as there exists no Pascal type corresponding to a 
column vector. 
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For example, given the definitions used above, the program fragment 

m1:=(trans v1)*v2; 
m2:=transm1; 

will set m1 and m2: 

m1= 0 2 4 6 8 
0 4 8 12 16 
0 6 12 18 24 

m2= 0 0 0 
2 4 6 
4 8 12 
6 12 18 
8 16 24 

11.1.1 An Example 

The program in Figure 11.1 illustrates the use of implicit indices and their 
manipulation. 

1. o:, an array of 1 ... 5, is initialised to the numbers 1 ... 5. 
2. t, a two-dimensional array, is then organised to form a times table by 

multiplying o: with o:T. 
3. b then gets the sum down the columns of the table. 
4. c is initialised to successive powers of 2, i.e. 21...5 • 

5. d gets the diagonal oft, which of course contains (1 ... sf 
6. t is reassigned a new times table whose elements are t6 x 2'0 • 

11.1.2 Array Shifts 

Shifts and rotations of arrays are not supported by any explicit Vector Pascal 
operator, although one can use a combination of other features to achieve 
them. For example, given 

vara,b:array[O .. n-1Jofinteger; 

a left rotation can achieved as 

a:=b[(l+iota 0) mod nJ; 

and a reversal by 

a:=b[n-1-iotaO]; 

11.1.3 Element Permutation 

Permutations are widely used in APL and J programming, an example being 
sorting an array a into descending order using the J expression \ : a { a. This 
uses the operator \ : to produce a permutation of the indices of a in descending 
order, and then uses { to index a with this permutation vector. The use of 
analogous constructs requires the ability to index one array by another. If 
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times tables 

sum of columns 
powers of two 
squares up to 25 

program tables; 
var 

Let a,b,c,d E array[1 . .5] of integer; 
t :array [1 .. 5, 1 .. 5] of integer; 

begin 
a~t0; 

t~ a X aT; 

write(t); 

b~LtT; 
writeln(b); 
c~ 2to; 
d~ diag t; 
t~ C X dT; 
writeln(c,d}; 

output table of i2 X 2i 

write(t); 
end. 

Program output: 

1 
2 
3 
4 
5 

15 

2 
1 

2 
8 

18 
32 
50 

2 3 
4 6 
6 9 
8 12 

10 15 

30 45 

4 8 
4 9 

4 8 
16 32 
36 72 
64 128 

100 200 

4 5 
8 10 

12 15 
16 20 
20 25 

60 75 

16 32 
16 25 

16 32 
64 128 

144 288 
256 512 
400 800 

Figure 11.1. Demonstration of the use of transpose to produce tables: VPTfXed program. For the 
original Pascal source, see Figure 11.2. 

x : a r r a y [ t 0 J of t 1 and y : a r ray [ t 1 J of t 2, then in Vector Pascal, y [ x ] 
denotes the virtual array of type a r ray [ t 0 ] o f t 2 such that y [ x ][ i ] = 
y[x[i]]. 

For example, given the sequence 

cons t per : a r ray [ 0 .. 3 J of i n t e g e r= ( 3 • 1 • 2 • 0 ) ; 
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program tables; 
var alpha,b,c,d:array[1 .. 5J of integer; 

t:array[1 .. 5,1 .. 5J of integer; 
begin 

end. 

alpha:=iota 0; 
t:=alpha*trans alpha: 
write(t); (times tables} 
b:=\+trans t; 
writeln(b); (sum of columns} 
c:=2 pow iota 0; (powers of two} 
d:=diag t; (squares up to 25} 
t:=c*trans d; 
writel n(c,d); 
(*! output table of $iA2\times2Ai$ *) 
write(t); 

Figure 11.2. Demonstration of the use of transpose to produce tables: the original Pascal source. 

varma,mO:array[O .. 3] of integer; 

mO:=(iota0)+1; 
ma:=mO[per]; 

would set the variables such that 

mo = 1 
per= 3 
rna = 4 

2 
1 
2 

3 
2 
3 

4 
0 
1 

11.1.4 Efficiency Considerations 

Expressions involving transposed vectors, matrix diagonals and permuted 
vectors, or indexing by expressions involving modular arithmetic on i o t a, do 
not parallelise well on SIMD architectures such as the MMX. These depend on 
the fetching of blocks of adjacent elements into the vector registers, which 
requires that element addresses be adjacent and monotonically increasing. 
Assignments involving re-mapped vectors are usually handled by scalar registers 

11.2 Dynamic Arrays 

Pascal implementations typically use three areas of store for variables. Global 
variables are allocated space in a static area of memory allocated before 
computation starts. Variables local to procedures are dynamically allocated 
space on the stack whenever the procedure is entered. Variables accessed via 
pointers are allocated space on the heap at run time by calls to the procedure 
new. For global and local variables, the compiler has to know the offset of the 
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TURBO 

FUNCTION mkim(rows,cols:integer):pimage; 
VAR tim:pimage; 
BEGIN 

getmem(tim,rows*sizeof(prow)); 
WHILE rows>O DO 
BEGIN 

rows:=rows-1; 
getmem(timA[rows],cols); 

END; 
mkim:=tim; 

END; 

Figure 11.3. Use of getmem to allocate dynamically a two-dimensional array for image data. 

variables relative either to the base of the global segment, or relative to a base 
register that points at the current procedure context on the stack. This is the 
reason why in Standard Pascal the bounds of all arrays must be known at 
compile time. 

This restriction can be inconvenient for many algorithms which require 
arrays whose size needs to be determined at run time. An example is when a 
program reads in an image file from disk, where prior to reading the file the 
size of the pixel array needed is unknown. A number of ways round this 
restriction have been experimented with in Pascal implementations. 

In Turbo Pascal, the usual approach was to declare an image array as follows: 

TYPE row =ARRAY[ 0 .. max col ] 0 F byte ; 
prow =Arow; 
image =ARRAY[O .. maxline] OF prow; 
pimage=Aimage; 

VAR im:pimage; 

The constants max col and max l i n e are defined to be much larger than the 
largest number of rows and columns with which we expect to have to deal. 
Once the file header has been read in, store is explicitly allocated for i m using a 
procedure getmem, which has the form 

procedure getmem( va r p: poi ntertype; bytes: integer); 

and then space is allocated for the rows of the image. The initialisation might 
be done using the function m kim shown in Figure 11.3. The elements of the 
array are then accessed using pointer dereferencing thus: 

imA[i]A[j]; 

Whilst this technique works, and is still supported in Vector Pascal, it is 
inelegant and means that array bounds checking is dispensed with. 

11.2.1 Schematic Arrays 

Extended Pascal provided a notation that allowed dynamically sized multi­
dimensional arrays to be declared. This involved the declaration of schema types. 
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In the previous problem we could have declared a schema type for images: 

TYPE image(maxrow,maxcol :integer)= 
ARRAY[O .. maxrow,O .. maxcol]OFbyte; 
pimage="image; 

VAR im:pimage; 

The image array can be allocated space on the heap using an extended form 
of new: 

new(im,rows,cols); 

where rows, col s are variables initialised at run time. 
Access to the array now involves only one level of indirection as in i m" [ i , j ] . 

This probably makes little difference to performance on modern processors with 
large caches. Four memory accesses are still required to determine the array 
element's address, one each for i and j, one for i m and one for a hidden 
descriptor field specifying the length of the rows. However, it is conceptually 
neater and allows array bounds checking to be enforced by the compiler. 

11.3 Polymorphic Functions 

Standard Pascal provides some limited support for polymorphism in its read 
and write functions. Vector Pascal allows the writing of polymorphic func­
tions and procedures through the use of parametric units. 

The unit is a concept introduced in Turbo Pascal to support separate com­
pilation. Vector Pascal supports Turbo Pascal type units and an example is given 
in Section 13.2. Here we are concerned only with the extensions provided by 
parametric units. 

Consider the issue of writing a sort routine such that shown in Figure 9.8. 
In Standard Pascal this has to be written to sort items of some given type t - in 
the case of Figure 9.8, it sorted strings. If we want a routine to sort integers, we 
could modify the source of the program sort f to redefine t so that 

t=integer; 

Since the only operation other than assignment that bub b l e sort carries 
out on values of type t is to compare them, it follows that we could have 
declared t to be any comparable type. However, there is no way in Standard 
Pascal to do this without altering the program source. Vector Pascal gets 
round this restriction by allowing type parameters to be passed to compilation 
units. We can therefore write a generalised sort unit, that has a type t passed 
into it. This is shown in Figure 11.4. 

The algorithm used is identical with that in Figure 9.8, except that t is 
unspecified. If we are to use the unit generi csort, we must instantiate it 
with a specific type. An instantiation to sort integers is given by 

unit intsort; 
interface 
in genericsort (integer); 
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unit genericsort(t); 
interface 
type 

dataarray (n,m:integer) = array [n .. m] oft; 
procedure sort (var a:dataarray); (see Figure 11.5) 

implementation 

procedure sort (var a:dataarray); (see Figure 11.5) 
begin 
end. 

Figure 11.4. A polymorphic sorting unit. 

procedure sort (var a:dataarray); 
var 

Let ij e integer; 
Let tempe t; 

begin 
fori f- a.n to a.m - 1 do 

end; 

for jf- a.n to a.m- 1 do 
if ai > ai+ 1 then begin begin 

temp f.- ai; 

ai f- ai+1; 

ai+ 1 f- temp; 
end; 

Figure 11.5. Procedure sort. 
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which, when compiled, creates a compiled unit called i n t sort whose interface 
and body are provided by g en e r i c s o r t where all references to type t are 
interpreted as meaning i n t e g e r. 

The unit i n t sort can now be included in the program shown in Figure 
11.6, where sort is passed an array of integers to sort. 

11.3.1 Multiple Uses of Parametric Units 

Suppose we have a program that needs sort both integers and arrays of dates. 
We have given a declaration for dates in Section 9.4, but for dates to be 

sortable we need to have the > operator defined on them. This can readily 
be done using the operator definition facility of Vector Pascal. The unit 
c a l end a r, shown in Figure 11.7, exports both the type date and the operator 
> over dates. 
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program sort; 
uses intsort; 
const 

a:array [1 .. 5] of integer = (2,8,3,4,7); 
var 

Let b E ARRAY[1 . .5] of integer; 
begin 
b~a; 

sort (b1..4); 
write(a,b); 

end. 

program output: 

2 
2 

8 
3 

3 
4 

4 
8 

Figure 11.6. A program that uses the integer sorting unit. 

unit calendar; 
interface 

type 
monthname = (jan,feb,mar,apr,mayjun, 
jul,aug,sep,oct,nov,dec); 
date = record 

year:integer; 
month:monthname; 
day:1..31; 

end; 
function dategt (a,b:date):boolean; (see Section 11.3.2) 

OPERATOR>= dategt; 
implementation 
function dategt (a,b:date):boo/ean; (see Section 11.3.2) 
begin 
end. 

Figure 11.7. A unit to export dates and their order. 

7 
7 
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program sort2; 
uses calendar,datesort,intsort; 
const 

var 
a:array [1 .. 5] of integer= (2,8,3,4,7); 

Let be array[1 . .5] of integer; 
Let c e array[1 . .3] of date; 
Let i,d e integer; 

begin 
bf-a; 
sort (b1..4); 
WRITE(a,b); 
for if- 1 to 3 do 
begin 

read(d); 
c;.dayf- d; 
readln(c[J1.month,c[J1.year); 

end; 
sort (cu); 
for if- 1 to 3 do writeln(c;.day,c;.month,c;year); 

end. 

Given the input: 

11 sep 2002 
16 mar 1952 
4 jan 2002 

this produces the output: 

2 
2 

16 
4 

11 

8 
3 

mar 
jan 
sep 

3 
4 

1952 
2002 
2002 

4 
8 

7 
7 

Figure 11.8. The use of two instantiations of the same parametric unit within one program. 

11.3.2 Function dategt 
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The ordering of dates is done taking years as more significant than months, 
which are more significant than days: 

function dategt (a,b:date):boo/ean; 
begin 

if a.year > b.year then 
dategt +-- true 
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else if (a. year= b. year) and (a. month > b.month) then 
dategt <---- true 

else if (a. year= b. year) and (a. month= b. month) and (a. day > b. day) then 
dategt <---- true 

else dategt <---- false; 
end; 

Using this, we can create another instantiation of generi csort to sort dates: 

unit datesort; 
interface uses calendar; 

in genericsort (date); 

Both sorting units are then imported into program sort 2 shown in Figure 
11.8. The compiler uses the type of the parameter to decide which instance of 
the generic function is to be called. This is a limited form of procedure 
overloading. It allows mutiple instantiations of a generic function to share the 
same name. All instances of a generic function have the same number of 
parameters, only their types differ. 
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12.1 Use of Sets to Find Prime Numbers 

Let us look at a simple but practical algorithm that uses sets. The algorithm is a 
very old one for finding prime numbers and is shown in Alg. 38. 

To find all primes less than or equal to max 1 i m, it removes successive 
multiples of each prime number from a set intialised to include all integers 
from 2 to rna x 1 i m. A non-prime is a multiple of primes. Hence once we have 
removed all multiples of primes, the set of integers we are left with must be the 

program seive (output); 
const 

maxlim = 1 00; 
type 

range = 1 .. maxlim; 
intset =set of range; 

var 
Let primes E intset; 
Let i, k,j E integer; 

begin 
primes f- [2 .. maxlim]; 
kf- 1; 
fori in primes do 
begin 

j f- i X (k + 1 ); 
while j ::s maxlim do 
begin 

primes f- primes- [j]; 
j f- j + i; 

end; 
end; 
primes f- primes + [1]; 
fori in primes do WRITELN(i); 

end. 

Algorithm 38. The sieve of Eratosthenes, coded using sets. 

211 
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primes. When removing the multiples of prime i, we can ignore all multiples 
less than or equal to i x p, where p is the highest prime less than i, since we 
have already removed all multiples of p from the set. The basic step of removing 
numbers from the set of primes is done with the line 

primes :=primes- [j J; 

which subtracts the set containing only the integer j from the set primes. 
Nate that we cannot in Pascal write 

primes :=primes - j; 

without giving a rise to a type error, since j is an integer and primes is a set. 

12.1.1 Set Implementation 

Like other Pascal compilers, Vector Pascal implements ordinal sets as bitmaps. 
A Pascal set is defined over an ordinal type. Associated with each element of 
the ordinal type, the compiler allocates one bit in a bitmap to indicate 
membership of the set. This representation is efficient and compact for dense 
sets. For sparse sets it can be wasteful of space. It is usually better to represent 
very sparse sets as explicitly programmed linked lists or trees rather than using 
the built-in set types. If the occupancy of the sets is likely to be less than 1% 
of the range over which the set type is defined, then more space-efficient 
representations can usually be explicitly programmed. 

If space efficiency is not of key importance, the bitmap representation used 
in Pascal has considerable speed advantages. On machines with a wide word 
length such as the MMX, the basic set operations can be performed at high 
speed, as they translate into AND and OR operations on machine words. 

The overall efficiency of set algorithms also depends crucially on the 
efficiency of the set insertion and deletion operations. These are expressed in 
Pascal in terms of addition or subtraction of singleton sets. Unless these are 
recognised as special cases, the compiler will generate code to perform Boolean 
operations on what can be large bitmaps. If the addition or subtraction of 
singleton sets is recognised as a special case, then the compiler can generate 
code to toggle an individual bit, which will be much faster for large bitmaps. 

Vector Pascal performs such optimisations. Their presence not only makes 
set operations very fast compared with other Pascal implementations, but also 
alters the complexity order of algorithms. Table 12.1 compares the run times on 
sieve of two Pascal compilers: Vector Pascal and Prospera Extended Pascal.1 It 
can be seen that Vector Pascal is between 40 and 300 times faster than Prospera 
Pascal. Column 4 of the table shows that for Vector Pascal the algorithm is 
<On, whereas column 5 shows that for Prospera Pascal it is ~ On2• 

1 Prospero Pascal is probably the only complete implementation of IS0-1 0206 available for Intel 
processors. Other Pascal compilers for PCs will generally not handle sets of arbitrary size as 
required by the program. 
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Table 12.1. Comparative performances of different Pascal implementations on the Sieve program as a 
function of set size 

Maxlim 2 3 4 5 
Seconds Ratio Microseconds per integer 

Vector Prospera Vector Prospero 

20000 0.73 42 57:1 0.1217 6.96 
25000 0.91 63 69:1 0.1213 8.40 
40000 1.30 315 242:1 0.1083 26.25 

Measurements taken using a 700 MHz Trans-Meta Crusoe processor. Vector Pascal compiled to the MMX instruction­
set. Columns 1 and 2 give total run time in seconds to find the primes excluding time to print them. Column 3 shows 
the speed ratio between the two compilers. Columns 4 and 5 show how the time to process each integer changes as 
the set size grows. 

12.2 Ordered Sets 

Standard Pascal supports only sets of ordinal types. Vector Pascal allows sets of 
any ordered type. Thus Vector Pascal allows one to define sets of strings or sets 
of reals. Since the maximum cardinality of such sets is not known until run 
time, dynamic data structures are used. One consequence of this is that any 
program using dynamic sets should be compiled with garbage collection 
enabled to prevent memory leaks. 

Dynamic sets are implemented in terms ofbalanced binary trees. Since binary 
trees are a sorted data structure, they require an ordering relationship between 
the elements stored in the nodes of the tree. Hence it is possible to declare sets of 
any type over which the operators <, >, = are declared. Among the predeclared 
types, sets of string or real numbered types will be implemented dynamically. 

When a dynamic set type SET 0 F xis declared, the compiler loads a generic set 
unit parameterised by the type x. It then code generates a library of routines 
specialised to handling sets of x. 

One adverse consequence of the use of tree structures for dynamic sets is 
that they cannot be written out to a binary file as a single operation. Input and 
output of sets has to proceed by iterating through the set. 

As an example of the use of dynamic sets, we will consider a program that 
reads two documents and sends to the standard output channel a list of all 
words that occur in both documents. 

The data type used will be a set of lexemes, where a lexeme is a string of up to 
w o r d m a x characters. Words of more than w o r d max characters will be ignored. 
The strategy is to form a set of lexemes for each file, form the intersection of 
these and then print the intersection. 

We will define a valid lexeme to be a sequence of adjacent alphabetic char­
acters. All other sequences of characters will be skipped over. 

The main program, shown in Alg. 39, reads in the files to sets, intersects 
them and then lists the result. 

For instance the command 

0:\WPC\documents\ilcg\book\tests>uniquewordsnorm.pas 
roman.pas 
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produces the list of words 

array 
of 
program 
var 
writeln 

The contents of the two files can be determined by using the cat command: 

0:\WPC\documents\ilcg\book\tests>catroman.pas~orm.pas 
program roman; 
cons t rom: array [ 0 .. 4 J of string [1 ]= ( · C · • · L · , ·X · , · V · , · I · ) ; 
numb: array [ 0 .. 4 J of in te ge r= ( 2 , 1 . 1 , 0, 3) ; 
vars:string; 
begin 

s:=numb.rom; 

program uniquewords; 
const 

wordmax =20; 
type 

var 

lexeme =string [wordmax]; 
lexset =set of lexeme; 

files: array [1 .. 2] of text; 
words: array [1 .. 2] of /exset; 
Let i E integer; 
Let common words E lexset; 
Let aword E lexeme; 

function openfiles:boo/ean; (see Section 12.2.1) 

procedure /oadset(var f:text;var words:/exset); (see Section 12.2.2) 

begin 
if open files 
then 
begin 

fori f- 1 to 2 do loadset (files;,words;); 
commonwords f- words1 X words2; 

for aword in common words do 
writeln(aword); 

end 
else writeln('U sage:uniquewords file 1 file2 '); 

end. 

Algorithm 39. Main program for unique words. 
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writeln(s); 
end. 

program norm; 
type vec=array[O .. 3] of real; 
functionn(varv:vec):real; 
begin 

n:=sqrt(\+(v*v)); 
end; 
varv:vec; r:real; 

begin 
v:=iotaO; 
r: =n ( v) ; 
writeln(v,r); 

end. 
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On the other hand, we can find all of the unique words in a single file by inter­
secting it with itself thus: 

0:\WPC\documents\ilcg\book\tests>uniquewords norm.pas 
norm.pas 
array 
function 
iota 
n 
norm 
of 
program 
r 
real 
sqrt 
type 
v 
var 
vee 
writeln 

12.2.1 openfiles 

function openfiles:boo/ean; 

This returns true if it has suceeded in opening both files. Two possible error 
conditions can arise: 

1. The number of filenames supplied to the program may be wrong. This is 
tested using the integer valued function paramcount which is provided in 
the System Unit. This returns the number of parameters provided to the 
program on the command line. 



216 SIMD Programming Manual for linux and Windows 

2. The names provided may not correspond to valid files. This is tested by 
attempting to reset the files for writing and then testing the ioresult function. 
To use this one must disable the automatic i/o checks provided on reseting 
a file which would otherwise cause the program to abort with a run time 
error. This is done with the compiler directive { $ i - ) . The previous 
presence of this directive allows the ioresult function to be used to test 
whether file opening failed. 

label 99; 
var 

Let i E integer; 
begin 

openfiles +- false; 
if paramcount < 2 
then goto 99; 
for i +- 1 to 2 do 
begin 

assign (filesi,paramstr(l)); 
{$i -checks off} 
reset (fi/esi); 
if ioresu/t-# 0 
then goto 99; 
{$i+checks on) 

end; 
open files +- true; 
99: 

end; 

12.2.2 loadset 
procedure loadset (var f:text;var words:/exset); 

This procedure finds all the unique words in a file and returns them in lexset. 
This module is responsible for all of the parsing of the input files. It declares 
the set l e t t e r s used in discriminating words from other text: 

const 
a== 'a'; 

z== 'z'; 
var 

Let letters E set of char; 
type 

state= (inword,skipping); 
var 

Let c E char; 
Let s E state; 
Let theword E lexeme; 

function getch:char; (see Section 12.2.2) 
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of loadset 

of getch 

procedure get/ex (var /:/exeme); (see Section 12.2.2) 

begin 
s +--skipping; 
words +-- [ ] ; 

letters+-- ['a' .. 'z', 'A' .. 'Z']; 
repeat 

get/ex (theword); 
words +-- words + [theword]; 

until theword = ' '; 

end; 

getch 

function getch:char; 

Read in a character from the current file, return the null character on end of 
file. This function has to deal with the problems of 

1. Ends of lines, which in Pascal are detected by the eoln function. These are 
dealt with by returning the ASCII CR character 13. 

2. End of file, detected by the eof function. This is dealt with by returning the 
ASCII NUL character 0. The occurence of NUL characters is dealt with at 
the next higher level of processing to ensure that termination occurs. 

var 
Let local E char; 

begin 
if eoln (f) then 
begin 

readln (f); 
getch +-- chr(13); 

end 
else 
begin 

if eof (f) then 
begin 

getch +-- chr(O); 
end 
else 
begin 

read ((,local); 

getch +-local; 
end; 

end; 
end; 

getlex 

procedure get/ex (var /:/exeme); 
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This procedure parses the input stream for the next word. It then returns it 
in 1. It operates as a simple finite state machine that can be in one of two states: 

1. skipping: the machine is in this state between words whilst it moves over 
non letter characters. 

2. inword: the machine is in this state whilst it parses a word. 

The special case of the occurrence of the null character causes a branch to label 
99, ensuring that a null string is returned by the procedure. This is used at the 
next higher level as a termination condition. Labels, although deprecated in 
structured programming, remain a useful construct for escaping from loops. 
Note that membership of the character in the set of letters is used to switch 
between the two states of the parser. This is an entirely orthodox use of sets in 
Pascal. 

label99; 
begin 

I+--"; 
while s = skipping do 
begin 

c+-getch; 
if c in letters then s +-- inword; 
if c = chr(O) then goto 99; 

end; 
while s =in word do 
begin 

If length (I) = wordmax 
then goto 99; 
1+--l+c; 
c+-getch; 
if c in letters then s +-- inword else s +-- skipping; 
if c = chr(O) then goto 99; 

end; 
99: 

end; 

12.3 Sets of Records 

One can also define sets over record types provided that appropriate equality 
and ordering operators have been defined. Although Vector Pascal does not 
support persistence, this can still provide a useful mechanism for implement­
ing in-memory databases, provided that one writes the routines to load and 
store the sets of records. 

Let us consider the case of a simple name, address and telephone number 
database. We can define an appropriate record type as follows: 

person=record 
id:string[80]; 
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address:string; 
home,mobile:string[30]; 

end; 
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Let us choose to treat the id as a primary key for the database, that is, we will 
define two records to be identical if they have the same primary keys. The 
address and telephone number fields will be ignored for identity purposes. The 
consequence is that each person in the set will have a unique address and pair 
of telephone numbers. 

To do this, we need to define ordering operators over persons: 

operator== personeq; 
operator<= personl t; 

and then define the appropriate ordering functions: 

functionpersonlt(pl,p2:person):boolean; 
begin 

personlt:=pl.id<p2.id; 
end; 
functionpersoneq(pl,p2:person):boolean; 
begin 

personeq:=pl. id=p2. id; 
end; 

12.3.1 Retrieval Operations 

Given a set of person records in db, we can add a person by the operation 

db:=db+[p]; 

Less obviously, we can query the set to look up a person given their name. 

p.id:=id; 
res:=db*[p]; 
forpinresdo; 

The operation x * y returns the set of elements in x that also occur in y. In the 
case of db* [ p] it selects the singleton set comprising the record in db whose 
id field matched the i d field of p. This is then loaded into p by the following 
for .. i n loop. The address and telephone number fields of the record p will 
now be those last stored in the set. 

12.4 Use of Sets in Text Indexing 

Our next example will address text retrieval. Suppose one wants to search for 
the occurrence of a word in a number of files. Most operating systems provide 
tools to do this, either on the command line or through the file manager. The 
simplest such tool is probably the Unix grep command. One might try to 
discover which of one's Pascal files were units by entering 

$grep "unit"*.pas 
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and obtain the response 

bloomfilter.pas:unitbloomfilter; 
bmp. pas: unit bmp; 
bmp. pas: This unit provides a 1 i bra ry to access and manipulate 
bmp.pas: in .bmpfiles. ItisusedinternallyintheunitBMP 
calendar.pas:unitcalendar; 
datesort.pas:unitdatesort; 
intsort.pas:unitintsort; 
metricunits.pas:PROGRAMmetricunits; 
personrecs.pas:unitpersonrecs; 
System.pas:unitsystem; 

Then g rep would search all of the files with the . pas suffix for the sequence 
'unit', finding in the process all of one's units plus some other files. 

The technique involves reading the entire files to find any occurence of the 
requested word. Although fast enough for searching within one directory, it is 
slow when applied to a whole directory tree. For faster access one wants some 
sort of index, which, when given a word, will return all the files containing that 
word. This index would either have to associate with each word a set of files 
that contain it, or associate with each file a set of the words that it contains. 
We will take the latter approach. 

If we assume that the index will be held on disk, performance is likely to be 
constrained either by disk seek times for a random access structure, or by disk 
throughput if an index is read in a single pass. If we are storing a set of words 
with each file, we have to access each set of words once. There will be many 
such sets. We can either design the sets on disk in such a way that the entire set 
is read in with a single DMA transfer, or represent each set as some sort of tree 
on disk that we navigate with random access reads. Since disks achieve the 
highest bandwidth on sequential accesses, and since the number of sets to be 
queried will be large, the best strategy is to read each entire set in turn. This 
implies that the performance constraint will be provided by disk bandwidth 
rather than by disk seek times. In order to make the best use of bandwidth, we 
shall try to use a relatively compact set representation. 

The sets of ordinal type are stored very compactly as a bitmap. However, we 
have a problem, since textual words do not constitute an ordinal type. They can 
be stored in ordered sets as shown in Section 12.2, but these sets, being imple­
mented as trees, cannot be written to direct access files. However, there is a way 
to use ordinal sets to act as surrogates of sets of words. Suppose we have a hash 
function that will assign an ordinal to each possible word, then the words can be 
stored in an ordinal set using their hashed images (Figure 12.1). So if we define an 
ordinal type with, let us say, a range oflOOO elements, we can take a word such as 
'cat' and hash it into this range and store the corresponding ordinal in the set. 

If we prepare one such an ordinal set for each text file, such that the hashed 
images of the words in the file have been added to the set, we could use it for 
indexing. Let us call these sets index-sets. To check which files might contain a 
word, we need only check for the presence of its hashed ordinal in each of 
these index -sets. If the hashed ordinal is not present, we know that the file will 
not contain the word. 
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Figure 12.1. Use of a hash function to store words in an ordinal set. 
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Figure 12.2. The upper line shows the probability of false positives with a set in the range 0 ... 1023 as 
the number of unique words stored in it rises. The lower line shows the probability of false positives if 
unanimous results must be obtained from eight independently hashed sets. 

However, like any hashing process, this will suffer from collisions, where 
two words hash to the same ordinal, prevents us from being able to deduce 
unambiguously the presence of a word in a file from the presence of its ordinal 
in the index-set. 

Let our hash function be uniform and the cardinality of our index sets be m. 
Then, if a file contains n distinct words, what is the probability of obtaining a 
false positive when we test for set membership? 

Define a function u(n) which gives the expected number of members of 
the index set as a function of the words inserted, we have u(O) = 0, and the 
recurrence relation 

u(n) = u(n-1) + 1 - u(n- 1) 
m 

Clearly, the probablity of a false positive is given by u~) . Figure 12.2 shows how 
this probability rises with the number of hashed words inserted into the set 
goes up. Clearly, as the number of words stored approaches half the range of 
the index set, the selectivity of the index becomes poor. At a 50% loading we 
have just under a 40% false-positive probability. If we assume that the index is 
used as a filter to supply filenames to a text searching program such as g rep, 
this may still be worthwhile. 

However, we can greatly inprove the selectivity of the index by using 
multiple independently hashed sets. Suppose that instead of a single set we 

have p of them, then the probability of false positives becomes [u~)r; in 
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words, the probability of false positives falls exponentially with the number of 
independently hashed index-sets that we use. 

Let us give an example. If we have a single index-set ranging over 0 ... 1023, 
then the false-positive rate with a loading of 512 entries is 39.4%, but with eight 
independent index-sets each of the same size, the false-positive rate falls to 
0.06%. An alternative approach might be simply to use a single set that was eight 
times as big, but this is much less effective. It would give a false-positive rate of 
6% at the same loading, 100 times less selective than the use of multiple sets. 

12.5 Constructing an Indexing Program 

Let us now construct a program that will construct an index of all of the words 
in all of the files in the current directory tree. We can break the design of the 
program into three component parts: 

1. Parsing text files to find the words in them. This problem has basically been 
solved in a previous example (see Section 12.2.2). 

2. Traversing a directory tree to find all the files in it. This is a new problem 
for us and we will examine it below (see Section 12.5.1). 

3. Constructing and manipulating the index sets. This will be dealt with in the 
unit bloomfilter (see Section 12.6). 

12.5.1 dirlist: A Program for Traversing a Directory Tree 

We start by constructing a program that simply lists a directory tree. We can 
then use this as a framework to do something to each file in a directory tree. 
The logic of the program is simple; the main novelty consists in the introduc­
tion of a number of sugared Linux system calls for accessing directories. The 
same calls work under Windows. 

program dirlist; 

This program takes a single parameter: a directory name. It traverses the 
directory tree listing all of the filenames found. 

const 
above= ' .. '; 
this= '.'; 

The constants are used to refer to the Unix and Windows representations of 
the current and superior directory. 

var 
Let s E string; 

procedure intodir (s:string;level:integer); (see Section 12.5.2) 
begin 

s ~ paramstr (1 ); 

intodir (s,O); 
end. 
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12.5.2 intodir 

procedure intodir {s:string;/eve/:integer); 

This procedure recursively traverses the directory whose name is passed as a 
parameter. All files encountered are listed to the standard output stream. The 
body of the function is shown in Alg. 40. A major complication is the need to 
convert between Unicode strings used internally and the ASCII filenames used 
by Linux. It uses the following variables: 

var 
buf: array [0 .. 1 00] of ascii; 
Let n E pchar; 
Let un E string; 
Let thedir E pdir; 
Let theentry E pdirentry; 

Type ascii is an internal representation of ASCII characters, stored one per 
byte. It is declared in the system unit. The type pchar is a pointer to an ASCII 
character. This is the standard way in which strings are passed in C and it is 
needed to converse with the Linux or Windows file system. Types pdir and 
pdirentry are types declared in the system unit for traversing operating system 
directories. The function also makes use of a group of system procedures or 

begin 
unicodestring2ascii(s,buf0); 

thedir := opendir(@buf); 
if thedir =F nil then 
begin 

chdir(@buf); 
theentry ~ readdir(thedir); 
while (theentry =F nil) do 
begin 

n ~ entryname(theentry); 
un ~ strpas(n); 
writeln{un); 
if isdir(n) then 

if un =F above then 
if un =F this then 

intodir(un,level + 1 ); 
theentry ~ readdir(thedir); 

end; 
unicodestring2ascii(above,buf0); 

chdir(@buf); 
end; 

end; 

Algorithm 40. Body of the function intodir. 



224 SIMD Programming Manual for Linux and Windows 

functions: 

• The procedure unicodestring2ascii takes a Vector Pascal string and copies it 
into an array of ASCII characters, appending the requisite null character 
expected by C. 

• The function opendir must be passed the address of an ASCII string and 
returns a directory handle. 

• The chdir procedure changes the current directory to the one specified by 
the ASCII string provided in its parameter. 

• The function readdir reads the next directory entry from the directory 
directory specified by the handle passed to it. 

• The function entryname returns a pointer to an ASCII string which has to be 
converted to a Pascal string using the function strpas. 

12.6 bloomfilter 

unit bloomfilter; 

This unit provides a set oflibrary routines for creating and manipulating index­
sets for indexing the words in documents. 

interface 
const 

maxhash = 1 023; 
bloomdepth = 8; 

The above constants control the overall dimensions of the index-sets. Maxhash 
defines highest ordinal number in the set and bloomdepth defines how many 
index sets are to be used for each file. 

type 
hashcode = O .. maxhash; 
bloomrange = 1 .. bloomdepth; 
filter = set of hashcode; 

A f i 1 t e r is a single index -set. These are then grouped into a 

bloom = array [bloomrange] of filter; 

A lexeme will be hashed to a hash vector, a vector of independently computed 
hash codes: 

hashvector =array [bloom range] of integer; 

Each text file is then described by a filefilter which encodes information about 
the words in the file along with the filename: 

filefilter = record 
wordset:bloom; 
filename:string; 

end; 
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procedure hashword {var theword:string;var codes:hashvector); (see Section 
12.6.1) 
procedure setfilter {var theword:string;var f:bloom); (see Section 12.6.2) 
function testfilter {var theword:string;var f:bloom):boolean; (see Section 12.6.3) 
implementation 

12.6.1 hashword 

procedure hash word {var theword:string;var codes:hashvector); 

This procedure performs parallel hashes on theword to yield a a vector of hash 
codes in codes. It uses for this purpose the vector of prime numbers: 

const 
primes: array [bloomrange] of integer= {7, 11, 13, 17, 19,23,29,31 ); 

var 
Let i,l E integer; 
Let j E hashcode; 

begin 
I +-length (theword); 
codes+- 0; 
for i +- 1 to I do 
begin 

j +- ord(theword;); 

The following line has the effect of computing the polynomials: 

c1p~- 1 + c2p~-2 · · · + C!-1P1 + C! 

1-1 + 1-2 + + c1P2 C2P2 · · · Cz-1P2 c1 

c1p~- 1 + c2p~-2 · · · + Ct-IP3 + cz 

etc., where Cj is the jth character in the string and p; is the ith prime in the 
vector of primes. Where the instruction-sets allow, it will be computed in 
parallel. 

codes+- codes x primes+ j; 
end; 

Constrains the result to be in the appropriate range. 

codes +-codes 1\ maxhash; 
end; 

12.6.2 setfilter 

Computes the hash vector for the word and inserts the hashed elements into 
all of the filters in the bloom. Note that the assignment context of the second 
statement is an array of sets; this has the effect of causing the array identifier 
codes to be indexed in the set on the right-hand side. 
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procedure setfilter (var theword:string;var f:b/oom); 
var 

Let codes E hashvector; 
Let i E integer; 

begin 
hashword (theword,codes); 
f+- f+ [codes]; 

end; 

12.6.3 testfilter 

Computes the hash vector for the word and tests if the co responding elements 
are present in all the filters of the bloom. Note the use of and-reduction on the 
vector of Boo leans that results from the expression codes i n f. 

function testfilter (var theword:string;var f:bloom):boolean; 
var 

Let codes E hashvector; 
begin 

hashword (theword,codes); 
testfilter +- \A (codes E f); 

end; 

12.7 The Main Program to Index Files 

This uses a slightly modified version of intodir to traverse the tree. The new 
version of intodir calls the procedure processfile for every file encountered. In 
consequence, indexes are built for every file in the directory tree and the index 
records all written to the index file. 

The usage of the program involves issuing the command 

indexfiles 

which causes the current directory and all sub-directories to be scanned and an 
index of all the words found to be stored in the file w o r d i n de x . i n d. 

program indexfiles; 
uses b/oomfilter; 
const 

dirsep = '\' ; 
word max= 25; 
above=' . .'; 
this='.'; 

type 
lexeme = string; 

var 
Let index E file of filefilter; 

procedure /oadset (var f:text;var words:bloom); 
(see Section 12.2.2 for something similar.) 
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procedureprocessfi/e(fn,path:string); (see Section 12.7.1) 
procedure intodir (s:string;prefix:string); 

(see Section 12.5.2 for something similar.) 
begin 

assign (index, 'wordindex.ind'); 
rewrite (index); 
intodir (' .' , '.'); 
close (index); 

end. 

12.7 .1 processfile 
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This builds an index for file fn and adds it to the index. It uses a Standard 
Pascal file of records to write the index records to disk. It associates with each 
index record the full file path that was used to find the file. This is built up by 
the intodir procedure as it traverses the directory tree. 

procedure processfile (fn,path:string); 
var 

Let ff E filefilter; 
Let f E text; 

begin 
writeln(path); 
assign (f,fn); 
{ $ i - } 
reset (f); 
if ioresult = 0 then 
begin 

{ $i +} 

ff.wordset +---; 
/oadset (f,ff.wordset); 
ff.filename +---path; 
write(index,ff); 

end 
else writeln('cant open', fn, ':',path); 
close (f); 

end; 

12.7 .2 A Retrieval Program 

The retrieval program searchindex scans the index file for a word and prints 
the names of the files that are likely to contain the word. For example: 

sea rchi ndex bird 

will list all the files containing the word 'bird'. The index file is assumed to be 
in the current directory and called w o r d i n de x . i n d. 

program searchindex; 
uses b/oomfilter; 

label99; 
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var 
Let index E file of filefilter; 
Let entry E filefilter; 
Let i E integer; 

begin 
else 
begin 

assign (index, 'wordindex.ind'); 
{ $ i - } 
reset (index); 
if ioresult = 0 then 

while not eof (index) do 
begin 

read (index,entry); 
if ioresult -1- 0 then goto 99; 
if testfilter(paramstr( 1),entry. wordset) then 
writeln(entry.fi/ename); 

end; 
99:close (index); 

end; 
end. 

As an example, i n de x f i l e s was used to construct an index over the gee 
include directory. The times taken to search for the files containing the word 
printf using search i n de x and g rep were then compared. The statistics 
below indicate that sea r c h i n de x was approximately 100 times faster than 
using g rep. 

Number of files 
Size of data 
Size of index 
Time using search index 
Time using g rep -R 

712 
3.8 Mbyte 
980K 
0.04s 
4.06s 

The files in this case were relatively small, so the index file was relatively 
large compared with the data being indexed. This could have been reduced by 

1. Using a shorter string to hold the file names in the bloom records. With the 
current design, the filenames occupy 510 bytes, which is excessive. 

2. Using smaller sets, the set data currently occupy 1024 bytes per file. This 
could be reduced if most of the files being indexed are small. 

It will be understood that the data structures in this example are not highly 
optimised for storage efficiency, being designed instead for ease of under­
standing in a textbook. They do, however, indicate how comparatively simple 
set structures can give significant performance boosts in text retrieval. 



13.1 

Parallel Image 
Processing 

Declaring an Image Data Type 

Vector Pascal does not have a predeclared image data type. However, one can 
readily declare one. There are two common approaches to representing full­
colour image data. In both of them the colour is represented as three compo­
nents, each of 8-bit precision. 

1. Display manufactures for PCs usually store the information as two­
dimensional arrays of 24- or 32-bit pixels, made up of red, green and blue 
fields with an optional alpha field for colour blending. The fields typically 
contain 8-bit unsigned numbers with 0 representing minimum brightness 
of the colour and 255 representing the maximum brightness. This approach 
simplifies display design but is not so suitable for image processing. 

2. The alternative approach separates the colour information out into distinct 
planes, so that a colour picture is manipulated as three' distinct' mono­
chrome images, one of which represents the red component, one the green 
and one the blue. This approach allows image-processing procedures 
designed to operate on monochrome images to be applied unmodified to 
each of the planes of a colour image. 

In what follows we use the colour plane model for images:1 

type 
i mage(maxpla ne ,maxrow, maxcol :integer )= 

a rray [ 0 .. maxp lane. 0 .. max row. 0 .. max col J of pixel ; 

This declares an image to be a parameterised data type with a variable number of 
image colour planes and a variable number of rows and columns. Although this 
definition will store also pixels in an 8-bit representation, it is as a signed 8-bit 
binary fraction in the range -1 . . . 1, instead of as 8-bit unsigned integers. 

13.2 Brightness and Contrast Adjustment 

The signed fractional representation of pixels lends itself well to image­
processing applications where arithmetic is done on pixels. We frequently want 

1The definitions of the image type along with several of the functions over images are given in 
Unit Bmp in Section 13.12. 
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negate image 

halve contrast 

brighten 

program contrast; 
usesbmp; 
var 
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Let im,outim e pi mage; 
begin 

if loadbmpfile('grey1.bmp',im) then 
begin 

new(outim,im A.maxplane,im A.maxrow,im A.maxcol); 
outimi f- imi x -1.0; 
storebmpfile('neg. bmp',outim i); 
outimi f- imi X 0.5; 
storebmpfile('half.bmp' ,outim i); 
outimi f- imi + 0.3; 
storebmpfile('bright.bmp' ,outim i); 

end 
else writeln('failed to load file'); 

end. 

Algorithm 41. Simple manipulations of image contrasts and brightnesses. The type pimage used is a 
pointer to an image. 

to subtract images from one another. Doing this can give rise to negative-valued 
pixels. Using an unsigned format, negative pixels have no natural representa­
tion. Using signed pixels, 0 represents mid grey, -1 represents black and 
1 white. This representation allows the contrast of an image to be adjusted simply 
by multiplying by a constant. Thus, if we multiply an image by 0.5 we halve its 
contrast; if we multiply it by -1, we convert it to an negative image, etc. 

13.2.1 Efficiency in Image Code 

Alg. 41 illustrates how easy it is to alter the brightness/contrast of an image by 
adding/multiplying it with a real value. Although concise, this does not 
necessarily produce the fastest code. The rules used in expression evaluation 
mean imj xO.S is expanded out to imj Lo,t1,12 xO.S, which is a multiplication of 
a pixel by a real. Since reals are of higher precision, the pixel has to be 
promoted to a real before the multiplication. This effectively prevents the 
original array expression being vectorised. 

A more efficient approach is seen in the procedure adjustcontrast shown in 
Alg. 42, where a vector of pixels is initialised to hold the adjustment factor. By 
holding it as a vector of fixed-point numbers, the operation can be effectively 
vectorised on MMX-based processors.2 Since the fixed-point pixel format only 
works for lfl ~ 1, it is necessary to use floating-point multiplication when 
increasing the image contrast. 

2It is a weakness of the Intel MMX instruction-set that it does not support scalar to vector 
operations. There are no instructions to operate between a signed byte and a vector of signed 
bytes. Motorola processors do not suffer from this weakness. 
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procedure adjustcontrast(f:real; var src,dest:image); 
var 

Let IE Aline; 
Let rE real; 

begin 
new(l,src .maxcol); 
{ $r- l 
Ji f- t; 
if (abs(f) < 1) then dest f- src X li 
else dest f- src X f, 
{ $r- l 
dispose (I); 

end; 
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Algorithm 42. A more efficient way of adjusting contrast. Note that in this example the type line refers 
to a vector of pixels. 

Recall that pixels are represented as signed 8-bit numbers, with the 
conceptual value 1.0 being encoded as + 127 and the conceptual value -1.0 
being encoded as -128. Multiplication of pixels proceeds by 

1. multiplying the 8-bit numbers to give a 16-bit result 
2. shifting the result right arithmetically by seven places 
3. selecting the bottom 8 bits of the result 

The 8-bit signed format contains 7 bits of significance plus the sign bit and the 
16-bit result contains 14 bits of significance plus two replicated sign bits. It is 
clear that this format cannot represent multiplication by a number greater 
than 1. 

13.3 Image Filtering 

As another practical example of Vector Pascal, we will look at an image-filtering 
algorithm. In particular we will look at applying a separable three-element 
convolution kernel to an image. We shall initially present the algorithm in 
Standard Pascal and then look at how one might re-express it in Vector Pascal. 
The entire program is shown in Alg. 45 and then developed in Algs 44 and 46. 

Convolution of an image by a matrix of real numbers can be used to smooth 
or sharpen an image, depending on the matrix used. If A is an output image, K 
a convolution matrix, then if B is the convolved image: 

By,x = L L Ay+i,x+jKi,j 
j 

A separable convolution kernel is a vector of real numbers that can be 
applied independently to the rows and columns of an image to provide 
filtering. It is a specialisation of the more general convolution matrix, but is 
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Figure 13.1. Test images used to illustrate brightness, contrast adjustment and filtering. The images 
(a)-(e) were produced by the program graphio. 

algorithmically more efficient to implement. If k is a convolution vector, then 
the corresponding matrix K is such that Ki,j = kikj. 

Given a starting image A as a two-dimensional array of pixels, and a three­
element kernel CJ>c2,c3, the algorithm first forms a temporary array T whose 
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Original After blur 

Figure 13.2. The effect of a blurring filter on a finite impulse. 

elements are the weighted sum of adjacent rows: Ty,x = c1Ay-l ,x + c2Ay,x+ 
c3Ay+l ,x· Then in a second phase it sets the original image to be the weighted 
sum of the columns of the temporary array: Ay,x = c1 Ty,x-l + Cz Ty,x+ 
c3 Ty,x+l· Clearly, the outer edges of the image are a special case, since the 
convolution is defined over the neighbours of the pixel, and the pixels along 
the boundaries are missing one neighbour. A number of solutions are available 
for this, but for simplicity we will perform only vertical convolutions on the 
left and right edges and horizontal convolutions on the top and bottom lines 
of the image. 

13.3.1 Blurring 

An image can be blurred using the separable filter (0.25,0.5,0.25). Consider that 
this implies each row in the output image is formed by a mixture of itself and 
the rows above and below, with half the amplitude of the signal coming from 
the current row and half from the adjacent rows. Similarly, each column is 
made up of half from the current column and half from the adjacent column. 
The net result is that a pixel's influence spreads out over a 3 x 3 grid. We can 
examine the effect of the filter on a point source. Here a single pixel that stands 
out against a uniform background in the initial image shows how the initial 
pixel spreads out to affect the region around. This is shown in Figure 13.2. 

Figure 13.3 shows the effect of using this filter on the classical "Mandrill" 
test image. 

13.3.2 Sharpening 

If we use a filter that has negative weights away from the centre, the effect is to 
sharpen an image. Suppose we apply the filter (-0.25,1.0,-0.25) to an image, 
what will be the result? 

The first thing to note is that this filter is non-unitary, that is, its coefficients 
do not add up to 1. If we use a unitary filter such as the blur (0.25,0.5,0.25), 
the mean contrast of the image is unchanged. 

Since the coefficients of our sharpening filter sum to 0.5 and since the filter 
is applied twice, once vertically and once horizontally the net effect is to reduce 
the mean contrast to one-quarter of what it was originally. This is shown in 
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Figure 13.3. The image at the top is the original. The bottom left image has been subjected to a 
blurring filter (0.25,0.5,0.25) and that on the right to a sharpening filter. 

Figure 13.4. Effect of a sharpening filter on a finite impulse. 

Figure 13.4. To compensate, we must multiply the image by 4.0 to restore the 
original contrast, as shown in Alg. 43. Note the characteristic "ringing" induced 
in the image by sharpening filters. Figure 13.3 shows how the picture of a 
Mandrill can be sharpened. Note that over the fur, the effect of sharpening is 
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procedure sharpen(var im:image); 
var 

Let i E integer; 
begin 
;~ 1; 
pconv(im, -0.25,0.998, -0.25); 

end; 

Algorithm 43. The sharpening method. 

just to introduce noise. This is for two reasons: 
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1. This algorithm results in the loss of 2 bits of precision when the multiplica­
tion by 4 takes place; the effect is to introduce additional quantization noise. 

2. Sharpening is only visually effective where an feature with high spatial 
frequency occurs against a background with lower spatial frequency. The 
hair area is all of high spatial frequency. In consequence, the ringing 
produced by sharpening overlaps with other hairs, occluding them. 

13.3.3 Comparing Implementations 

Alg. 44 shows con v, an implementation of the convolution in Standard Pascal. 
The pixel data type has to be explicitly introduced as the sub-range -128 ... 127. 
Explicit checks have to be in place to prevent range errors, since the result of a 
convolution may, depending on the kernel used, be outside the bounds of valid 
pixels. Arithmetic is done in floating point and then rounded. 

Because ISO Pascal does not support dynamic arrays, the image sizes in 
both this version and the parallel version are statically declared. 

Image-processing algorithms lend themselves particularly well to data­
parallel expression, working as they do on arrays of data subject to uniform 
operations. Alg. 47 shows a data-parallel version of the algorithm pconv 
implemented in Vector Pascal. Note that all explicit loops disappear in this 
version, being replaced by assignments of array slices. The first line of the 
algorithm initialises three vectors p1, p2, p3 of pixels to hold the replicated 
copies of the kernel coefficients c 1, c2, c3 in fixed-point format. These vectors 
are then used to multiply rows of the image to build up the convolution. The 
notation thei m[ J [ 1.. .max pix -1 J denotes columns 1. .. max pix -1 of all 
rows of the image. Because the built-in pixel data type is used, all range 
checking is handled by the compiler. Since fixed-point arithmetic is used 
throughout, there will be slight rounding errors not encountered with the 
previous algorithm, but these are acceptable in most image-processing 
applications. Fixed-point pixel arithmetic has the advantage that it can be 
efficiently implemented in parallel using multi-media instructions. 

It is clear that the data-parallel implementation is more concise than the 
sequential one, 12 lines with 505 characters compared with 26 lines with 952 
characters. It also runs considerably faster, as shown in Table 13.1. This 
expresses the performance of different implementations in millions of effective 
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procedure conv(c 1,c2,c3:real); 
var 

tim:array[O .. m ,O .. m] of pixel; 
Let quarter, half, temp E real; 
Let iJ E integer; 

begin 
for if- 1 to m -1 do 

for j f- 0 to m do 
begin 

end; 

temp f- theimi-lj X c7 + theimij X c2 + theimi+lj X c3; 
if temp > 127 then temp f- 127 else 

if temp < -128 then temp f- -128; 
timij f- round(temp); 

end; 
for j f- 0 to m do 
begin 

timoj f- theimoi 
timmjf--- theimm,j; 

end; 
fori f- 0 to m do 
begin 

for j f- 1 to m -1 do 
begin 

tempf--- timij-1 X c7 + timij+l X c3 + timij X c2; 
if temp > 127 then temp f- 127 else 

if temp < -128 then temp f- -128; 
timi,j f- round(temp); 

end; 
theimi,o f- timi,o; 
theimi,m f- timi,m; 

end; 

Algorithm 44. Standard Pascal implementation of the convolution. 

arithmetic operations per second. It is assumed that the basic algorithm 
requires six multiplications and six adds per pixel processed. The data-parallel 
algorithm runs 12 times faster than the serial one when both are compiled 
using Vector Pascal and targeted at the MMX instruction-set. The pconv also 
runs one-third faster than conv when it is targeted at the 486 instruction-set, 
which in effect serialises the code. 

For comparison, conv was run on other Pascal compilers,3 DevPascal1.9, 
Borland Pascal and its successor Delphi.4 These are extended implementations, 

3In addition to those shown, the tests were performed on PascaiX, which failed either to compile 
or to run the benchmarks. TMT Pascal failed to run the convolution test. 
4Version 4. 
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program dconv; 
const 

m =255; 
repeats = 400; 

type 

var 

pixel= -128 .. 127; 
tplain = array[O .. m,O .. m) of pixel; 

Let theim,theres E tplain; 
Let i E integer; 
Let oldtime,ops E real; 

procedure showtime; (see Alogrithm 46 ) 
procedure conv ( c7 ,c2 ,c3:real); (see Alogrithm 44) 

begin 
oldtime f- sees; 
opsf- 12 x (m +1) x (m +1) x repeats; 
for if- 1 to repeats do conv (0.2, 0.6, 0.2); 
showtime; 
writeln(' done' ,sees); 

end. 
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Algorithm 45. The program dconv, a test harness for image convolution written to work under several 
Pascal compilers. 

procedure showtime; 
var 

Let sec,duration,rate E real; 
begin 

sec+- sees; 
duration f- sec - oldtime; 
write(duration,' '); 

ops 
rate +--- duration; 
write(~ 'M ops per sec')· 

1000000' ' 
oldtime +--- sec; 

end; 

Algorithm 46. The procedure showtime. 

but with no support for vector arithmetic. Delphi is a state-of-the-art 
commercial compiler, as Borland Pascal was when released in 1992. DevPas is 
a recent free compiler. In all cases range checking was enabled for consistency 
with Vector Pascal. The only other change was to define the type pixel as 
equivalent to the system type shortint to force implementation as a signed 
byte. Delphi runs conv 40% faster than Vector Pascal does, whereas Borland 
Pascal runs it at only 7% of the speed, and DevPascal is roughly comparable to 
Vector Pascal. 
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procedure pconv(var theim:tp/ain;c 1 ,c2,c3:real); 
var 

tim:array[O .. m,O .. m] of pixel; 
Let p 1 ,p2,p3 e array[O .. m] of pixel; 

begin 
p1 ~ c1; 
p2~c2; 

p3~c3; 

tim1 .. m-1 ~ theimo .. m-2 X p1 + theim1..m-1 X p2 + theim2 .. m X p3; 
tim0 ~ theim0; 

end; 

timm ~ theimm; 
theimo .. m,1 .. m-1 ~ timo .. m,O .. m-2 X p1 + timo .. m,2 .. m X p3 + timo .. m,1 .. m-1 X p2; 
theimo .. m,o ~ timo .. m,o; 
theimo .. m,m ~ timo .. m,m; 

Algorithm 47. Vector Pascal implementation of the convolution. 

Table 13.1. Comparative performance on convolution 

Algorithm Implementation Target processor Million operations per second 

conv Borland Pascal 286+287 6 
Vector Pascal Pentium + MMX 61 
DevPascal 486 62 
Delphi 4 486 86 

pconv Vector Pascal 486 80 
Vector Pascal Pentium + MMX 820 

Measurements done on a 1 GHz Athlon, running Windows 2000. 

13.4 genconv 

The convolution algorithms presented so far use one-dimensional kernels and 
work by being applied successively in vertical and horizontal directions. As 
such, they are unable to deal with asymmetrical kernels - ones which blur in 
one direction and sharpen in another, for instance. They also, because they use 
8-bit pixel multiplication, suffer from rounding errors when using sharpening 
convolutions. 

We will now present 

procedure genconv(var p:image;var K:matrix); 

which computes a general convolution on an image p producing a modified 
image q such that if 

qi,j,k = L L Pi,j+y-a,k+x-b X Kx,y 
X y 

where a= (K.rows)div2 and b = (K.cols)div2. At the end pis updated with q. 
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function dup(ij :integer ):boolean; (see Section 13.4.1) 
function prev(ij :integer):pimage; (see Section 13.4.2) 
function pm(ij :integer):pimage; (see Section 13.4.3) 
procedure doedges; (see Section 13.4.4) 
procedure freestore; (see Section 13.4.5) 

begin 
new(f,K.rows,K.cols); 
tif- nil; 
new(flags,K.rows,K.cols); 
flagsi f- false; 

for if- 1 to K.rows do 

for j f- 1 to K.cols do 
else ti[iJ1 f- pm(iJ); 
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The loops above perform the premultiplication of the input image to form the matrix of 
images. If item Ki,j is a duplicate then we use a previous premultiply or else we perform 
the premultiply now. 

a f- K.'fws; 

b f- K.~ols; 

p[][a .. p.maxrow- a,b .. p.maxcol- b] :=0; 
for if- 1 to K.rows do 

for j f- 1 to K.cols do 
p[][a .. p.maxrow- a,b .. p.maxcol -b] := 
p[][a .. p.maxrow- a,b .. p.maxcol- b] + fA[i,j] 
A[iota O,i + iota 1 - a,j + iota2 - b]; 

The above line forms the convolution by replacing the central region of the image with the 
sum of the shifted premultiplied images. 

doedges; 

freestore; 
end; 

Algorithm 48. Main body of the generalised convolution. 

Genconv allows an image to be convolved with an arbitrary two­
dimensional matrix of real numbers. If one performs this operation naively 
with an n x n matrix of reals against an image of dimensions r x c, then the 
algorithmic complexity will be Orcn2, since each output pixel is the result of 
multiplying n2 input pixels by kernel components. 

However, it is worth observing that for most practical convolutions there 
are repeated matrix elements in the kernel. A nine-element matrix might 
contain only four distinct values. We can take advantage of this by analysing 
the matrix to determine how many unique components it has and then 
forming premultiplied copies of the input image, one for each unique matrix 
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function dup(i,j:integer):boolean; 

var 
Let c,d,l,m E integer; 
Let b E boolean; 

begin 
cf- K.cols; 
df-j+iXc; 
bf- false; 
for If- 1 to c do for m f- 1 to k.rows do 

b f- b v (K;j = Km,t) A (m + c X I < d); 

dupf- b 
{dup:=\or\or((K[i ,j]=K)and(iota l+c*iota O<d));} 

The Vector Pascal statement is more or less a direct translation of the mathe­
matical formulation of the problem. We use or-reduction over both axes of the 
matrix to search for duplicates. 
end; 

Algorithm 49. The function which checks for duplicate kernel elements. 

element in the kernel. Appropriate selection from these premultiplied copies 
allows us to compute the convolution. 

Let us define a couple of types and a variable to help with this: 

type 
premult(rows,cols:integer) =array [1 .. rows, 1 .. co/s ] of pi mage; 
tflag(rows,cols:integer) =array [1 .. rows, 1 .. cols ] of boolean; 

var 
Let f E' premult; 
Let a,b,ij E integer; 
Let flags E ' tflag; 

We will use f to hold the premultiplied versions of the image such that f;,j = 
p x Ki,j· The algorithm for constructing the premultiplied matrix of images 
will avoid carrying out redundant multiplications. 

a,b store the steps away from the centre of the kernel. 
flags[i,j] is true if f[i,j] holds the first pointer to a premultiplied image. 

13.4.1 dup 

This function returns true if there exists an m,n such that 

n + m x K.cols < j + i x K.cols 

and 
Km,n = K;,j 

in other words, if the matrix element K;,j is preceded in the matrix by an 
identical element. If that is true, then the element K;,j is a duplicate and this 
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fact can be taken advantage of in reducing the amount of premultiplication 
required to perform the convolution. 

13.4.2 prev 

For duplicated matrix elements, K;,j function prev returns the premultiplied 
version of the image that was previously computed for this value of the matrix 
element. 

This uses classical Pascal constructs to search the matrix for the position of the 
premultiplied duplicate and then assigns the duplicate to the return value of the 
function. Note that the function does not return when the assignment is made. 

13.4.3 pm 

The function pm (shown in Alg. 51) premultiplies the image by the real valued 
coefficient K;,j returning a new image. The fact that a new premultiplied image 
has been created is recorded in the flags matrix. 

function prev (ij:integer):pimage; 
var 

Let m,n E integer; 
Lets E real; 

begin 
Sf- k;j; 
for m +-- 1 to i -l do 

for n +-- 1 to K.cols do 
if Km,n = s then 

prev +-- ti[m,n]; 
for n f- 1 to j-1 do 

if K;,n = s then 
prev +-- ti[i,n]; 

end; 

Algorithm SO. Function to find a previous instance of a kernel element. 

function pm(ij:integer):pimage; 
var 

Let x E pi mage; 
begin 

new(x,p.maxplane,p.maxrow,p.maxcol); 
adjustcontrast(K;jp, xi); 
flagsi[i,j] +--true; 
pm+-x; 

end; 

Algorithm 51. The premultiplication function. 
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13.4.4 doedges 

When performing a convolution on an image, the edges always pose a 
problem. The convolution operation determines the value of each output 
image from the corresponding neighbourhood in the input image. Around the 
edges only part of this neigbourhood exists. Some strategies that can be 
adopted here are as follows: 

1. One can treat the image as being topologically equivalent to a torus so that 
upper the neighbourhood of pixel on the top line of the image continues on 
to bottom lines of the image. This approach is computationally easy: when 
finding the neighbours of pixel Pi,j we would normally do this by using the 
expression Pi+y,j+x iterating over a range of values of x andy. To treat the 
image as a torus we substitute the indexing expression p [ ( i + y ) mod 
p.rows,(j+x)mod p.cols]. Although this is computationally easy, it 
does not make a great deal of sense, since it allows output pixels to be influ­
enced by input pixels in the parts of the picture that are furthest away from it. 

2. One can mirror the original image around all four edges so that on, for 
instance, the top edge the upper neighbour of a pixel is the same as its lower 
neighbour. This makes more sense than using a toroidal topology, and will 
work well for where the edge of the image is intersected by a feature that 
runs a right angles to the edge. 

3. One can assume that the edge pixels themselves are replicated to an arbitrary 
degree beyond the edge itself, and compute the edge convolution on this 
basis. This is the most parsimonious assumption, and is the one we use here. 

If we have a 5 x 5 convolution matrix and a 100 x 100 image, then we will 
have a central sub-region of the output image: q [ 2 .. 9 7 , 2 .. 9 7 J, which can 
be evaluated from the full convolution matrix. The 2-pixel wide vertical 
margins can be expressed a sum of columns of images within the premultiplied 
image matrix. Thus the zeroth output column is the sum of the zeroth image 
columns within the first three columns of the premultiplication matrix plus 
the first image column of the fourth column of the premultiplied image matrix 
and the second image column of the fifth column of the premultiplied image 
matrix, etc. Processing the edges takes many more lines of code because it is a 
mass of special cases. 

13.4.5 freestore 

The first occurrence of an image in the premultiplied image matrix is disposed 
of. The record in the flags matrix, initialised when premultiplication occurred, 
is used to keep track of this. 

13.5 Digital Half-toning 

Printing images on paper requires that they be converted into a dot pattern 
since it is not practical to print with ink of varying shades of grey. Since a 
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$r-

iterate through the 
planes 

top 

bottom 

left 

right 

procedure doedges; 
var 

Let ij,l,m,n,row,co/ e integer; 
Let r e pi mage; 

begin 
j~ k.r~ws; 
i~ k.cols; 

2 
p[][O.J -1] := 0; 
pOO[O .. i -1] := 0; 
p0[1 + p.maxrow- j .. p.maxrow] := 0; 
p00[1 +p.maxcol- i..p.maxcol] := 0; 
for n ~ 0 to p.maxplane do 

for I~ 1 to k.rows do 
form ~ 1 to k.co/s do 
begin 

r~ fi[l,m]; 
for row~ 0 to j -1 do 

Pn,row~ Pn,row + ri[n,(row + I - j -1)]; 

The line above computes the convolution for the top edge, so that the neigh­
bours above the top are replaced by the correspoding elements of the per­
multiplied top scan-line. 

for row~ p.maxrow j + 1 to p.maxrow do 
Pn,row~ Pn,row+ ri[n,(row + 1- j -1)]; 

for co/~ 0 to i -1 do for row~ 0 to p.maxrow do begin begin 
Pn,row,col~ ri[n,row,(col + 1 + m -I)]+ Pn,row,col; 

end; 

Using a similar technique we compute the convolution for the left edge. Note 
that the construct p [ n J [ J [col J means of planes n select the column col 
from all rows. 

end. 

for co/~ 1 + p.maxcol - ito p.maxcol 
do for row~ 0 to p.maxrow do begin 

begin 
pn,row,col~ pn,row,co/ + ri[n]; 
end; 
{$r+J 

end; 

Algorithm 52. The edge processing algorithm. 

digital image may have a range of grey values, one has to map these to dots in 
such a way that the average darkness of the dots over a small area of the paper 
is the same as the average darkness of the corresponding area of the image. In 
this section we present two algorithms to achieve this, one parallel and the 
other inherently sequential. 
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procedure freestore; 
var 

Let i,j E integer; 
begin 
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for i ~ 1 to K.rows do 
for j ~ 1 to K.co/s do 

if flagsi[i,j] 
then dispose(fi[i,j]); 

end; 

Algorithm 53. The release of temporary store. 

Figure 13.5. Effect of applying a diagonal edge detection filter to Mandrill. 

13.5.1 Parallel Half-tone 

Alg. 54 is a parallel technique for half toning. It involves defining a mask of 
pixels of varying brightnesses and comparing the image with this mask. If a 
pixel is darker than the corresponding mask position it is printed as black and 
otherwise as white. The effect is shown in Figure 13.6. The mask is chosen to 
be 8 bytes long to ensure that the operation will parallelise in the MMX 
registers. The mask is combined with the picture using modular arithmetic on 
the indices to, ~1· 
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Figure 13.6 Mandrill rendered with a 4 x 8 mask. 

procedure halftone(var src,dest:image); 
const 

black:pixel = - 1 .0; 
white:pixel = 1.0; 
pattern: array [0 .. 3,0 . .7] of pixel= ((0.75,-0.95,0.0,0.5,-0.3,0.33,-0.2,-0.7), 
(0.62,-0.75,-0.1,-0.45,0.8,0.25,0.95,-0.6), 
( -0.15,0.3,0.4,-0.8,-0.9,-0.5,0.15,0.17), 
(-0.25,0.9,0.7,- 0.33,- 0.4,0.2,0.1 '-0.82) ); 

begin 
dest f- patternt1 mod 4h mods; 

d t { white if src > dest 
es f- . ; 

end; black otherwise 

Algorithm 54. Parallel half-toning using a fixed mask. 

13.5.2 errordifuse 
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It is clear that simply masking, although quick, yields annoying artifacts since 
the human eye is well able to pick out the repetitive motifs embedded within the 
mask. Another disadvantage is that the mask will approximate the brightness 
of the picture with a spatial wavelength equivalent to twice the size of the mask 
itself. It therefore responds poorly to sharp edges. 

If one is willing to sacrifice parallelism, error diffusion techniques yield a 
much better result, as is shown in Figure 13.7. 

Alg. 55 compensates for the quantization errors by adjusting the likelihood 
of using black or white for neighbouring pixels. Once it has decided whether to 
render a pixel in black or white, it computes the quantization error in e 1. This 
error term is then spread around the pixels to the right and below by 
subtracting weighted components of it to a temporary source image. 

When the corresponding pixels in the temporary source come to be 
processed, the likelihood of their being rendered black or white is now biased 
away from its original value by this error term. 
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Figure 13.7. Mandrill rendered using error diffusion. 

procedure errordifuse(var src,dest:image); 
var 

Let tempE "image; 
Let i,j,k E integer; 
Let black, white E pixel; 
Let e7,e2,e3 E real; 
Let r1,r2 E integer; 

begin 
black f- - 1.0; 
white f- 1.0; 
new(temp,src.maxplane,src.maxrow,src.maxcol); 

{ 1 .0 if src > 0 
dest f- -1.0 otherwise: 

tempi f- src; 
fork f- 0 to src.maxplane do 

end; 

fori f- 1 to src.maxrow - 1 do for j f- 1 to src.maxcol - 1 do 
begin 

r7 f- random; 
r2 f- random; 

{ 0.2 if r7 > r2 
e3 f- · -0.2 otherwise' 

d { white if tempi[k,iJ] > 0.0 
estk,ij f- black otherwise ; 

e 7 f- destk.ij- temp i[k,i,j]; 
tempi[k,i,j + 1] f- tempi[k,i,j +1] - (0.45-e3) X e7; 
tempi[k,i +1J] f- tempi[k,i + 1J] - (e3 + 0.375) x e7; 
tempi[k,i +1J- 1] f- tempi[k,i +1 ,j -1]-(0.125) x e7; 

end; 
dispose(temp); 

Algorithm 55. Classical error diffusion, non-parallel code. 
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Suppose a pixel had the value 0.2 and was rendered as 1.0. The error term 
e 1 would be 0.8, which would be subtracted from the surrounding pixels. 
Sufficient might be added to the pixel to the right to trip it from its original 
rendering as white to a rendering as black. 

The way in which the errors are distributed is randomised using the term 
e3. In the absence of this random term one obtains visually intrusive "brain 
coral" patterns in the half toning. 

13.6 Image Resizing 

A very common operation in dealing with images is to resize them, making 
them larger or smaller. This may be done either uniformly - preserving their 
aspect ratio - or unevenly so that both the shape and size of the image change. 

In a naive resizing algorithm we simply scale the indices of the pixels in the 
source image by the ratio of the images sizes. Suppose we wanted to halve the 
size of an image, then we could simply select every second pixel. As can be seen 
in Figure 13.8, a number of unpleasant artifacts occur with this method. When 
shrinking an image, thin lines can lose pixels, or even vanish. When enlarging 
an image, what were originally square pixels become oblong, something which 
is particularly disconcerting when looking at text. Collectively these errors are 
called aliasing. 

The removal of these artifacts is termed anti-aliasing. The artifacts arise 
because of the spatial frequencies possible in pictures of different sizes. The 
notion of spatial frequency is illustrated by the test image shown in Figure 13.1. 
These show horizontal and vertical gratings of varying spatial frequency. The 
Nyquist theorem states that the maximum spatial frequency, measured in 
oscillations per inch, that can be supported by an image is half the number of 
pixels per inch. The highest frequency in the images shown in Figure 13.1 
corresponds to this limit. If we apply the blurring convolution [ 0.25,0.5,0.25] 
to the test image in Figure 13.1.a to produce the image in Figure 13.l.f, we 
have the effect of making the highest spatial frequency invisible. Thus the 
blurring convolution can be viewed as a subtractive spatial frequency filter that 
selectively removes the highest frequency information. 

Now consider what happens when one increases the size of an image. The 
effect is to introduce new spatial frequency bands into the image. Since these 

10 X 10 SX8 25 X 30 

Figure 13.8. Naive resampling used to scale pictures introduces artifacts. 
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10 X 10 SX8 25 X 30 

Figure 13.9. Anti-aliased rescaling using blurring and interpolation reduces artifacts. 

frequencies are higher than any that we have had up to now, what will occupy 
them? 

If we use a naive sampling algorithm, simply replicating each original pixel, 
the higher frequency bands are populated with Moire fringe noise, generated 
by the interference between the old Nyquist limit frequency and the new 
Nyquist limit frequency. What we want instead is for these wavebands to be 
empty. We can achieve this by using an interpolation procedure which fills in 
new pixel positions as a weighted average of the neighbouring pixel positions. 

Conversely, if one reduces the size of an image, one removes certain possible 
spatial frequencies. But if one uses a naive approach, some of the original 
high-frequency information is erroneously transferred to lower frequencies. 
The answer in this case is to apply a blurring filter first to remove the high­
frequency information before sampling. Figure 13.9 shows the effect of 
blurring before shrinking and of interpolating when expanding. 

If we resize an image, we have to take into account the possibility that the 
scaling in the horizontal and vertical directions will differ; it is therefore desir­
able to resize it in two steps, once in each direction. Consider first the problem 
of expanding an image. Horizontal interpolation involves the process shown in 
Figure 13.10. 

Here we introduce a new sample point r between two existing sample points 
p, q. The value of r should be a weighted average of the values at the known 
points. If r is close top then p should predominate and vice versa for r. The 
simplest equation that achieves this is 

r = 8(p,r) + ( 1 _ 8(p,r)) 
p 8(p,q) q 8(p,q) 

where 8(a,b) is the horizontal distance between points a,b. 
It is clear that in the general case of horizontal resizing, the weights 8(p,r)/ 

8(p,q) will differ for sequential pixels. As such, horizontal rescaling lends itself 
poorly to SIMD parallelization. Vertical rescaling can be parallelized, since we 
can compute a complete new scan line as the weighted average of two original 
scan lines. It is therefore important to perform expansion in the horizontal 
direction first followed by rescaling in the vertical direction. This maximises 
the share of the work that can be run in parallel. Alg. 56 illustrates this. 
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p r q 

Go 0 
pr........_. 
pq +----------+ 

Figure 13.1 0. Horizontal interpolation of a new pixel position r between existing pixel positions p and q. 

procedure resize(var src,dest:image); 

This invokes the horizontal and vertical resize functions to do the effective 
work. Since vertical interpolation is run in parallel whereas horizontal inter­
polation must run sequentially, we want to do as much work as possible in 
the vertical resizing. If we are making a picture higher then it is quicker to 
resize horizontally and then resize vertically. If we are reducing the height 
of a picture the reverse holds. 

var 
Lett E pi mage; 

begin 
if (src.maxrow < dest.maxrow) then 
begin 

new(t,src.maxplane,src.maxrow,dest.maxcon; 
resizeh(src,ti); 
resizev(ti,dest); 
dispose(t); 

end 
else 
begin 

new(t,src.maxplane,dest.maxrow,src.maxcon; 
resizev(src,ti); 
resizeh(t i,dest); 
dispose(t); 

end 
end; 

Algorithm 56. Resize an image. 

13.7 Horizontal Resize 

This is done with the procedure 

procedure resizeh(var src,dest:image); 

This will change the size of an image in the horizontal direction. Dest must 
be same height as src. Its internal operation is shown in Alg. 57. 
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by 2 
by n/2 
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var 
Let n E real; 
Let t,av E pi mage; 
Let i E integer; 

begin 
n +- 1 + src.maxcol . 

1 +dest.maxcol' 
ifn< 1 
else 

ifn = 1 
then dest +- src 
else 

ifns 2 
then 
begin 

We cannot simply select every nth pixel on a row, since this would allow high­
frequency noise to penetrate the reduced image. We have to filter out this 
noise first. The way we do it is by first forming a new image each of whose 
pixels is the average of the corresponding two horizontally adjacent pixels in 
the source. 

new(t,src.maxplane,src.maxrow,src.maxcol); 
new(av,src.maxplane,src.maxrow,src.maxcol); 
adjustcontrast(O.S,src,ti); 

avi+- ti; 
av"[]O[src.maxcol] := src[]O[src.maxcol]; 

av now contains a horizontally blurred version of the source. 

dispose(t); 
interpolateh(av i,dest); 
dispose(av); 

end 
else 
begin 

Apply the shrinking recursively to get down to a shrinkage factor< 2. 

end; 

new(t,src.maxplane,src.maxrow,(l + src.maxcol )div 2 + -1 ); 
resizeh(src,ti); 
resizeh(ti.dest); 
dispose(t); 

end 

Algorithm 57. Horizontal resize an image. 
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13.8 Horizontal Interpolation 

This is performed by procedure 

procedure lnterpolateh(var src,dest:image); 
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This will interpolate an image in the horizontal direction. Src and dest must 
differ in size only in the horizontal direction. 

This is an inherently serial procedure and as such used classical Pascal loops. 
Its internals are shown in Alg. 59. 

13.9 Interpolate Vertically 

This is performed by the procedure 

procedure lnterpo/atev (var src,dest:image); 

This interpolates in the vertical direction. Src and dest must differ in size 
only in the vertical direction. This is parallel code, and uses array expressions. 
The internals of the procedure are given in Alg. 60. 

13.10 Displaying Images 

In all of the examples up to now we have concentrated on the internals of 
image processing. We have relegated the job of making the images visible to 
other utilities by writing the images out to . bmp files that we can look at in 
some image viewer. 

It is, of course, possible to write a Vector Pascal program that will output an 
image to the screen, but to do this we need to call libraries that interface 
between Vector Pascal and the display hardware of the machine on which the 
program runs. A good library for this purpose is the Simple Direct Media 
Layer, or SDL library. This is targeted at games designers and is portable 
between Linux and Windows, allowing 2D graphics programs to be similarly 
portable. SDL is incorporated into many Linux distributions, and for other 
system it is available from www.libsdl.org. 

SDL uses an abstraction termed a surface to represent both the display and 
images. Image files can be loaded into these surfaces and blitted to the display. 
The surfaces allow us to abstract from the pixel formats used in the display 
hardware. One can specify the bit depth and organisation of the pixels to be 
used on a surface and SDL will translate these to the format used by the display 
hardware behind the scenes. 

13.10.1 demoimg - An Example Image Display Program 

We take as an example a program that loads an image file into a three­
dimensional array of pixels, the standard Vector Pascal image type in other 
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procedure resizev(var src.dest:image); 

Change the size of an image in the vertical direction. Dest must 
be same width as src. 

var 
Let n E real; 
Let t,av E pi mage; 
Let rows E integer; 

begin 
n f- 1 + src.maxrow . 

1 +dest.maxrow ' 
else 

if n = 1 then dest f- src 
else 

if n ::s 2 
then 
begin 

This filters in the vertical direction. 

new(t,src.maxplane,src.maxrow,src.maxcol); 
new(av,src.maxplane,src.maxrow,src.maxcol); 
adjustcontrast(O.S.src.ti); 
for rows f- 0 to src.maxrow - 1 do 

avif- tl; 
avAO[src.maxrow] := src[][src.maxrow]; 

av now contains a vertically blurred version of the source. 

dispose(t); 
interpo/atev(av I dest); 
dispose(av); 

end 
else 
begin 

Apply the shrinking recursively to get down to a shrinkage factor <2. 

end; 

rows f- src.~axrow; 

new(t,src.maxplane,rows,(src.maxcol)); 
resizev(src,tl); 
resizev(tl,dest); 
dispose(t); 

end 

Algorithm 58. Vertical resize routine. 
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var 
Let ratio,p,q e real; 
Let ij,k,l e integer; 

begin 
ratio +- 1 +src.maxcol • 

1 +dest.maxcol' 
for j +- 0 to dest.maxrow do 
begin 

fork+- 0 to dest.maxcol do 
begin 

p +- k X ratio; 

p holds the horizontal position in the source from which the 
data must come. 

I+- trunc(p); 

1 holds the sample point below p and 1 + 1 holds the position above it. 

q+-p-1; 

q holds the distance away from l, that p was. 

if I + 1 > src.maxcol then dest 0 U,k] : = rc 0 U,ll 
else 

destOU,kl := src Ou,/1 * (1-q)+src OU,1 +I] *q; 

Interpolate in the horizontal direction using linear weighting. 

end; 
end; 

end; 

Algorithm 59. Horizontal interpolation routine. 
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words. It then performs some image processing on it and displays it on the 
screen. 

The new problems to be dealt with here concern: 

1. Linking to SDL. 
2. Initialising the SDL sub-system. 
3. Converting the images into a format recognised by SDL. 

Linking to SOL 

A program that is going to use SDL must start with the compiler directives: 

{$1 SOL} 
{$1 pthread} 
{$c sdl_rwops.c} 
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var 
Let I e Aline; 
Let pp e pixel; 
Let ij,k e integer; 
Let ratio, p,q e real; 

begin 
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new (l,dest .maxcol); 
ratio f- 1 +src.maxrow • 

dest.maxrow+ 1 ' 
for j f- 0 to dest.maxrow do 
begin 

p f- j X ratio; 
k f- trunc(p); 
qf-p- k; 
ppf-q; 

Convert weight to pixel. 

/if- pp; 

Replicate to a line to allow efficient vectorisation. 

for if- 0 to src.maxplane do if k + 1 > src.maxrow then dest;j f- src;,k x li 
else 

dest;j f- src;, 1 + k X li; 
ppf-1- q; 
li f-pp; 
for i f- 0 to src.maxplane do dest;j f- dest;j + src;,k X li; 

end; 
dispose(/); 

end; 

Algorithm 60. Vertical interpolation of image lines. 

The first two lines specify the compiled SDL and system libraries that are 
needed. The last line specifies the name of a C stub file that contains some 
auxiliary routines needed to interface Vector Pascal to the standard SDL 
library. The library routines will be located on the standard library path. The 
file sd l_rwops. c should be located in the current directory. 

In addition, the program must include the Pascal unit SOL in its uses list. 
This unit contains the Pascal declarations of all of the routines in the SDL 
library. 

Initialisation 

The key steps here are initialising the SDL video sub-system and creating a 
surface to represent the display screen. 
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At 253 X 169 Original512 X 512 At598 X 756 

Figure 13.11. Effect of applying resize to Barbara.bmp. 

Pixel Conversion 

Pixel conversion involves two translations. First, we must change the data 
from 8-bit signed numbers to 8-bit unsigned numbers. The operator 
pixel2byte will do this. Next we have to reorganise the data from the planar 
organisation used for image processing applications to the adjacent pixel 
format used in the display hardware, and which is assumed by SDL. This can 
be achieved in a single Vector Pascal statement. We then have to create an SDL 
surface that uses our array of unsigned bytes as its pixel store. 

The program is as follows: 

{$lSDLJ 
($1 pthread} 
{$csdl_rwops.cl 
program demoimg; 
{Demonst r at i on program designed to tes t th e SDL vid eo subsystem 
with Vec tor Pascal. Wri tten by Ben Wat t} 
uses SOL, bmp; 
const 

{Resoluti on} 
width= 250; 
height = 250; 
colordepth = 16; 
toppixel = 2; 

type 

unsignedRGBimage(row,co/,depth:integer) = array [O .. row,O .. coi,O .. depth] 
of byte; 

punsignedRGBimage = "unsignedRGBimage; 
var 

Let caption E pasciiarray; 
Let screen,bg,ghost E PSDL_Surface; 
Let colorkey E Ulnt32; 
Let src,dest E SDL_Rect; 
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Let background E pimage; 
Let unsignedbackground E punsignedRGBimage; 

begin 
src.x <-- 0; 
src.y <-- 0; 
src.w <-- 180; 
src.h <-- 180; 
dest <-- src; 
{Initialisation} 
SDL_Init(SDL_INIT_ VIDEO); 
screen <-- SDL_SetVideoMode(width, height, colordepth, SDL_DOUBLEBUF); 
If screen = nil then 
begin 

writeln ('Couldn' 't initialise video mode at ', width , 'x' , 
height ,'x', colordepth ,'bpp'); 

end 
else 
begin 
{Set the window caption} 

new (caption); 
string2pasciiarray('Vector Pascal Demo', caption); 
SOL_ WM_SetCaption(caption, n;n; 
dispose(caption); 

Load an image. This will be stored as planes of signed pixels, which is suitable 
for image processing but not for display. Immediately after loading we apply 
an image processing operation to it, calling the sharpen procedure from the 
bmp unit. 

/oadbmpfile('bg.bmp', background); 
sharpen(backgroundT); 

Create a buffer of unsigned bytes to hold the image for display purposes. 
This has the colours packed into 24-bit pixels. We then copy the image into 
the buffer, permuting the indices as we do. 

new(unsignedbackground,backgroundA.maxrow,backgroundA.maxco/,2); 
unsignedbackground T <-pixel2byte(backgroundl[~2.~0,~, ]); 

Create an SDL surface from the buffer passing in a description of its 
dimensions and the location of the pixel fields. 

bg := SDL_CreateRGBSurfaceFrom(@unsignedbackgroundA[O,O,O], 
backgroundT .maxcol + 1 
backgroundT .maxrow + 1 
24, 
3*(backgroundA.maxco/ + 1 ), 
Sff, 
$ff00, 
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blue 
alpha 
alpha 

$ff0000, 
0 
); 

We now use SDL to load in another. bmp file directly into an SDL surface. 
We will not do image manipulation on this image in order to show SDL's 
ability to directly load and display . bmp files. 

Ghost +- SDL_LoadBMP('ghost.bmp'); 
if (bg=ni/) V(Ghost=nil) then 
begin 

Writeln('Could not load image'); 
SDL_Quit; 
Halt(l); 

end 
else 
begin 

Draw Background, copying the background surface to the screen. 

SDL_BiitSurface(bg,@src,screen,@dest); 
src.w +- 32; 
src.h +- 32; 

Draw the Ghost Image on the screen. 

dest.x +- 20; 
dest.y +- 20; 
SDL_BiitSurface(Ghost,@src,screen,@dest); 

Make sure that the hardware display is updated. 

SDL_UpdateRect(screen, 0, 0, 0, 0); 
end; 
( * Wait 6 seconds before c l os in g. *) 
SDL_Delay(6000); 
SDL_FreeSurface(ghost); 
SDL_FreeSurface(bg); 
SDL_Quit; 

end; 
end. 

13.11 The Unit BMP 

What follows is a Vector Pascal source unit converted to Npc and formatted 
using the VPTEX system: 

unit bmp; 

This unit provides a library to access and manipulate bitmap images provided 
in Microsoft . bmp file format. 

interface 
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The module exports an image type as a three-dimensional array of pixels in 
which the first dimension identifies the colour plane, the second dimension 
indicates the row and the third dimension indicates the column of the pixel. 

type 

image(maxplane,maxrow,maxcol:integer) = 
array [O .. maxplane,O .. maxrow,O .. maxcol] of pixel; 
pi mage =Image; 
filename = string [79]; 

procedure storebmpfi/e(s:string;var im:image); (see Section 13.12.2) 

This procedure will store an image im as a Microsoft . bmp file with names: 

function loadbmpfile(s:filename;var im:pimage):boolean; (see Section 13.12.3) 

This function returns true if it has sucessfully loaded the . bmp file s. The 
image pointer im is initialised to point to an image on the heap. The program 
should explicitly discard the image after use by calling dispose. 

procedure adjustcontrast(f:real;var im:image); (see Section 13.12.4) 

This procedure takes a real number as a parameter and adjusts the contrast of 
an image to by that factor. Iff = 2 then contrast is doubled; iff = 0.5 then 
contrast is halved. 

procedure pconv(var im:image;c7,c2,c3:real); (see Section 13.12.5) 

This procedure performs a data parallel separable convolution of width 3 on 
the image 

implementation 
type 

The following data structures are defined by Microsoft for their bitmap files 
(.BMP) 

bitmapfi/eheader = packed record 
bftype: array1 .. 2 of byte; 
bfsize : integer; 
res 7 : arrayo .. 3 of byte; 
bfoffbits : integer; 
end; 

Note that in the bitmapfileheader the bftype field has been defined in terms 
of bytes rather than as char since Vector Pascal uses 16-bit UNICODE internal 
representation of characters, whereas the file format expects 8-bit ASCII. 

A BitmaplnfoHeader is the internal data structure used by microsoft 
Windows to handle device independent bitmaps (DIBs). We only need this 
structure to interpret the data in a . B M P file. 

TBitmaplnfoHeader =record 
biSize : integer; 
biWidth : integer; 
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biHeight : integer; 
biPlanes : Word; 
biBitCount : Word; 
biCompression : integer; 
biSizelmage : integer; 
biXPelsPerMeter : integer; 
biYPelsPerMeter : integer; 
biC/rUsed : integer; 
biC/rlmportant : integer; 

end; 
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This data structure can optionally include a colour table, but this library does 
not support reading . bmp files with colour tables: 

TBitmaplnfo = record 
bmiHeader : TBitmaplnfoHeader; 

end; 

The start of a . bmp file has a file header followed by information about the 
bitmap itself: 

bmpfile = packed record 
fileheader : bitmapfileheader; 
filedata : tbitmapinfo; 

end; 
pbmpfile =fbmpfile; 

This data type is the format in which lines of pixels are stored in . bmp files. It 
is used internally in the unit BMP to load and store images to files. This 
process involves translating between internal and external representations. 

imageline(mincol,maxcol,minplane,maxplane:integer) = 
array [mincol .. maxcol,minplane .. maxplane] of byte; 

procedure initbmpheader(var header:bmpfile;var im:image); (see Section 13.11.1) 

procedure storebmpfi/e(s:string;var im:image); (see Section 13.11.2) 

function loadbmpfile(s:filename;var im:pimage):boolean; (see Section 13.11.3) 

type 
line (high:integer) = array [O .. high] of pixel; 

procedure adjustcontrast(f:real;var im:image); (see Section 13.11.4) 

procedure pconv(var im:image;c1,c2,c3:real ); (see Section 13.11.5) 

begin 

end. 
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13.11.1 Procedure initbmpheader 

procedure initbmpheader(var header:bmpfile;var im:image); 

This procedure has the task of initialising a Window's BMP file header in a 
way conformant with the dimensions of the image passed as a parameter: 

begin 

FileHeader BMP files have the letters BM at the start followed by a 32-bit 
integer giving the file size, 4 reserved bytes and then a 32-bit integer giving the 
offset into the file at which the bitmap data start. 

header.fileheader.bftype1 +--- ord ('81; 
header.fileheader.bftype2 +--- ord ('M1; 
header.fileheader.bfsize +--- sizeof(bmpfi/e) + 
(im.maxco/ + 1) x 
(im.maxplane + 1) x 
(im.maxrow + 1 ); 
header.fileheader.res 1 +--- 0; 
header.fileheader.bfoffbits +--- sizeof(bmpfi/e); 

Bitmap info Next comes a bitmap info header which gives details about the 
bitmap itself. The fields of this are as follows: 

bisize This gives the size of the entire bitmap info header as a 32-bit integer. 

biwidth This 32-bit integer gives the number of columns in the image, which 
can be determined from the bounds of the pixel array provided. 

biheight Another 32-bit integer which gives the number of scan lines in the 
image, which can again be determined from the bounds of the image array. 

biplanes This gives the number of planes in the image as a 16-bit integer. 
This defaults to 1. 

bibitcount Gives the number of bits per pixel; we only support 8- and 24-bit 
versions at present. 

bicompression The meaning of this field is not clear, it seems to be 0 in 
most files. 

biXPelsPerMeter, biYPelsPerMeter These specify the printable spacing of 
pixels. The author uses the value $ec4 that is observed in a number of. bmp files. 

biClrUsed, biClrlmportant These fields are only used in images with colour 
maps; set them to zero for now. 

with header.fi/edata.bmiheader do begin begin 
bisize +--- sizeof(tbitmapinfo); 
biwidth +--- im.maxcol + 1; 
biheight +--- im.maxrow + 1; 
biplanes +--- 1; 
bibitcount +--- 8 x (im.maxplane + 1 ); 
bicompression +--- 0; 
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setup header 
write it 
get buffer 

write data 
free buffer 

biXPelsPerMeter +--- \$ec4; 
biYPelsPerMeter +--- \$ec4; 
biC/rUsed +--- 0; 
biC/rlmportant +--- 0; 

end; 

end; 

13.11.2 Procedure storebmpfile 

procedure storebmpfile (s:string;var im:image); 
This function writes an image in Vector Pascal format to a microsoft . BMP file. 
It is designed only to work with one or three plane images. 

type 
lines(rows,cols,planes:integer) =array [O .. rows,O .. cols,O .. planes] of byte; 

var 
Let f E file; 
Let fsize,i,indexj,k,m,row,res E integer; 
Let pf E bmpfile; 
Let Ia E 'lines; 
Let bE byte; 

begin 
assign(f,s); 
rewrite( f); 
initbmpheader(pf,im); 
blockwrite(f,pf,sizeof(bmpfile),res); 
new(la,im.maxrow,im.maxcol,im.maxplane); 

Convert the data from the planar signed fixed point format used in Vector 
Pascal to the interleaved unsigned byte format used in Windows: 

Ia i +--- perm [2,0, 1] pixel2byte(im); 

Compute the size of the data part of the resulting file and write it out with a 
single block write operation: 

fsize +--- (im.maxplane + 1) x (im.maxrow + 1) x (im.maxcol + 1); 
blockwrite (f,laj[O,O,O],fsize,res); 
dispose (Ia); 

close (f); 
end; 

13.11.3 Fundion loadbmpfile 

function loadbmpfile (s:filename;var im:pimage):boolean; 
var 

Let f E file of byte; 
Let fsize,i,indexj,k,m,row,res E integer; 
Let Ia E 'imageline; 
Let pf E bmpfile; 
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begin 
loadbmpfile +--- false; 
assign (f,s); 
reset (t); 
if ioresult i= 0 then loadbmpfile +--- false false 
else 
begin 

fsize +--- filesize (t); 
i +--- sizeof(bmpfi/e); 
blockread (f,pf,i,res); 
with pf.filedata.bmiheader do 
begin· 

new(im,2,biheight -1 ,biwidth -1 ); 
new(la,O,biwidth -1 ,0,2); 
if bibitcount = 8 then loadbmpfile +--- false false 
else if bibitcount = 24 then 
begin 

Read in the file one line at a time, translating it as we go into signed fixed­
point format 

for i +--- 0 to biheight - 1 do 
begin 

blockread(f,laj[0,0],3 x biwidth,res); 
for k +--- 0 to biwidth - 1 do 

form+-Oto2do 
imi[m,i,k] +--- byte2pixel(lai[k,m]); 

end; 
loadbmpfile +--- true; 

end; 
dispose(la); 
close( f); 

end; 
end; 

end; 

13.11.4 Procedure adjustcontrast 
procedure adjustcontrast (f:real;var im:image); 
var 

Let I E • line; 
begin 

new(l,im.maxcol); 
{ $ r- } 
lj+- f; 
if (abs (f) < 1) then im +--- im x lj else im +--- im x F, 
{ $ r+} 
dispose (/); 

end; 
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13.11.5 Procedure pconv 

procedure pconv(var im:image;c 7 ,c2,c3:real}; 

Convolution of an image by a matrix of real numbers can be used to smooth 
or sharpen an image, depending on the matrix used. If A is an output image 
and K a convolution matrix, then if B is the convolved image 

By,x = L L Ay+i,x+jKi,j 
j j 

A separable convolution kernel is a vector of real numbers that can be 
applied independently to the rows and columns of an image to provide 
filtering. It is a specialisation of the more general convolution matrix, but is 
algorithmically more efficient to implement. 

If k is a convolution vector, then the corresponding matrix K is such that 
Ki,j = kikj. 

Given a starting image A as a two-dimensional array of pixels and a three­
element kernel c1 , c2 , c3, the algorithm first forms a temporary array T whose 
elements are the weighted sum of adjacent rows: Ty,x = c1Ay-!,x + c2Ay,x+ 

c3Ay+I,x· Then in a second phase it sets the original image to be the weighted 
sum ofthe columns ofthe temporary array: Ay,x = c1 Ty,x-1 + c2 Ty,x+ C3 Ty,x+I· 

Clearly, the outer edges of the image are a special case, since the convolution 
is defined over the neighbours of the pixel, and the pixels along the boundaries 
are missing one neighbour. A number of solutions are available for this, but 
for simplicity we will perform only vertical convolutions on the left and right 
edges and horizontal convolutions on the top and bottom lines of the image. 

type 
plane(rows,cols:integer) = array [O .. rows,O .. cols] of pixel; 

var 
Let T,l E 'plane; 
Let i E integer; 

procedure convp(var p,I,T:plane); (see Section 13.12.6) 

begin 

This allocates a temporary buffer to hold a plane, and three temporary buffers 
to hold the convolution coordinates as lines of pixels. 

new(T,im.maxrow,im.maxcol}; 
new(/,3,im.maxcol}; 
li [0] +--- c1; 
lj[1]+-c2; 
I j [2] +--- c3; 

Perform convolution on each of the planes of the image. This has to be done 
with an explicit loop as array maps only work with functions, not with 
procedures. 

fori+--- 0 to im.maxplane do convp(im;,lj,Tj); 
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This sequence frees the temporary buffers used in the convolution process. 

dispose(/); 
dispose(n; 

end; 

13.11.6 Procedure convp 

procedure convp(var p,I,T:plane); 
This convolves a plane by applying the vertical and horizontal convolutions in 
turn. 

var 
Let r,c E integer; 

begin 

This sequence performs a vertical convolution of the rows of the plane p and 
places the result in the temporary plane T. It uses the lines of pixels /[i] as 
convolution weights. Use of lines of pixels rather than the floating-point 
numbers for the kernel weights allows the computation to proceed 8 pixels at a 
time in parallel. 

{ $ r-} { disable range checks} 
r +--- p.rows; 
h.r-1 <---- Po .. r-2 X lo + P1..r-1 X /1 + P2 .. r X /2; 

To+--- Po; 
T, +--- p,; 

Now perform a horizontal convolution of the plane T and place the result in p. 

c +--- p.cols; 

end; 

Po .. r,l .. c-1 <---- To .. r,O .. c-2 X lo + To .. r,2 .. c X /2 + To .. r,l..c-1 X /1; 

Po .. r,o <---- To .. r,o; 
Po .. r,c <---- To .. r,c; 
{ $ r+} { en a b l e range checks l 



Pattern Recognition and 
Image Compression 

Our next examples of SIMD programming will be drawn from image compres­
sion. The encoding and decoding of compressed images were one of the 
original target applications of the MMX architecture. In this chapter we will 
give some theoretical background to image compression for those unfamiliar 
with it, and then go on to examine an example compressor-decompressor 
(CODEC) that makes use of SIMD parallelism. 

14.1 Principles of Image Compression 

14.1.1 Data Compression in General 

Data compression is the name for techniques which take files or streams of 
data and transform them in some way so that they can be represented in fewer 
bits than they originally used. For data compression to be useful, there must be 
a reverse process, decompression, which takes the compressed representation 
and transforms it back into the original format. Let us call the data prior to 
compression the source, the data after compression the encoding and the data 
after decompression the decode. Compression techniques are generally expressed 
as being either lossy or lossless. 

In a lossy technique, the decode is similar to but not identical with the 
source. For instance, an MPEG encoded film will decode to a sequence of video 
frames which, to the human eye, look almost the same as the original film. The 
functionally important measure of similarity in these cases is almost always in 
terms of human perception. However, objective metrics based on signal to 
noise ratios are also widely used to assess the quality of compression techniques. 

In a lossless technique, the decode is identical with the source. A well-known 
example is the LZW encoding process used in . z i p files. Lossless techniques 
depend on the fact that the most commonly used data representations of text or 
computer programs are redundant - that is, the source contains more bits than 
information. 

In computer programming, one generally thinks of a bit as simply a binary 
digit, but in information theory it has a more technical meaning as the amount 
of information required to decide between two equally probable outcomes. 
Consider a text file sent as 7-bit ASCII stored in 8-bit bytes. It is evident that 
the most significant bit conveys no information, since it will always be zero. 

265 
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It is less evident that the remaining seven binary digits will generally contain 
less than 7 bits of information. 

One binary digit can encode two possible messages, seven binary digits can 
obviously encode 128 or 27 distinct messages. Where an ASCII stream to have 
no redundancy, where it to contain 8 bits of information per byte, it would be 
the case that each successive bit of a byte distinguished between equally pro­
bable outcomes, each bit was as likely to be a 1 as it was to be a 0. Each possible 
ASCII character would have to occur with equal frequency. 

This does not occur in practical text streams; letters and spaces occur more 
frequently than most control characters, for instance. Within the letters there 
is a range of frequency of occurrence, with e occurring much more often than 
z. A net reduction in file size can be achieved if the representation is changed 
to one in which frequently occurring letters are encoded in less than 7 bits 
whilst less frequent ones are stored in more than 7 bits. Because the shorter 
codes occur more often, the savings here outway the cost of more bits for less 
frequent letters. This is an example of a lossless encoding technique. 

When compressing text files, lossless encodings are the only acceptable choice, 
since any corruption of decoded text is immediately apparent. The underlying 
reason for this is that text files have relatively little redundancy, certainly when 
compared with the spoken word. By writing text down we abstract from all 
personal variations in voice, or the emotional inflection that speech carries. 
This abstraction corresponds to a loss of redundancy. 

14.1.2 Image Compression 

Data compression is an essential feature of our nervous system. The function 
of a nervous system is to capture environmental stimulae, categorise them and 
activate motor programs that will enhance survival in the environment that 
generated the stimulae. The number of possible motor programs is much less 
than the number of configurations of stimulae that an animal will encounter. 
In mapping a large set of input messages to a smaller set of responses, the 
nervous system is doing compression. 

In an animal such as ourselves, this compression is done by multiple layers 
of neurons. Consider vision. There are fewer neurons in the optic nerve than 
receptor cells in the retina, and it takes the input from many optic nerve cells 
to make a cell in the primary visual cortex fire. By the time a scene has been 
processed by the primary visual cortex, it has been represented in terms of 
salient features, edges with particular orientations, intensity gradients, etc. 
Image compression software can fool the brain into thinking it is seeing the 
source image to the extent that the decoded image is composed of those fea­
tures that the visual cortex is anyway tuned to recognise. 

14.1.3 Vector Quantisation of Images 

We shall present an example based on an image compression technique known 
as vector quantisation. This differs from techniques such as MPEG and H261, 
which are based on the discrete cosine transform (DCT). Vector quantisation 
is better suited to very low bandwidth channels, for instance, sending video 
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Figure 14.1. Outline of the vector quantisation process. Patches from the image are unwound into 
vectors and these are then looked up in a codebook of vectors to find the best match. Then the index of 
the best match is output as a surrogate for the patch. 

over mobile telephone links. What we can present as a textbook example 
involves considerable simplification when compared with a functional video 
CO DEC, but we can show both the key principles of vector quantisation and 
how SIMD techniques can accelerate the process. 

An outline of the compression process is shown in Figure 14.1. The original 
image is divided into rectangular patches. The pixels in these patches are then 
formed into vectors. Each such vector is looked up in a codebook to find a 
codebook entry that is similar to it. The entire patch is then encoded using the 
row number in the codebook. At the decode end the reverse process takes place: 
the row number is used to fetch a row from the codebook. This is then formed 
into a patch which is placed in the image. This is illustrated in Figure 14.2. 

When compressing an image, each patch must be compared with each entry 
in the codebook to find the closest match. If we have n pixels in the image and 
m rows in the codebook, the algorithmic complexity will be Omn. Decompres­
sion is much more efficient, being done simply by indexing the codebook to 
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CODEBOOK 

Figure 14.2. The process of decoding a VQ image is inherently faster than encoding since the codebook 
searching used during encoding is replaced by a fetch from a calculated offset into the codebook. The 
vector found is formed into a patch and placed in the image. 

find the relevant row, giving a complexity of On. This does not matter much 
for compressing a single image, but when compressing a video stream, there is 
a need to accelerate the search. It is possible to do this by using indexing algo­
rithms, using techniques such as Hierarchical Vector Quantisation (HVQ), but 
these can result in non-optimal entries being selected from the codebook. 
SIMD parallelism is ideal for accelerating codebook lookup. 

We will give a very simplified image compressor example. It will use 4 x 4 
pixel patches which will be compressed using a codebook with 256 rows. The 
net effect will be to perform 16:1 compression on the image file. This is a 
relatively low compression ratio. Higher compression ratios can be obtained 
by using larger patches. So 8 x 8 patches would give a 64:1 compression, etc. 
Many compressors use some form of adaptive vector quantisation, so that 
large patches are used in areas of the image with low detail and smaller patches 
where the details are finer. This allows a higher overall level of compression to 
be obtained without too much detail being lost. We leave such refinements out 
of our example. 

14.1.4 Data Structures 

Let us first look at the data structures we may use for compressing image files. 
We need to define the basic parameters of our compression process, the patch 
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size, the length of the vectors used in the codebook and how many symbols 
there will be in our code alphabet. We will declare all of this in a unit vq. 

unit vq; 
interface 

const 
patch size= 4; 
vector/en = patchsize * patchsize; 
maxcode = 255; 

Following this, we declare the type of the code vectors. We declare them as 
vectors of pixels, but we also declare a type which is a similar vector of reals. 
We do this because although we will want to use a codebook of pixels for 
decode purposes, this is inadequate for encoding. The limited precision of 
8-bit pixels means that we obtain prohibitive rounding errors if we do our 
compression calculations to only 8-bit accuracy. The encoder therefore uses 
real valued code vectors. 

type 
codevec = array [O .. vectorlen -1] of pixel; 
rcodevec = array [O .. vectorlen -1] of real; 
codeword = O .. maxcode; 
book = record 

rows.cols:word; 
tab: array [codeword] of codevec; 

end; 
codefileheader = record 

imwidth,imheight:word; 
colourplanes: 1..1 0; 
tab/e:book; 

end; 
var 
Let cbk E book; 
rtab: array [codeword] of rcodevec; 

The type declarations also include declarations of the records to be used as 
file headers for compressed files. These define the parameters of the image 
being compressed: its height, width and number of colour planes. Following 
this in the file comes the codebook, which is also self-describing. 

14.1.5 encode 

The one function exported by vq is the encoder shown as Alg. 61. This 
iteratively computes the squared distance between the source vector and each 
vector in the real-valued version of the codebook. The key expression 1s 
the line 
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fundion encode(var v:codevec):codeword; 
var 

Let ij,k E integer; 
Let d,least E real; 
Let rv E rcodevec; 
Let dv E codevec; 

begin 
rv~v; 

j~O; 

least~ 2 X vector/en; 
fori~ 0 to maxcode do 
begin 

d ~ I,(rv- rtabi) x (rv -rtabi); 
if d < least then 
begin 

j~i; 

Jeast~d; 

end 
end; 
encode~j; 

end; 

Algorithm 61. The vector quantisation routine proper. This takes a vector and searches the codebook 
for the vector with the closest Euclidean distance to the source vector and returns the index of the 
closest matching vector. 

or in source format 

d:=\+(rv-rtab[i])*(rv-rtab[i]); 

Our aim is to select the vector which is closest to the source vector, that is, 

wewanttominimizethedistance8(v,i) = VL,j(Vj- Ci.j)2, wherevisthesource 
vector and Cis the codebook matrix. However, since the ordering of squared 
distances will be the same as the ordering of the distances, it is unnecessary to 
compute the square roots. It is very important that the calculations here are 
done to sufficient precision. We cannot use pixels since they are saturated to 
8-bit precision, and the subtraction of two pixels can fall outside the range that 
can be represented by 8-bit signed numbers. This will lead to gross errors in 
distance calculations if we use 8-bit accuracy. The use of reals obviates this 
problem. The pixels vector passed to the routine is converted to a vector of 
reals at before searching takes place. All subsequent calculations are done in 
reals. This somewhat reduces the effective parallelism. On a bare-bones MMX 
instruction-set such as that supported by Meta-data on the Crusoe, there is no 
effective parallelism, but on recent Intel processors we can take advantage of 
4-fold parallelism even when working with reals. 

The decode program is much simpler, involving no more than copying 
pixels from the codebook into the appropriate places in the image. It is shown 
in Alg. 62. 
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program vqdecode; 
uses vq,bmp; 
const 

var 
q = patchsize - 1; 

Letp E pimage; 
Let f e file; 
Let header E codefileheader; 
Let i,j,k,/ e integer; 
Let index E codeword; 

begin 
assign (f,paramstr(1) + '.vq' ); 
{ $ i -} 
reset (f); 
if ioresult = 0 then 
begin 

blockread (f,header,sizeof(codefileheader),l); 
cbk f- header. table; 
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new (p,header.colourp/anes - 1,header.imheight - 1,header.imwidth - 1); 
fori f- 0 top i.maxplane do 

end 

f · Ot j maxrowd or 1 f- 0 p . patchsize 0 

fork f- o to pi.P'"af;h~;~ do 
begin 

blockread (f,index,sizeof(codeword),l); 
(* Copy codevector into patch *) 
p"[ij*patchsize.J*patchsize + q,k*patchsize .. k*patchsize + q] := 
cbk.tab;ndex,L1 Xpatchsize+•i 

end; 
storebmpfile (paramstr(2),p i); 

else writeln('cant open', paramstr(1) + '.vq'); 
end. 

Algorithm 62. The program vqdecode. This takes two parameters, a filename without extension for 
the encoded file and a filename with extension as the destination file. Input is assumed to be in the 
format generated by the vqencode program and output is a Windows BMP file. 

14.2 The K Means Algorithm 

The quality of the compressed image that we will obtain using a codebook 
depends on how well the entries in the codebook represent the spread of image 
patches found in the original image. The rows in the codebook matrix are all 
potentially estimators of the source vectors. They will be a good set of 
estimators if there is a good chance that one will be close to each source vector. 

Vector quantizers can either use a universal codebook, designed to be 
suitable for a wide range of images, or a tailored codebook that has estimators 
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based on the image being compressed. The process of forming such a code­
book is referred to as training the codebook on the image. 

The Concept of Mean 

Suppose we have a collection of numbers and we must select a single estimator 
for them; th~ best number to choose is their average. The average or mean of a 
set of numbers is their expected value. It is the estimate which minimises error 
between it and the observations. 

Suppose instead of being allowed a single number to represent a set of scalar 
observations we are allowed two. Suppose we wish to reconstruct the 
observations with minimal error at a remote site, and that for each observation 
we are allowed to send 1 bit. On the basis of this bit we select one of the two 
estimators. By analogy with the concept of the single mean of a set of 
observations, these two numbers are termed the two means of the observations. 

Consjder the five numbers 1, 2, 3, 5, 7. Their mean, given by the equation 

J.L = I:n1 o;, is 1f = 3.6, but the two means which best approximate the 
distribution are 2 and 6. 

If we used the single mean to estimate the observations, we would have the 
following errors: 

Oj f..L Oj- f..L (o;- J.L)2 

1 3.6 -2.6 6.76 
2 3.6 -1.6 2.56 
3 3.6 -0.6 0.36 
5 3.6 1.4 1.96 
7 3.6 3.4 11.56 

Totals 18 18 0 23.2 

Note that the sum of errors will be zero for the mean, but the sum of 
squared errors will in general be non-zero. Let us look at the situation where 
we have two means: 

Oj f..Lj Oj- f..Lj (o;- J.Lj)2 

1 2 -1 1 
2 2 0 0 
3 2 1 1 
5 6 -1 1 
7 6 1 1 

Totals 18 18 0 5 

' 
Again the sum of errors is zero but the sum of squared errors is markedly 

reduced. In data compression literature one typically evaluates estimators in 
terms of the peak signal to noise ratio (PSNR) that they give. The peak signal 
energy is measured as the square of the maximum swing between low and high 
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values in the signal. For instance, if the numbers in our example above were 
encoded in 3 bits, then they would have a swing of7, and peak signal energy for 
a single observation would be 49, and for a sequence of five numbers it would 
be 245. The ratio between this and the sum of the squared errors errors gives 
the PSNR. PSNR is typically expressed logarithmically as decibels. 1 If we had 
only the mean to go on, our signal to noise ratio would be ii.~, or 10.2 decibels. 
If we have two estimators the PSNR increases to 49, or 16.9 decibels. 

As the number of estimators rises so should the PSNR, provided that our 
estimators are appropriately chosen to minimise the squared error. 

Outline of the K Means Algorithm 

How can we choose our estimators? One way to do so is with the following 
algorithm: 

1. Select K distinct initial values for the K means. 
2. Partition the observations into K disjoint sets associated with the means, 

such that each observation is assigned to the set proper to the mean that 
best approximates it. 

3. Recalculate each mean as the mean of its proper subset. 
4. If any mean has changed as a result of this process, go back to step 2. 

Consider the operation of the algorithm with data 1,2,3,5,7 and K = 2. Let the 
initial values of the means be 0,2. The algorithm proceeds as shown: 

Means Partitions 

0,2 { 1 },{2,3,5,7} 
1,4.25 {1,2},{3,5,7} 
1.5,5 {1,2,3},{5,7} 
2,6 { 1,2,3 },{ 5,7} 

The K means algorithm extends naturally from scalars to vectors. The single 
mean J..L of a matrix M is the row vector which minimises the sum of squared 
distances between J..L and the rows of M, as follows: 

1 -1 
2 1 -1 
3 2 2 

6 3 0 Totals 

2 0 Average vector 

Given the encode procedure defined in Alg. 61, we can implement the 
vector version of K means as shown in Alg. 63. This basic training step is 
iterated in the main compression program as shown in Alg. 64. 

1To express the ratio in decibels we take its logarithm to the base 10 and multiply by 10. 
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procedure trainstep(var im:image); 
var 

accum: array[codeword,O .. vectorlen - 1] of real; 
n: array[ codeword] of integer; 
Let ij,k,/ E integer; 
Let patch E codevec; 
Let index E codeword; 

begin 
nf-1; 

accum f- cbk.tab; 
fori f- 0 to im.maxplane do 

end; 

f · 0 im.maxrow d or J f- to pat,hsize 0 
for k f- 0 to tm.maxcol do 
b • patchsize 

egm 

patch f- im;jxpatchsize+'o +patchsize,kxpatchsize+'o mod patchsize; 
index f- encode (patch); 
accum;ndex f- accum;ndex + patch; 
n;ndexf- n;ndex + 1; 

end; 
cbk.tab f-acc~:n ; 

0 
rtab f- cbk.ta6; 

Algorithm 63. Basic training step of the vector K means algorithm. 

program vqencode; 
uses vq,bmp; 
var 

Let i E integer; 
Let p E pi mage; 
Let fe file; 

procedure trainstep(var im:image); (see Alg. 63) 
procedure encodeimage(var im:image;var f.file); (see Alg. 65) 
begin 

if /oadbmpfile(paramstr(1) + '.bmp', p) then 
begin 

fori f- Ito 5 do 
trainstep(p i); 

assign(f;paramstr(l) + '.vq'); 
rewrite( f); 
encodeimage(p i,f); 
close( f); 

end; 
end. 

Algorithm 64. The main image encode program. 
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procedure encodeimage(var im:image; var f :file); 

Encode an image, writing it out to the file with the appropriate header infor­
mation. The file is written out as a sequence of planes each of which is a se­
quence of rows, each of which is a sequence of codewords. 

var 
Let header E codefileheader; 
Let i,j,k,/ E integer; 
Let patch E codevec; 
Let index E codeword; 

begin 
header.imwidth ~ im.maxco/ + 1; 
header.imheight ~ im.maxrow + 1; 
header. table~ cbk; 
header.colourplanes ~ im.maxplane + 1; 
blockwrite (f,header,sizeof(codefileheader),i); 
for i ~ 0 to im.maxplane do 

for j ~ 0 to im.maxrow do 
patchstze 

fork~ 0 to tm.maxcol do 
begin patchsize 

patch~ im;,jxpatchsize+ ~0 +patchsize,kxpatchsize+•o mod parchsize; 
index~ encode (patch); 

end; 

blockwrite (f,index,sizeof(codeword),l); 
end; 

Algorithm 6S. Encodes an image given the codebook. 

1 iteration 3 iterations 5 iterations 

Figure 14.3. Effect of increasing number of iterations of the K means on image quality. All images have 
been compressed to 16K from an 192K original, using the program v q encode, and then decoded using 
vqdecode. Compare these with the images in Figure 13.3. 

We can see the effect of the K means algorithm in Figure 14.3, which shows 
how the image quality improves with more iterations of the basic training step. 
Initially there is little detail within the 4 x 4 blocks, but as the computation 
progresses more detail appears. This is shown more clearly in Figure 14.4. 
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After 1 iteration After 5 iterations Original 

Figure 14.4. This shows how detail becomes apparent within the image blocks as iterations of the K 
means algorithm progress. 

It is apparent that the algorithm is a categorizer and pattern recognizer. It 
discovers commonly occurring patterns of pixels and categorizes incoming 
vectors against these patterns. Although we are using it for image processing, 
the general algorithm is applicable to other domains in which the input data 
can be mapped to a vector. 

Performance 

The kernel of the K means implementation is the encode function, which 
searches for the closest matching vector in the codebook. As discussed above 
(Section 14.1.5), the need to maintain accuracy during calculations forces us 
to perform the distance calculations using reals rather than 8-bit fixed-point 
notation. This constrains the parallelism achievable to a factor of 4 - the width 
of the floating-point vector registers in the SSE instructions. 

What we observe when we run the algorithm compiled for a P4 is roughly a 
doubling of performance relative to compiling the code for a Pentium and 
executing it on a P4. The time is to perform five iterations of the K means 
algorithm and one encoding of the Mandrill picture. 

Target CPU 

P4 
P2 

Actual CPU 

P4 
P4 

Clock speed (GHz) 

1.7 
1.7 

Time (s) 

5.1 
10.6 

Vectorisation gain (%) 

107 
0 

This is slightly disappointing, but when considering results such as these we 
have to take into account the effect of Amdahl's law. Suppose that just under 
one-third of the instructions executed by the P2 were inherently serial, then 
the effect of Amdahl's law alone would limit us to a doubling of program 
speed. The fact that the acceleration is not greater is probably due both to a 
residuum of serial instructions and to the fact that Intel processors cannot in 
general dispatch four floating point operations per clock cycle. 
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14.2.1 Vedor Quantisation of Colour Images 

Another use for the K means algorithm is in selecting an optimal colour palette 
for images. If we want to represent a colour image using only 8 bits per pixel, 
one can either encode the colour within the 8 bits, allocating perhaps 3 bits for 
red and green and 2 for blue, or one can try and find 256 representative colours. 
One can view the process of finding representative colours for a palette as a 
form of vector quantisation - carried out over the colour space with vectors of 
length 3. 

This form of compression gives one a reduction in file size of about 3 to 1. An 
alternative approach is to utilise the correlation that exists between different 
colour planes and use codebook vectors that extend over all planes. For 
example, one could use vectors oflength 48 instead of 16 in our compression 
program with the vectors drawn from corresponding 4 x 4 patches on each 
plane. This will give a very high compression, but at the cost of a noticeable 
degradation of quality. 
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We said earlier that the handling of 3D graphics transforms was a key motiva­
tion for AMD's introduction of 3DNow instructions and for Intel's Streaming 
SIMD instructions. In Section 3.6 we discussed the theory behind 3D coordi­
nate transformations and gave assembler routines to carry out some of the key 
operations with AMD and Intel instructions. These routines, it was clear, were 
machine specific. We will now look at a complete example program written in 
Vector Pascal that displays a twirling 3D model on the screen. The program 
will, when compiled with the appropriate CPU flags, take advantage of the SSE 
or 3DNow instructions, but will also work correctly, albeit somewhat slower, 
using the Pentium instructions. 

Since we are concentrating on 3D graphics transforms, and since these 
remain the same whether one is drawing a wire-frame or a shaded model, our 
example will deal with the graphics pipeline for wire-frame models. This 
pipeline goes from an internal representation of an object to an image on the 
screen as shown in Figure 15.1. 

In our example we assume that there is minimal hardware support for 
graphics, with a simple screen buffer being the only resource available. Clearly, 
on many machines the line or triangle drawing and the 3D transforms might 
also be handled in the display card. In that case one would interface to them 
via OpenGL or some similar library. In our example we want to demonstrate 
how one can use the CPU itself to do the graphics transforms. This is in any 
case what one is forced to do if one is wanting to manipulate a graphical data 
structure for non-display purposes, since display cards do not work on data in 
mam memory. 

vertices 

triangles 

Done in the application using SSE instructions 

' 
' 

Done by ; Done by 
SOL 1 hardware 

' ' 
' ' 

Figure 1 5.1. The graphics pipeline used in this chapter. 
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Screen image 
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15.1 Mesh Representation 

The first thing we have to decide upon is how to represent 3D objects internally. 
A common way is as a triangulated mesh. For instance, VRML (Virtual Reality 
Markup Language) uses an indexed face set notation for surface meshes. Here 
is an example of a VRML mesh definition: 

DEF wri st01- ROOT Transform { 
translation0.464560.360.5294 
children [ 

Shape { 
appea ranee Appea ranee { 

} 

material Material { 
di ffuseCol or 0. 6082 0.1463 0. 2895 
shininess0.4 
transparency 0 

geometry DEF wri st01- FACES IndexedFaceSet { 
ccw TRUE 
solid TRUE 

It is divided into a list of vertices, followed by a list of polygons. Within a 
VRML file the list of points is provided as a list of triples of fixed-point 
decimal numbers. These define coordinates in metres. The range of accuracy 
demanded by the VRML specification corresponds to a 128-bit binary number 
with 63 bits in front of the binary point and 64 bits after it. This is sufficient to 
represent distance ranging from the galactic to sub-atomic scales. 

coord DEF wri st01-COORD Coordinate {point [ 
-1.564-0.677626.61, 
-1.128-0.8732 26.56, 
-0.9983-0.949826.95, 

-1.731-0.176826.63, 

-0.9016-0.7997-27 .03] 

These are then linked into polygons by a list of coordinate indices. Each 
polygon is terminated by a -1. 

coo rd Index [ 
0.1.2.-1. 
3, 0, 4, -1. 5, 6, 3, -1.7. 8, 9, -1.10, 9, 11, -1. 
12, 13, 11. -1. 14, 12. 15, -1. 16, 14, 17. -1. 18, 16, 19, -1. 
20, 18, 21. -1. 22, 20, 23, -1. 2, 1. 22, -1. 8, 7. 6, -1. 



Chapter 15 • 30 Graphics 

A suitable Pascal unit declaring the mesh data type is 

unit mesh; 
interface 

type 
vervec(topver:integer) =array [O .. topver,0 . .3] of real; 
tvervec(topver:integer) =array [O .. topver ,0 .. 2] of real; 
trivec(toptri:integer) = array[O .. toptri ,0 .. 2] of integer; 

1\ pvervec = vervec; 
ptrivec = "trivec; 
trimesh = record 

vertices:pvervec; 
triangles:ptrivec; 

end; 
function mktrimesh (var vert:tvervec;var tri:trivec):trimesh; 
implementation 
function mktrimesh (var vertvervec;var tri:trivec):trimesh; (see Alg. 66) 
begin 
end. 
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The representation that we use in Pascal is based on this VRML one, with 
certain modifications: 

1. We restrict our polygons to being triangles, since these are guaranteed to be 
planar. 

2. Consequently, the triangles do not have to be terminated by -1. 
3. We represent the vertices in homogeneous coordinates, as four-element 

vectors, for the reasons discussed in Section 3.6. 

A generator function is provided to convert mesh data in 3D vectors to 4D 
homogeneous coordinates. 

function mktrimesh (var vert:vervec;var tri:trivec):trimesh; 
var 

Let m E trimesh; 
begin 

with m do begin begin 
new (vertices,vert.topver); 
verticesi f- vert; 
vertices i f- 1; 
new (triangles,tri.toptn); 
trianglesi f- tri; 

end; 
mktrimesh f- m; 

end; 

Algorithm 66. The generator function for triangle meshes. 
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15.2 linedemo: An Illustration of 30 Projection 

We will now look at a demonstration program to display a mesh in wire-frame 
format. It puts the mesh up in a window and then rotates it. 

The program also demonstrates a number of useful graphics concepts coded 
in Vector Pascal: 

1. The use of the SDL interface for display purposes (see Section 15.3.2). 
2. Line drawing using Bresenham's algorithm (see Section 15.6). 
3. Graphics transformations for rotation of a 3D object (see Sections 15.4 and 

15.3.2). 
4. Graphics transforms for the projection of a 3D object on to a view-screen 

(see Section 15.5). 

{ $1 SOL} 
{$1 pthread} 
{$c sd1_rwops.c} 
program linedemo; 
uses SDL,mesh,paul; 
const 

Constants are used to define the screen setup. We use a full colour screen 
which allows us to use integers as pixels. 

width= 400; 
height = width; 
colourdepth = 32; 
toppixel = 3; 
red= 0; 
green= 1; 
blue= 2; 
alpha= 3; 

We now declare some constants which are used to set up the viewing 
parameters. 

zoom = 7 * width; 
zoffset = 2.5; 

type 
unsignedRGBimage(row,col:integer) =array [O .. row,O .. con of integer; 
punsignedRGBimage = ' unsignedRGBimage; 
transform =array [0 .. 3,0 . .3] of real; 

It is useful to define the identity matrix or null transform first, since other 
transforms can be built up from these. 

const 
identity:transform = ((1.0, 0.0, 0.0, 0.0), 
(0.0, 1.0, 0.0, 0.0), 
(0.0, 0.0, 1.0, 0.0), 
(0.0, 0.0, 0.0, 1.0)); 



Chapter 15 • 30 Graphics 

var 
Let unsignedbackground E punsignedRGBimage; 

procedure rotmat (radians:rea/;d:integer;var t:transform); (see Section 15.4) 
procedure BresenhamLine (xO,yO,x7,y7,Color:integer); (see Section 15.6) 
procedure drawline (x7,y7,x2,y2:rea/;col:integer); (see Section 15.5.1) 
procedure draw (m:trimesh;t:transform;col:integer); (see Section 15.5) 
procedure demo3d; (see Section 15.3) 
begin 

demo3d; 
end. 
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The program uses a dual buffer strategy with an internal buffer on which 
drawing takes place bg and a screen buffer used for display purposes screen. 
The internal buffer will be aliased to the two-dimensional array pointed to by 
unsignedbackground. The screen buffer will be aliased by SDL to the actual 
screen hardware. The use of two buffers ensures that the drawing and display 
of an image appear to the user as an atomic operation, even though it actually 
occurs in two phases. 

1 5.3 demo3d: Main Procedure of linedemo 

procedure demo3d; 
var 

Let caption,filename E pasciiarray; 
Let screen,bg,ghost E PSDL_Surface; 
Let co/orkey E Ulnt32; 
Let src,dest E SDL_Rect; 
Let i E integer; 

Let t,t3,t4,t5 E transform; 
begin 

The first task is to set up the SDL regions of interest in the internal buffer 
and in the screen buffer. These are held as the rectangles src and dest. 

src.x+- 0; 
src.y+- 0; 
src.w +---width; 
src.h +--- height; 
dest+-src; 
t+- 0; 

1 5.3.1 Viewing Matrices 

We now set up the viewing projection matrix t to have the form 

zoom 0 0 0 
0 -zoom 0 0 

t= 
0 0 1 zoffset 
0 0 0 1 
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Original projection After 1 rotation 

After 2 rotations After 3 rotations 

Figure 1 5.2. A sequence of four frames drawn by LineDemo. 

and an initially null (identity) rotation transform 

to,o .-. zoom; 
t 1,1 .-. -zoom; 
t2,2 .-. 1; 
t3,3 .-. 1; 
t2,3 .-. zoffset; 
t3 .-. identity; 

t3 = 

1 0 
0 1 
0 0 
0 0 

0 0 
0 0 
1 0 
0 1 

To understand the function of these matrices, we need to look at the virtual 
camera model being used. We are simulating the effect of looking at the object 
being modeled through a pinhole camera as shown in Figure 15.3. 

An object is imaged through a pinhole on to an imaging plane, upon which 
an inverted version of the object will be projected. The screen of the computer 
is then mapped logically to a region of the image plane of the logical camera. 
Let us assume that all measurements are done in metres. The size of the image 
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+--- ----------- __......._ --- -........ ------------------------ ---- .. 

1 metre · · zoffset metres 
origin of the viewed object 

·camera pinhole 

projected image 

Figure 1 5.3. The pinhole camera model. 

that will be shown on the screen varies as follows: 

1. The size will vary directly with the number of pixels per metre in the 
imaging plane of the camera. 

2. The size will vary directly with the distance between the pinhole and the 
imaging plane. 

3. The size will vary inversely with the distance between the pinhole and the 
object being viewed. 

We can simplify this by assuming that the image plane is at a fixed distance of 
1 m from the pinhole, in which case there are only two factors influencing the 
scale: the distance to the object and the pixels per metre of the imaging plane. 
These are incorporated into the parameters zoom and zoffset in the projection 
matrix. The matrix mimics the effect of the pinhole by inverting around the 
x-axis, whilst scaling by zoom and shifting the object away from the pinhole by 
zoffset. 

15.3.2 SOL Initialisation 

The next section of the program is concerned with setting up the SDL interface 
that will display 2D images on to the screen once the 3D structure has been 
rendered to 2D. 

SOL_/ nit (SOL_/ NIT_ VIDEO); 
screen+-- SDL_SetVideoMode (width,height,colourdepth,SDL_DOUBLEBUF); 
if screen =nil then 
begin 

writeln ('Couldn' 't initialise video mode at', width, 'x', 
height, 'x', co/ourdepth, 'bpp'); 

end 
else 
begin 

{Set the window caption} 
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new (caption); 
string2pasciiarray ('Vector Pascal 3d Demo', caption); 
SOL_ WM_SetCaption (caption,nil); 
dispose (caption); 

Create a buffer of unsigned bytes to hold the image for display purposes. This 
has the colours packed into 32-bit pixels. We then copy the image into the 
buffer, permuting the indices as we do so. 

new (unsignedbackground,height - 1,width - 1 ); 
unsignedbackgroundj ~ -1; 

Create an SDL surface from the buffer passing in a description of its 
dimensions and the location of the pixel fields. 

bg := SDL_CreateRGBSurfaceFrom (@unsignedbackground A[O,O], 
width 
height 
co/ourdepth 
4 *width, 
$ff, 
$ff00, 
$ff0000, 
0 
); 
new (filename); 

string2pasciiarray ('faceOO.bmp', filename); 
for i ~ 0 to 3 do begin begin 

Create rotations around the y- and x-axes. This is explained more fully in 
Section 15.4. The rotations are selected to ensure that the images cycle with a 
period of 16 frames. 

rotmat e~1l" 1 1,t3); 
rotmat C~; ,O,t4); 

Compose the rotations into a single rotation matrix. 

ts~ t3.t4; 

Combine with the viewing transform, and draw the mesh (see Section 15.5.1). 

t4~ t.tS; 
draw (themesh,t4,0); 

Copy the internal buffer to the screen. 

SDL_BiitSurface (bg,@src,screen,@dest); 

Make sure that the hardware display is updated. 

SDL_UpdateRect (screen,O,O,O,O); 
filenamej [5] ~ i + 49; 
SDL_SaveBMP (bg,filename); 
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Clear the local display buffer. 

unsignedbackgroundT +--- -1; 
end; 
SDL_FreeSurface (bg); 
SOL_ Quit; 

end; 
end; 

15.4 Create a Rotation Matrix 

287 

This function produces a rotation matrix in t which can be used to rotate a 
homogeneous coordinate vector through the specified number of radians. 

procedure rotmat (radians:rea/;d:integer;var t:transform); 

d must be in the range 0-2 to specify the rotation axis 

The matrix will be of the form 

1 

0 X aXIS 

1 y axis 
2 z axis 

0 0 
0 cosO -sinO 
0 sin 0 cosO 
0 0 0 

for the x-axis rotations, of the form 

cosO -sinO 0 
sin 0 cos 0 0 

0 0 1 
0 0 0 

for the z-axis and of the form 

cos 0 0 sin 0 
0 1 0 

-sinO 0 cos 0 
0 0 0 

for rotations about the y-axis. 

var 
Let sint,cost E real; 

function m3 (i:integer):integer; (see Section 15.4.1) 
begin 

sint +--- sin(radians); 

0 
0 
0 
1 

0 
0 
0 
1 

0 
0 
0 
1 
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if d = 1 then sint<- -sint; 
cost<- cos(radians); 
t <-identity; 
tm3(d),m3(d) <-cost; 
tm3(d+l),m3(d+l) <-cost; 
tm3(d),m3(d+l) <- -sint; 
tm3(d+l),m3(d) <- sint; 

end; 

15.4.1 Calculate x mod 3 

function m3 (i:integer):integer; 
begin m3 : = (1 + 1) mod 3; 
end; 

15.5 2D Projection 

The procedure draw performs the 3D to 2D rendering function. The process 
involves taking the 3D coordinates of the vertices and determining the x andy 
coordinates that these will be projected to by the combined rotation, translation 
and viewing matrix passed into the draw function. 

To do this we create a new vector of vertices dest to which the source 
vertices will be mapped. 

procedure draw (m:trimesh;t:transform;col:integer); 
var 

Let dest E"vervec; 
tri: array [0 .. 2] of integer; 
Let ij,k,l E integer; 
newpos: array [0 .. 3] of real; 

begin 
with m do begin 

new (dest,vertices" .topver); 

Project to the screen coordinates using the composite transform matrix. 
Multiplying each vertex by the matrix will rotate it and then move it zoffset 
away from the pinhole and then scale the x and y coordinates from metres to 
pixels. The resultant vector is stored in newpos. We then store in dest the x and 
y coordinates of the point divided by the distance of the transformed point 
from the pinhole. As Figure 15.4 shows, this has the effect of appropriately 
scaling the x,y coordinates to take into account perspective. 

for i <- 0 to verticesj .topver do begin 
newpos <- t.(verticesj[i]); 
destj [i,O .. 1] <- ::;:~~; 
dest j [i,2] <- newpos2; 

end; 
for i <- 0 to trianglesj .toptri do 
begin 
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q b 

p 

Figure 15.4. The projection triangles. p is a vector in object space and q is its image under pinhole 
projection. We can treat p as either the x or y component of a point in camera coordinates. a is the 
focal length of the virtual camera and b is the distance from the pinhole to the base of the vector. ~ = ~ 
by similarity of triangles, thus q = p E and where a = 1, then q = ~· 

Look up the vertices to be drawn and store them locally. 

j +- trianglesj[i,O]; 
k +- trianglesj [i, 1]; 

I+- trianglesj[i,2]; 

Check that everything to be drawn is in front of the pinhole and then draw the 
three lines of the triangle using drawline (see Section 15.5.1). 

if (destj[l,2] > 0) and (destjQ, 2] > O) and (destj[k,2] > 0) then 
begin 

drawline (destj Q,O],destj Q, l],destj [k,O],destj [k, 1],col); 
drawline (destj[k,O],destj[k, l],destj[I,O],destj[l, l],col); 
drawline (destj [I,O],destj [1, l],destj Q,O],destj Q, 1],col); 

end; 
end; 
dispose (dest); 

end; 
end; 

1 5.5.1 Entry Point to Line Drawing 

procedure drawline (x1 ,y1 ,x2,y2:real;col:integer); 

Take a pair of points specified in 2D real coordinates and draw the line with 
the 2D origin centred on the middle of the screen. The actual drawing is done 
using Bresenham's algorithm. 

begin 
x1 +- x7 + wigrh; 

yt +- yl + herhr; 

x2 +- x2 + wigrh; 
yl +- yl + herht; 

if (x7 2: O) and (y7 2: O) and (x2 2: 0) and (y2 2: 0) and 
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then 
BresenhamLine (round(x7),round(y7),round(x2),round(y2),col); 

end; 

15.6 Bresenham Line Drawing Procedure 

We use a fast and efficient line drawing algorithm due to Bresenham. This 
involves only adding and subtracting in its inner loop. 

Consider drawing a line on a raster grid where we restrict the allowable 
slopes of the line m to the range 0 ::::; m ::::; 1. We restrict the procedure so that 
it always increments x as it goes. After drawing a point at (x,y), there are two 
choices for the next point on the line: 

1. point (x + 1,y) 
2. point (x + 1,y + 1). 

Hence, when working in the first positive octant of the plane, line drawing 
becomes a matter of deciding between two possibilities at each step. Each time 
we plot a point on the raster grid we make an error E in the y direction relative 
to the real-valued point determined by the equation of the line. We will choose 
to plot (x + 1,y) if E is less than 0.5, otherwise we will plot (x + 1,y + 1). This 
will minimise the total error between the mathematical line and what is drawn. 

let Dx = x1 - xO 
let 8y = y2- yl 
with Dx ~ Dy 

All other types of lines can be derived from this type. First perform the 
following initialisation: 

x:=xO; 
y:=yO; 
d:=(2*deltay)-deltax: 

Loop from xO to x1 and for each loop perform the following operations for 
each x position: all multiplications are by 2. If we pre-multiply dx and dy by 2, 
we can remove all multiplications from the inner loop. The complete 
procedure is given in Alg. 67. 

Putpixel(x,y); {Drawapixel atthecurrentpoint} 
if d<O then 
d:=d+(2*deltay) 
else 
d:=d+2*(deltay-deltax); 
y :=y+l; 
end; 
x:=x+l; 



= 2*dy- dx 

procedure BresenhamLine (xO,yO,x1 ,y7 ,Color:integer); 
var 

Let dy,dx,stepx,stepy,fraction E integer; 
begin 

dy~y1- yO; 
dx~x1-x0; 

ifdy< Othen 
begin 

dy~ -dy; 
stepy~ -1; 

end 
else stepy ~ 1; 
ifdx< Othen 
begin 
dx~ -dx; 
stepx~ -1; 

end 
else stepx ~ 1; 
dy~dyx 2; 
dx~dxX 2; 
(* Set pixel at xO, yO*} 
unsignedbackgroundi[yO,xO] ~ color; 
if dx > dy then 
begin 

fraction ~ dy- (dx 1 ); 
whilexO =t- x1 do 
begin 

if fraction ;:o: 0 then 
begin 

yO~ yO + stepy; 
fraction ~ fraction - dx; 

end; 
xO ~ xO + stepx; 
fraction ~ fraction + dy; 
unsignedbackgroundi[yO,xO] ~ color; 

end 
end 
else 
begin 

fraction~ dx - (dy 1 ); 
while yO =t- y7 do 
begin 

if fraction ;:o: 0 then 
begin 

xO ~ xO + stepx; 
fraction ~ fraction - dy; 

end; 
yO ~yO + stepy; 
fraction ~ fraction + dx; 
unsignedbackgroundi[yO,xO] ~ color; 

end 
end 

end; 

Algorithm 67. Bresenham's algorithm in Pascal. 
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Table 15.1. Relative performance 

Target processor 

Pentium 
P4 

15.7 Performance 

Time (ms) 

3720 
2650 

Relative speed (%) 

100 
140 

The relative performance of vectorised and sequential versions of the program 
are given in Table 15.1. 

The program was timed for 200 iterations of the main loop, using the model 
shown in Figure 15.2. This model contains 706 vertices and 1326 triangles. 
Timings were done on a 1.7 GHz P4. Thus all parameters other than the 
instruction-set used were held constant. The use of SSE instructions does 
appear to give some gain in performance, although, since these are not the only 
instructions added by the P4 processor, some of the gains may be due to other 
new opcodes. It should, of course, be remembered that a considerable part of 
the program time will be taken up by line drawing and updating the screen 
buffer, and will therefore not benefit from floating-point vectorisation. 



Part IV 

VIPER 
Ken Renfrew 



Introduction to VIPER 

16.1 Rationale 

When originally developed, Vector Pascal used a command line compiler operat­
ing in the classical Unix fashion. This interface is documented in Appendix C. 
However it has been conventional, at least since the release of UCSD Pascal in 
the late 1970s, for Pascal Compilers to be provided with an integrated develop­
ment environment (IDE). The Vector Pascal IDE provides the usual capabi­
lities of such environments, but with the additional feature of literate 
programming support. 

16.1.1 The Literate Programming Tool 

Today's pace of technological development seems to be rising beyond anything 
that could have been conceived only a few decades ago. It is a common "joke" 
that any piece of modern technology is 6 months out of date by the time it 
reaches the showroom. 

Software development is one of the fastest moving areas of this techno­
logical stampede. With development happening at such a rate, documentation 
is often at best a few steps behind the reality of the code of any system. Hence 
anyone attempting to maintain a system is left to their own ingenuity and some 
out -of-date documentation. 

The constant updating of this documentation would in fact almost certainly 
be a more time-consuming task than developing the program in the first place 
and hence time spent in this area can often be regarded as non-productive time. 

Several attempts have been made at automating this process. The automa­
tion process is often termed literate programming. The two most successful of 
these are web (Knuth, 1984), a development of the T£X system which is the 
forefather of 16f£X (Lamport, 1994) developed by Leslie Lamport that is so 
widely used today, and JA V ADOC. The JA V ADOC system was developed by 
Sun Micro-systems to document programs written in JAVA by including the 
document details inside specially marked comments [ Sch 1]. 

The Vector Pascal literate programming tool will combine these two 
approaches by allowing the programmer to embed U'JEX commands within 
special comment markers. These will still be able to be parsed by a conventional 
Pascal compiler, allowing the system to be used for conventional Pascal 
programming. 

295 
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The embedding of IMEX commands in the program is not compulsory for 
those wishing to use the tool. There is a user-selectable scale of detail that will be 
included automatically in documentation even from a normal Pascal program. 

In addition, in an attempt to make the programs' idiosyncrasies more read­
able and to present the programs' arguments more conventionally, there is the 
option of using a "mathematical syntax converter" which will change some of 
the more impenetrable code into conventional mathematical symbolism, 1 the 
finished document being written by the system in IMEX to allow straight 
compilation into a postscript or .pdf document formats. 

To aid further the documentation, the variables declared within the program 
will be cross-referenced to their instantiation point, allowing a reader to cross­
reference a variable and thus remind themselves of its exact nature. 

This brief description clearly shows the aids that a literate programming tool 
would bring to the programmer, allowing documentation to be both kept up 
to date and in fact created retrospectively from existing code. 

16.1.2 The Mathematical Syntax Converter 

A computer program by its very nature has a structure which allows it to be 
read by a machine. Modern high-level languages have abstracted themselves 
from this very successfully but nevertheless owing to this underlying require­
ment the syntax of a program language can hide the program's algorithm from 
a human reader. 

Programmers often use pseudo-code to explain algorithmic arguments. 
Mathematical notation is usually the most clear and precise way of presenting 
this argument. The mathematical converter allows a developer to use this system 
to convert the Pascal syntax into something closer to mathematical notation2 

and much more presentable to the human reader. 
This feature is unique3 in a programming interface and provides a further 

level of documentation. The documentation of the algorithms involved in the 
program, which are arguably the program's most valuable assets. 

16.2 A System Overview 

As can be seen from the rationale above, the system breaks into three main 
sections: the program editor with the compiler, the literate programming tool 
and the mathematical syntax converter. 

It is hoped that an improvement in performance of the supplied compiler 
can be achieved by statically loading the compiler's class files for all target 
processors4 at start-up rather than the dynamic loading currently employed. 

The IDE will follow the traditional approach, offering similar facilities to 
that of many other editors for different languages on the market. 

1 Refer to separate section for the rationale of the maths syntax converter. 
2Precise mathematical notation, although perhaps desirable, is a more complex operation than the 
time allotted to the project would allow but none the less an interesting development for the future. 
3Unique to the best of our knowledge at the time of writing. 
4Processors currently supported are the Intel 486, Pentium P3 and Athlon K6. 
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Among these facilities are a syntax highlighting (for Vector Pascal, .ID'E,X and 
HTML), a project manager with automatic make file facility, the ability to run 
a program in the environment with redirected input and output, a function 
and procedure finder linked to the source code, an error line highlighter for 
compilation errors, an external process runner for .ID'E,X compilers, TE,X to 
HTML converters and a mini browser to show approximate results of the Liter­
ate programming tool. 

The Literate programming tool has been described in its rationale and 
incorporates the unique mathematical syntax conversion allowing a program 
to be converted to a mathematical argument literally at the touch of a button. 

16.3 Which VIPER to Download? 

VIPER is platform independent for the operating systems it supports. These 
operating systems are 

• Linux 
• Windows 9x 
• Windows NT/2000/XP. 

The only decision to make on the VIPER download is whether the source code 
is required. The source version, although much larger, contains the source 
code for the VIPER IDE and the Vector Pascal compiler and all files required 
for a developer to develop or adapt further any of the systems within VIPER. 
The class file download provides the required files to have an operational 
VIPER installation. 

16.4 System Dependencies 

VIPER depends on several pieces of software, all of which are freely available to 
download from various sources. The vital dependencies are 

• Java 1.3 or newer. 
• The NASM assembler. 
• The gee linker, included in Linux installations; for Windows use the cygwin 

or DJGPP versions of the gee linker. 

For full functionality the following systems are also required: 

• A .ID'E,X installation . .ID'E,X usually comes with Linux installations. The total 
MiKTE,X package is recommended for all Windows installations. 

• A dvi viewer, usually included with a .ID'E,X installation. The YAP viewer 
included with MiKTE,X is particularly recommended. 

• A TE,X to HTML converter. TTH was used in the development of the system. 

It is recommended that all of the above programs are set up according to 
their own installation instructions and the appropriate class path established to 
suit the host machine's operating system. 
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16.5 Installing Files 

Assuming that the VIPER files have been downloaded to a suitable place on 
the host machine, the actual installation can begin. The only decision that 
must be made is where to install VIPER. VIPER can be installed anywhere on 
the host machine provided that there are no spaces in the directory path of the 
target directory. 

Once this decision has been made, the .zip file should be unzipped using a 
proprietary zip tool (e.g. WinZip, zip magic) to the source directory. 

When the .zip file has been unzipped, there will be a directory called Vector 
Pascal in the target directory. Vector Pascal is the home directory of the VIPER 
system. 

VIPER may be launched by 

• All installations. Open a shell/DOS window change to the VIPER home 
directory and type the command j a v a v i p e r . V i p e r, taking care of the 
capital letter. 

• Windows installations. The batch file viper.bat is included in the VIPER 
home directory; running this will start VIPER. A shortcut to this batch file 
should be placed on the host machine's desktop for the easiest start-up. 

• Linux installations. The shell script viper.sh is included in the VIPER home 
directory; running this will start VIPER. 

16.6 Setting Up the Compiler 

VIPER detects the operating system installed at start-up and then moves a 
suitable run time library into the ... /VectorPascal/ilcg/Pascal directory where 
it will be available for the compiler. This is done automatically each time that 
VIPER is started. 

The compiler options will need to be set up along with the personal set-up 
preferred for the installation (see Section 16.7.2). The file type for the linker 
will need set-up. These options are 

• for Linux or Windows using the Cygwin gee use "elf' 
• for Windows using the DJGPP linker use "coff'. 

It is important to read through the user guide to avoid learning the system the 
painful way! 

16.7 Setting Up the System 

VIPER automatically sets the compiler flags to suit the operating system on the 
host machine. For those who have used the Vector Pascal compiler with a 
command line interface, this means that the -U flag is set for Windows 9x and 
Windows NT installations, and not set for Linux/UNIX installations, the -o flag 
is set to produce an exe file with the same name as the Pascal source file. The 
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.f ~orr .f lelf 

Figure 16.1. File format entries in Compiler Options . 

. asm file and .o files are similarly named. If these flags mean nothing then that 
is not a problem: either ignore the preceding information or see the Vector 
Pascal reference manual in the help files of the VIPER system. 

VIPER cannot, however, detect the versions of the gee linker installed, this is 
left for the user. The -f flag of the compiler tells the compiler the file format to 
be used. To set this, go to Set-up/Compiler Options/Options, click the 
-f button and enter the file format into the adjacent text field. The format 
should be 

• Linux Installations and Windows installations with Cygwin gee linker format 
is elf. 

• Windows with DJGPP linker format is coff. 

The other options on the Compiler Options window are as follows: 

• Smart serializes/de-serializes the code tree for the processor. This allows the 
compiler to 'learn' how to respond quickly to a given code segment. 

• S suppresses the assembly and linking of the program (an assembler file is 
still produced). 

• V causes the compiler to produce a verbose output to MyProg.lst when 
compiling MyProg.pas. 

• CPUtag. This option is used in conjunction with the -cpu option. It prefixes 
the .exe file with the name of the CPU for which the compiler is set. when 
this option is used the .exe cannot be run in the IDE. 

• -cpu. This option allow the source file to be compiled to a range of pro­
cessors. To produce an .exe file for a range of processors the CPU tag should 
be set. This prevents the .exe file from being overwritten by the next com­
pilation for a different processor. Subsequent compilations for the same 
processor, however, will be overwritten. Select the CPU from the list in the 
drop-down menu adjacent to the -cpu button. 

• -ISO (not yet implemented on the Vector Pascal compiler). Compiles to 
ISO Standard Pascal. 

16.7 .1 Setting System Dependencies 

VIPER depends on various other systems for full functionality. These are set in 
Set-up/Compiler Options/Dependencies. The fields are as follows: 

1. Source Compiler. This option is only editable if the Default Compiler 
option is not set. This is the command that would run the compiler from 
the Vector Pascal directory. 
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Figure 16.2. Dependencies window. 

2. This is the command required to run IMEX and is required for VPTE)( to 
work. The recommended option for this field is t ex i 2 d v i . 

3. DVI viewer. The dvi viewer that is to be used to view the IMEX recommended 
option is YAP (Windows installations). 

4. Tex to HTML. If a converter is installed on the host machine, then put the 
command in this field. 

5. Tex to PDF. Enter the command used to convert T£X to PDF. 
6. DVI toPS. Command to convert DVI files to Post Script (usually dvips). 

16.7 .2 Personal Set-up 

Viper allows the user many options to cater for different tastes and programm­
ing styles. It is not crucial to the system to set these options but it does make 
for a more comfortable programming environment. 

If the VIPER installation is on a network, each user may have a different 
personal set-up, provided that each user has a separate home directory. VIPER 
installs a file called vi pe r . proper t i e s into this directory and updates this 
file whenever a change is made to the system set-up. 

Note: The individual set-up should not be attempted when multiple files are 
open. If this is done then no harm comes to the system or any of the open files, 
but users may experience difficulty in closing one or more files. The solution 
is to use Window/Close All to close all the files. The system can then be used as 
normal. 

Viper Options 

In the Set-up menu there is the Viper Options menu option. In this are all the 
familiar IDE options such as font size and style, icon sizes, syntax colours, look 
and feel, etc. 
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Figure 16.3. The Viper Option windows. 
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X 

The different windows shown in Figure 16.3 allow the control of the VIPER 
IDE. The individual windows control 

• Editor. This controls the look and feel, the font size and style, the tab size 
and auto indentation. 

• Console. This controls the font style and size and the background colour of 
the console window. 

• Preferences. This allows the individual set-up of the menu icon sizes and 
the toolbar sizes. 

• Syntax Colours. This allows the syntax highlighting colours to be altered to 
personal taste. These can be adjusted for each supported language (Vector 
Pascal, NEX, HTML) independently. 

16.7.3 Dynamic Compiler Options 

Note: This is for advanced use only. 
This feature is intended to allow VIPER to handle 

• new processors as the class files become available (dynamic class loading 
only) 

• new options for the compiler/new versions of the compiler. 

The dynamically created options pages are added in the form of a new tabbed 
pane to the Compiler Options window (Figure 16.4). To create a new options 
pane the user must: 

1. Open the file ... /VectorPascal/viper/resources/dynamicOption.properties 
2. Edit the file to suit the new options. 
3. Save the file. 
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Figure 16.4. Dynamic Option window. 

Editing to Add a Processor 

X 

In the file dynamicoptions.properties in the . . . /VectorPascal!viper/resources 
directory there is a list of the current processors. This list can be extended 
simply by adding another to the end of the list. It is best if the list ends with 
"others". 

Note: The appropriate code generator files must be written for the Vector 
Pascal compiler and placed in the ... /VectorPascal!ilcg/tree directory. 

Editing to Add Compiler Options 

The dynamicoptions.properties file can be edited to produce a new compiler 
option. This is done by entering a new line at the end of the file following the 
line above. For example: 

CPU FLAGS : P3: K6: Pent i urn: I A3 2 
IF 
#Thi s i s to se t fl ags for th e campi 1 er 
#NB DO NOT EDIT THIS FILE BEFORE AFTER RE AD I NG THE HELP FIL E 
#IT I S IMPORTANT THAT THE FIELDS COME IN THE FOLLOWING ORDER 
#FLAG(Type :Str ing), DE SCRIPT I ON(Type:S tr ing), 
TEX TFI ELD (Type :int), 
#BROW SEBUTTON(Type : boolean ) 
#Any comments mu st be but in this a rea. 

FLAG: DESCRIPTION: TEXTFI ELD: BROWSEBUTTON 
- TEST:Te st descript ion: 20 : t rue: 
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16.7.4 VIPER Option Buttons 

The VIPER options are set in their respective panels with the VIPER option 
buttons. These have three states: 

• Grey. The item is not selected. 
• Red. The mouse is over the correct areas to select the item. 
• Blue. The item is selected. 

16.8 Moving VI PER 

Ideally, VIPER should be installed from the downloaded zip file on any new 
system. If this is not possible then it is still possible to move VIPER on to a 
new system even if the new host machine has a different operating system. 

Moving a VIPER installation from any Windows host to any other Windows 
host, or from one Linux installation to another is straightforward: 

1. Move the entire VectorPascal directory and all sub-directories to the new 
system. 

2. Run VIPER and in the File menu click clear recent files and then click clear 
recent projects. 

3. Import all projects that have been moved and are to be used on the new 
system. 

If the operating systems are different (i.e. moving from Linux to Windows or 
vice versa), then the system must be reset: 

1. Open a shell/DOS prompt window and change directories to the 
VectorPascal directory. 

2. Type java Vi perSystemReset in the console window. 

The system is now reset and the new installation of VIPER can be used 
normally. 

16.9 Programming with VIPER 

This section assumes that the IDE is now set up to the user's taste. To open a 
file, click the open file menu option and use the dialogue box to open the file 
in the usual way. 

Familiarity with the basic editing functions of an IDE is assumed. 

16.9.1 Single Files 

The file will open with the syntax highlighter associated with the file suffix of the 
target file. The file can be edited with all the usual IDE functions (Cut, Paste, 
Copy, Save, Save As, Find and Replace, etc.). 
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Ctr1+X 

Ctr1+C 

Ctr1+V 

ctri+D 

Ctr1+A 

Ctr1+F 

Ctr1+F9 

Ctr1+S 

Alt+F4 

Figure 16.5. The right click menu. 

VIPER features a "right click menu" to offer another method of quickly 
editing files (Figure 16.5). 

Line numbers can be viewed either by using the statistics on the status bar at 
the bottom right-hand corner of the IDE or by double clicking the dark-grey 
panel on the left of the editor window; this line number panel can then be 
adjusted in size to suit the user's needs. 

A new file can be opened from the file menu. Clicking on the New Document 
option allows the user to choose between the three types of file that VIPER 
supports (Pascal, IM£X, HTML). A new file is then opened in the editor window. 
The file is un-named until it has been saved. 

When a file has been changed since it was last saved, the name tag at the top 
of the editor window appears in red, otherwise it is black. 

If the user attempts to close the editor before a file has been saved, the option 
to save the file is offered before the IDE closes. 

If a file has functions and/or procedures, the function finder automatically 
displays these in the leftmost editor window. Clicking on the icon by a function 
or procedure takes the editor to the start of that section. 

16.9.2 Projects 

The VIPER Project Manager allows the user to construct software projects in 
Vector Pascal. 

An existing project can be opened using the Project/Open Project menu 
option or icon. The project will then appear in the project window. The file 
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Figure 16.6. The Project Properties window. 

names are in a tree structure which can be clicked to open the file in the editor 
window. 

To create a new project, the user clicks on the new project icon and the 
Project Properties dialogue box will appear (Figure 16.6). 

The text fields are then filled in to create the empty project. The directory 
path should be the parent directory for the project's home directory. This 
home directory will be given the project's name. 

Once the project has been created, the files can be added and removed as 
required: 

• Adding. Click the Add Files icon and enter or browse for the required file. 
This copies the file to the project directory. 

• Removing. Highlight the file to be removed and click the Remove Files icon. 
Warning. This deletes the file from the project directory. 

Other files may be placed in the project directory but if they are not added to 
the project they will not be a member of the project. 

The makefile for the project is automatically created as ProjectName.mke. 
The user should not edit either this or the .prj file directly. 

Importing Projects 

Projects can be imported from other VIPER installations by the import project 
facility. This can be found in Project/Import Project. Any project coming from 
another VIPER must be imported via this facility. 
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Backing-up Projects 

The import project facility can be used to move an existing project to another 
directory of the same machine. This Back-Up project is not just a copy of the 
project but is fully functional with all the facilities of the VIPER system. 

16.9.3 Embedding LATEX in Vedor Pascal 

The special comment (*! comment body *) is used to embed IMEX in the 
Vector Pascal source file. Anything within these comments will be treated as if 
it were IMEX both by the VPTEX system and the syntax highlighter. 

There is no need to put IMEX commands in the special comments unless a 
specific result is required (see Section 16.15). 

16.10 Compiling Files in VIPER 

16.10.1 Compiling Single Files 

Assuming the compiler has been set up, the compilation of a file is very simple. 
Simply click the Compile icon (or menu option) and the compiler will compile 
the file in the editor window with the options selected. 

The resulting files are placed in the same directory as the source file and are 
named the same as the source file with the corresponding suffix. 

Compiling a File to Executable for Several Processors 

If a file is to be compiled for several different processors, the CPUTAG and 
-CPU options must be set in the Set-up/Compiler Options/Options panel. The 
file MyProg.pas would then be compiled to ProcessorNameMyProg.exe. This 
process can be done for each processor on the available processor list. 

Note: A file compiled in this manner cannot be run within the IDE. 

16.10.2 Compiling Projects 

Projects can be compiled in two ways: 

• Make a project. This compiles the files that are not up-to-date but does not 
compile any file that is up-to-date. 

• Build a project. This compiles all the files in the project regardless of 
whether the files are up-to-date. 

The Vector Pascal compiler used in the traditional command line interface 
mode will check one level of dependency in a project. If there are more levels 
of dependency the VIPER project manager will automatically make a m a kef i l e 
and recursively check all levels of dependency in the project. 

As VIPER compiles a file, the file is opened in the IDE and if an error is 
found compilation stops and the error is highlighted. 
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16.11 Running Programs in VIPER 

Note: Projects requiring input from the user must have the input redirected. 
When a program has been compiled, the resulting executable can be run in 

the IDE by clicking on the Run icon. A redirect input box then appears (Figure 
16.7). If the program requires input from the user then an input file must be 
set. This file should contain all the data that the program requires to run to 
completion. 

Similarly, the output may be redirected. This, however, is not compulsory; if 
the output is not redirected, the output of the program appears in the console 
window. Ifthe output is redirected then the output is written to the file set-up 
in the run dialogue window. 

16.12 Making VPTEX 

Making VPT_EX is as simple as clicking the Build VPT_EX icon or menu option. 
If a project is open then the VPT_EX is made for the whole project, otherwise 
the VPT_EX is made for the file in the editor window. 

16.12.1 VPTEX Options 

The level of documentation is set by the user in the VPT_EX Options panel 
(Figure 16.8). This panel can be found in the TEXJVPT_EX Options menu item. 
There are five levels of detail that can be chosen: 

• Function and Procedure headings only 
• level 1 plus all special comments 

Run Opt1ons 1 ~ • ,-, ... ~~ 

Figure 16.7. The Run Options panel. 
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Compiler-Options 

Level1, Procedure & Function headings only 

Level 2,Level1 + special comments 

Level 3,Program bodies/interface 

Level 4,Selected text 

All 

Use maths converter 

Create Contents Page 

Cancel I 

Figure 16.8. The VPTEX Options panel. 

• program bodies and interfaces 
• selected text 
• all source code. 

In addition to the above options, the user can choose whether a contents page 
is to be included or not. This is set by clicking the Create Contents Page button. 

16.12.2 VPMath 

The VPMath system converts Vector Pascal code to mathematical syntax. This 
makes the program more human readable and in general more concise. 

The VPMath system is invoked automatically when the VPT_EX is made if the 
Use Math Converter is set in the Tex/VPT_EX Options menu item. 

16.13 LATEX in VI PER 

Most of the features of the VIPER editor used in the creation/ editing of Vector 
Pascal files can also be used for creating/editing 16I'_EX documents. 

Opening a 16I'_EX document in VIPER automatically invokes the 16I'_EX syntax 
highlighter and the Function Methods finder automatically changes to a 
Section/Sub-section finder. 

This allows the user to click on a Section icon in the left-hand window and 
the editor will jump to that section. 
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16.14 HTML in VIPER 

VIPER allows the user to edit/write HTML pages. The system for HTML is 
very straightforward. Create a new HTML file or open an existing file to be 
edited. Once the file has been altered, click on the run button just as if to run a 
Vector Pascal executable. 

When a new HTML file is created or an existing one opened, the HTML 
syntax highlighter is automatically loaded. 

The default browser that is installed on the host machine will open with the 
HTML page displayed. 

16.15 Writing Code to Generate Good VPTEX 

VPT_E)C is a tool included in the VIPER IDE for Vector Pascal. It automatically 
produces and formats a ID'_EX listing of the source file or files on which it is 
called. By defining three distinct types of comments, VPT_E)C also allows the 
programmer to add extensive descriptions of their code to the listing, creating 
full ID'_EX documentation for their Vector Pascal programs or projects. 
Mathematical translation can also be performed on the source code listing to 
produce a more generic and succinct description of the program's algorithms 
and structures. 

The three types of comments available are as follows: 

Special Comments: A special comment is started in the source code with the 
comment command (*! and terminated with *). Special comments appear 
in the ID'_EX as running prose and are of most use in giving extensive 
comments and descriptions of the program. Special comments can include 
16f£X commands, with some limitations, to improve further the readability 
of the documentation. 

Margin Comments: Normal Pascal{ ... } comments which appear immediately 
at the end of a line of code are placed in the left-hand margin adjacent to 
their source code line in the ID'_EX documentation. These are of principal 
use when a small description of the content of a single line is required. 

Normal Comments: Normal Pascal { ... } comments which appear on a line of 
their own will appear in the ID'_EX in typewriter font. 

16.15.1 Use of Special Comments 

As outlined above, special comments are the principal means of describing a 
program in the documentation. To maximise the effectiveness of the literate 
programming facility, source code should be written with large amounts of 
special comments and with the program's documentation in mind. The ability 
to include ID'_EX commands within special comments allows the programmer 
to affect directly the look of the ID'_EX documentation, but there are some 
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limits to the use of IMEX commands within special comments: 

• Do not include any preamble within special comments. The preamble for 
the IMEX documents is automatically produced by VPTEX. 

• Always use full text series altering commands such as \ text b f { . . . } rather 
than their shorthand equivalents such as \ b f { . . . } . 

• Bear in mind that any text entered in special comments must be compilable 
IMEX for the documentation to compile. This means that the following 
characters are control characters and should not be entered verbatim into 
special comments: & $ o/o _ { } A - \. 

Special comments can be particularly useful for controlling the structure of 
a IMEX document. The following are guidelines as to how to structure the 
documentation. 

• For an individual program or unit file, the IMEX document produced by 
VPTEX will be an article, so sections are the highest level description that can 
be applied to a block of text. 

• It is usually useful to include an introduction to the program at the start of 
the Pascal source file using the \ s e c t i on { I n t rod u c t i on } command at 
the start of an opening special comment. 

• A special comment containing just a structure command (\sect i on, 
\ s u b s e c t i on, etc.) can be extremely useful in sectioning off different parts 
of the source code to add structure to the code listing. For example, the 
declarations could be prefaced with ( * ! \ s e c t i on { Dec l a r a t i on s } * ) or 
the main program could be prefaced with a similar command. Each proce­
dure or function is automatically placed within its own section by VPTEX, so 
do not add structuring special comments to these sections of code. 

To produce a well-documented program, it is important that special 
comments are regularly employed to add verbose descriptions of the source 
code. It is not uncommon for a IMEX documentation file to contain many pages 
of special comments split into sections and subsections between small sections 
of code. VPTEX also automatically creates a contents page so the structure of the 
special comments will be reflected in the contents page. 

Note: With the current release of the Vector Pascal compiler, special 
comments containing *s other than at the opening(*! and dosing*) tags will 
not compile. 

16.15.2 Use of Margin Comments 

Margin comments are useful for providing short descriptions of the purpose of 
individual lines of code. If the meaning of a particular code line is especially 
cryptic, or the significance of the line needs to be emphasised, a margin 
comment stating the purpose of that line may be useful. It should be noted 
that because margin comments necessarily reside in the left-hand margin of 
the finished document, lengthy comments will spill on to many lines and break 
up the flow of the code. It is advised that margin comments should not be 
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more than 10 or so words, with the other types of comments available if a 
longer description is required. 

The VPTEX tool automatically breaks lines following the var and const 
keywords. Therefore, the declaration following these keywords will be placed 
on a new line, but any margin comment for this line will not. It is recom­
mended that the programmer takes a new line after the var and const 
keywords. 

16.15.3 Use of Ordinary Pascal Comments 

The function of normal Pascal comments has been superseded in most cases 
by VPTE)C's Special Comments. However, normal comments can still be useful 
in a number of circumstances. The following list details the recommended 
usage of normal Pascal comments, but the user is, of course, free to make use 
of them in any particular circumstances. 

• First, because normal comments are displayed in typewriter font, any spacing 
within these comments set out by the programmer will be preserved in the 
documentation. This is not the case for special comments which are displayed 
in a serifed, variable-width font. This property of normal comments makes 
them particularly suitable for laying out tables and arrays simply, although a 
special comment can make use of I!ITE)C's ability to typeset tables for a more 
advanced layout. 

• Second, normal comments do not break up the flow of a code listing to the 
same extent as special comments and so are more useful for offering a 
running commentary on code lines, without the space limitations of margin 
comments. 

• If a comment is reasonably short, the programmer may find that a normal 
comment will have a better appearance than a special comment. Since special 
comments are offset from the program, listing a small special comment may 
constitute a waste of the space set aside for it. 

16.15.4 Levels of Detail Within Documentation 

Depending on the sort of documentation required, VPTEX allows the 
programmer to specify the detail of the program documentation. The five 
levels are: 

1. Procedure and Function Headings Only: For documentation of ADTs it 
is often useful simply to provide a list of the functions and procedures by 
which a programmer may make use of the ADT. VPTEX supports this by 
providing the option to create documentation consisting of only function 
and procedure headings. It is advised that a contents page is not included 
with this level of detail. 

2. Special Comments with Function and Procedure Headings: To add 
commentary and descriptions to the above level of detail, option 2 will add 
any special comments to the documentation. This allows the programmer 
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to provide descriptions of their procedures and functions and to add 
structure to the documentation. A contents page is advised for this level of 
detail. 

3. Program Bodies and Unit Interfaces: This level of detail includes all 
comments. It is again very useful for documenting ADTs as the interfaces 
provided by units will be documented, but none of the implementation will 
be included. A contents page is recommended. 

4. Selected Text: Special VPTEX comments commands have been defined to 
allow the programmer to select which sections of the program to document. 
The commands are ( * ! beg i n * ) to mark the start of a selected region, and 
( * ! end* ) to mark the end. Any text, including special comments, not 
contained within these tags will be ignored by VPTEX if this level of detail is 
selected. The start and end of the main program file will always be included 
in the documentation regardless of selection. This feature is of particular use 
when preparing reports regarding particular sections of code within long 
projects as only the sections of interest will be documented. Again, a con­
tents page is recommended. 

5. All Code and Comments: For a completely documented code listing, of 
particular use for system maintenance, VPTEX can produce a complete 
listing of a program or project's source code, including special and normal 
comments. A contents page is strongly recommended, particularly for long 
programs or projects. 

Note: All levels of detail support margin comments. 

16.15.5 Mathematical Translation: Motivation and Guidelines 

VPTEX has the option of automatically translating the program code into con­
ventional mathematical notation. Complex VectorPascal expressions such as 

x: =if (iota 0 d i v 2 pow (dim-iota 1) ) mod 2=0 then 1 e l s e -1 ; 

are translated into more tidy and comprehensible mathematical representa­
tions such as 

x +-- { 1 if (~)mod 2 = 0; 
0 otherwise 

No action is required to obtain mathematical translation, provided that it is 
turned on (VPTEX Options). However, the benefits of using it increase with 
the number of mathematical structures in the document. In particular, the 
following will benefit from mathematical translation: 

• array indexing/slicing, e.g thisArrayi,jlthatArray1ow ... high 
• assignments, e.g. myVariable +-- yourVariable 
• reduction operations on arrays, e.g. myVariable +-- L:oneDArray 
• conditional updates (as shown above) 
• a number of standard mathematical function such as V 
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• mathematical operations, e.g. xY, ~' i x j 
• English names of Greek letters (lower-case only), e.g. a, /3, "(, 8. 

Mathematical translation is particularly useful if the documentation is for 
people without knowledge of Pascal or a similar language. The only time when 
mathematical translation is not advisable is when the reader is maintaining the 
code itself, in which case the need for cross-reference will usually dominate the 
need for clarity and conventional notation. 

16.1 5.6 LATEX Packages 

All VPTEX documents only include packages g rap hi c x and e p sf i g. These 
packages are included to allow the programmer to include graphics and 
diagrams to help document their programs. Any IMEX commands that the 
programmer may wish to use which are specific to other packages cannot be 
included in VPTEX special comments. 



Appendix A: 
Compiler Porting Tools 

Vector Pascal is an open-source project. It aims to create a productive and 
efficient program development environment for SIMD programming. In order 
to validate the concepts it has been developed initially for the Intel family of 
processors running Linux and Microsoft Windows. However, it has been 
intended from the outset that the technology should be portable to other 
families of CPUs. This Appendix addresses some of the issues involved in 
porting the compiler to new systems. 

A.1 Dependencies 

The Vector Pascal compiler tool-set can be divided along two axes as shown in 
Figure A.l. 

1. Tools can be divided into (a) those provided as part of the release and (b) 
those provided as part of the operating environment. 
(a) These are mainly written in Java, the exceptions being a small run-time 

library in C, a Pascal System unit and several machine descriptions. 
(b) These are all available as standard under Linux, and Windows versions 

are freely downloadable from the web. 
2. Tools can further be divided into (a) those required for program prepara­

tion and documentation, (b) those for code translation tools and (c) those 
for code generator preparation. 
(a) The program preparation tools are the VIPER IDE described in 

Chapter 16, along with the standard IM_EX document preparation 
system, DVI viewers and the TTH tool to prepare web-enabled versions 
of Vector Pascal program descriptions. 

(b) The program translation tools are: 
i. The i l c g . p a s c a l Java package which contains the Pascal 

compiler itself and classes to support Pascal-type declarations. 
This carries out the first stage of code translation, from Pascal to an 
ILCG tree (Cockshott, 2000). 

ii. A set of machine-generated code generators for CPUs such as the 
Pentium and the K6. These carry out the second phase of code 
translation - into an assembler file. 

iii. The i l cg. tree Java package, which supports the internal 
representation of ILCG trees (see Section A.3). 
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Program preparation tools 

VIPER 

VP\ TeX 

Provided as part of 
the Vector Pascal 
system 

Provided as part of 
the operating 
environment 

Latex 

DV!viewer 

TTH 
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Code translation tools 

ilcg.Pascal 
java package 

Pentium.java 
K6.java etc. 

il cg. tree 
java package 

Java system 

Assembler e.g., NASM 

C compiler e.g., GCC 

Jlex lexical analyser 
generator * 

Figure A.1. Vector Pascal toolset. 

Code generator preparation tools 

ILCG CodeGenerator 

Machine 
files 

Pentium.m4 
MMX.m4 
K6.m4 etc. 

m4 macro processor 

Sable compiler 
generator 

iv. The Java system, which is needed to run all of the above. 
v. An assembler, which is necessary to carry out the third phase of 

code translation, from an assembler file to a relocatable object file. 
vi. A C compiler and linkage system is needed to compile the C run-time 

library and to link the relocatable object files into final executables. 
vii. In addition, if one wants to alter the reserved words of Vector 

Pascal or make other lexical changes, one needs the JLex lexical 
analyser generator. 

A.2 Compiler Structure 

The structure of the Vector Pascal translation system is shown in Figure A.2. The 
main program class ofthe compiler i l c g . P a s c a l . P a s c a l Com p i l e r . j a v a 
translates the source code of the program into an internal structure called 
an ILCG tree (Cockshott, 2000). A machine-generated code generator then 
translates this into assembler code. An example would be the class ilcg. tree.IA32. 
An assembler and linker specified in descendent class of the code generator then 
translate the assembler code into an executable file. 

Consider first the path followed from a source file. The phases that it goes 
through are 

• The source file (1) is parsed by a Java class PascalCompiler.class (2), a 
hand-written, recursive descent parser (Watt and Brown, 2000), and results 
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1. HLL program 

In this case PascaiCompiler.class 

3. ILCG program 

5. ILCG semantics 

6. Optimisation rules 

7. Transformed ILCG program S.ILCG for CPU 

(for example Pentium.ilc) 

11. Machine code for CPU 

Figure A.2. The translation of Vector Pascal to assembler. 

in a Java data structure (3), an ILCG tree, which is basically a semantic tree 
for the program. 

• The resulting tree is transformed ( 4) from sequential to parallel form and 
machine-independent optimisations are performed. Since ILCG trees are 
Java objects, they can contain methods to self-optimise. Each class contains, 
for instance, a method eva l which attempts to evaluate a tree at compile 
time. Another method, simplify, applies generic machine-independent 
transformations to the code. Thus the s i m p l i f y method of the class For 
can perform loop unrolling, removal of redundant loops, etc. Other 
methods allow tree walkers to apply context-specific transformations. 

• The resulting ilcg tree (7) is walked over by a class that encapsulates the 
semantics of the target machine's instruction-set (10), for example 
Pentium.class. During code generation the tree is further transformed, as 
machine-specific register optimisations are performed. The output of this 
process is an assembler file (11). 

• This is then fed through an appropriate assembler and linker, assumed to 
be externally provided to generate an executable program. 

A.2.1 Vectorisation 

The parser initially generates serial code for all constructs. It then interrogates 
the current code generator class to determine the degree of parallelism possible 
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var i; 
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var i ; 
for i=1 to 9 step 1 do { 

v 1[ 1\ i J : =+( 1\ ( v 2 [ 1\ i J ) ' 1\ ( v 3 [ 1\ i J ) ) ; 
} ; 

Figure A.3. Sequential form of array assignment. 

for i=1 to 8 step 2 do { 
(ref int32 vector (2))mem(+(@vl,*(-(Ai,ll,4))):= 

+(A( (ref i nt32 vector (2) )mem(+(@v2, *( -(Ai, 1) ,4)))), 

A((ref int32 vector (2))mem(+(@v3,*(-(Ai ,1),4))))); 

} ; 

for i=9 to 9 step 1 do { 
v1[/\i]:=+(A(v2[Ai]),A(v3[/\i])); 

} ; 

Figure A.4. Parallelised loop. 

for the types of operations performed in a loop, and if these are greater than 
one, it vectorises the code. 

Given the declaration 

var vl,v2,v3: array[l..9] of integer; 

then the statement 

vl := v2+v3; 

would first be translated to the ILCG sequence shown in Figure A.3. In the 
example above, variable names such as v 1 and i have been used for clarity. In 
reality i would be an addressing expression such as 

(refint32)mem(+(/\((refint32)ebp), -1860)) 

which encodes both the type and the address of the variable. The code 
generator is queried as to the parallelism available on the type i n t 3 2 and, 
since it is a Pentium with MMX, returns 2. The loop is then split into two, a 
portion that can be executed in parallel and a residual sequential component, 
resulting in the ILCG shown in Figure A.4. In the parallel part of the code, the 
array subscriptions have been replaced by explictly cast memory addresses. 
This coerces the locations from their original types to the type required by the 
vectorisation. Applying the s i m p l i f y method of the For class, the following 
generic transformations are performed: 

1. The second loop is replaced by a single statement. 
2. The parallel loop is unrolled twofold. 
3. The For class is replaced by a sequence of statements with explicit gotos. 
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var i; 
i :=1; 
leb4afl1b47e: 
if >(2,0) thenif )(Ai ,8) thengoto leb4af11b47f 

else null 
fi 

else if ((Ai ,8) thengoto leb4af11b47f 
else null 
fi 

fi; 
(ref int32 vector (2))mem(+(@v1,*(-(Ai ,1),4))):= 

+(A((ref int32 vector (2))mem(+(@v2,*(-(Ai,1),4)))), 
A( (ref int32 vector (2) )mem(+(@v3, *C- (Ai ,1) ,4))))); 

i :=+(Ai ,2); 
(ref int32 vector (2))mem(+(@v1,*(-(Ai ,1),4))):= 

+(A((ref int32 vector (2))mem(+(@v2,*(-(Ai ,1),4)))), 
A((ref int32 vector (2))mem(+(@v3,*(-(Ai ,1),4))))); 

i:=+(Ai,2); 
goto leb4af11b47e; 
l eb4afl1b47f: 
i :=9; 
V1[Ai]:=+(A(V2[Ai]),A(V3[Ai])); 

Figure A.S. After applying simp l ify to the tree. 

mov DWORD ecx,1 
leb4b08729615: 

cmp DWORD ecx,8 
jg near leb4b08729616 
lea edi ,[ecx-(1)]; substituting in edi with 3 occurrences 
movq MM1,[epb+edi*4+-1620] 
paddd MM1,[epb+edi*4+-1640] 
movq [epb+edi*4+-1600J.MM1 
lea ecx. [ecx+2J 
lea edi ,[ecx-(1)]; substituting in edi with 3 occurrences 
movq MM1,[epb+edi*4+-1620J 
padd MM1,[epb+edi*4+-1640] 
movq [epb+edi*4+-1600J.MM1 
lea ecx. [ecx+2J 
jmp leb4b08729615 

l eb4b08729616: 
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Figure A.6. The result of matching the parallelised loop against the Pentium instruction-set. 
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The result is shown in Figure A.S. When the eva l method is invoked, 
constant folding causes the loop test condition to be evaluated to 

if>("i ,8) thengotoleb4afllb47f 

A.2.2 Porting Strategy 

To port the compiler to a new machine, say a GS, it is necessary to 

1. Write a new machine description G5. i l c in ILCG source code. 
2. Compile this to a code generator in java with the ilcg compiler generator 

using a command of the form 

java ilcg.ILCG cpus/G5.ilc ilcg/tree/G5.java G5 

3. Write an interface class i l cg/tree/G5CG which is a subclass of G5 and 
which invokes the assembler and linker. The linker and assembler used will 
depend on the machine but one can assume that at least a g c c assembler 
and linker will be available. The class G 5 C G must take responsibility to 
handle the translation of procedure calls from the abstract form provided in 
ILCG to the concrete form required by the G5 processor. 

4. The class G 5 C G should also export the method get p a r a l l e l i s m which 
specifies to the vectoriser the degree of parallelism available for given data 
types. An example for a P4 is given in Figure A.7. Note that although a P4 is 
potentially capable of performing 16-way parallelism on 8-bit operands, 
the measured speed when doing this on is less than that measured for 8-way 
parallelism. This is due to the restriction placed on unaligned loads of 
16-byte quantities in the P4 architecture. For image processing operations, 
aligned accesses are the exception. Thus, when specifying the degree of 
parallelism for a processor, one should not simply give the maximal degree 
supported by the architecture. The maximal level of parallelism is not 
necessarily the fastest. 

public int getParallelismCString elementType) 
{ if(elementType.equalsCNode.int32)) return 2; 

if(elementType.equalsCNode.intl6)) return 4; 
ifCelementType.equalsCNode.int8)) return 8; 
if(elementType.equals(Node.uint32)) return 2; 
ifCelementType.equalsCNode.uint16)) return 4; 
if(elementType.equalsCNode.uint8)) return 8; 
if(elementType.equalsCNode.ieee32)) return 4; 
if(elementType.equalsCNode.ieee64)) return 1; 
return 1; 

Figure A.7. The method getParall eli sm for a P4 processor. 
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Sample machine descriptions are given on the Vector Pascal website to help 
those wishing to port the compiler. These are given in the ILCG machine 
description language, an outline of which follows. 

A.3 ILCG 

The purpose of ILCG (Intermediate Language for Code Generation) is to 
mediate between CPU instruction-sets and high-level language programs. 
It both provides a representation to which compilers can translate a variety 
of source-level programming languages and also a notation for defining the 
semantics of CPU instructions. 

Its purpose is to act as an input to two types of programs: 

1. ILCG structures produced by an HLL compiler are input to an automati­
cally constructed code generator, working on the syntax matching princi­
ples described by Graham (1980). This then generates equivalent sequences 
of assembler statements. 

2. Machine descriptions written as ILCG source files are input to code­
generator-generators, which produce java programs that perform function 
(1) above. 

So far, one HLL compiler producing ILCG structures as output exists: the 
Vector Pascal compiler. There also exists one code-generator-generator, which 
produces code generators that use a top-down pattern matching technique 
analogous to Prolog unification. ILCG is intended to be flexible enough to 
describe a wide variety of machine architectures. In particular, it can specify both 
SISD and SIMD instructions and either stack-based or register-based machines. 
However, it does assume certain things about the machine: that certain basic 
types are supported and that the machine is addressed at the byte level. 

In ILCG, all type conversions, dereferences, etc., have to be made absolutely 
explicit. In what follows we will designate terminals of the language in bold, 
e.g. octet, and non-terminal in italics, e.g. wordB. 

A.4 Supported Types 

A.4.1 Data Formats 

The data in a memory can be distinguished initially in terms of the number of 
bits in the individually addressable chunks. The addressable chunks are assumed 
to be the powers of two from 3 to 7, so we thus have as allowed formats wordB, 
wordl6, word32, word64, word128. These are treated as non-terminals in the 
grammar of ILCG. 

When data are being explicitly operated on without regard to their type, 
we have terminals which stand for these formats: octet, halfword, word, 
doubleword, quadword. 
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A.4.2 Typed Formats 
Each of these underlying formats can contain information of different types, 
either signed or unsigned integers, floats, etc. ILCG allows the following 
integer types as terminals: int8, uint8, int16, uint16, int32, uint32, int64, 
uint64, to stand for signed and unsigned integers of the appropriate lengths. 

The integers are logically grouped into signed and unsigned. As non-terminal 
types they are represented as byte, short, integer, long and ubyte, ushort, uinteger, 
ulong. 

Floating-point numbers are assumed to be either 32- or 64-bit with 32-bit 
numbers given the non-terminal symbols float, double. If we wish to specify a 
particular representation of floats of doubles we can use the terminals ieee32, 
ieee64. 

A.4.3 ref Types 
ILCG uses a simplified version of the Algol-68 reference typing model. A value 
can be a reference to another type. Thus an integer when used as an address 
of a 64-bit floating-point number would be a ref ieee64. Ref types include 
registers. An integer register would be a ref int32 when holding an integer, a 
ref ref int32 when holding the address of an integer, etc. 

A.S Supported Operations 
A.5.1 Type Casts 
The syntax for the type casts is C style so we have for example ( i eee64) 
i nt32 to represent a conversion of a 32-bit integer to a 64-bit real. These type 
casts act as constraints on the pattern matcher during cod~ generation. They 
do not perform any data transformation. They are inserted into machine 
descriptions to constrain the types of the arguments that will be matched for 
an instruction. They are also used by compilers to decorate ILCG trees in order 
both to enforce, and to allow limited breaking of, the type rules. 

A.S.2 Arithmetic 
The allowed dyadic arithmetic operations are addition, saturated addition, 
multiplication, saturated multiplication, subtraction, saturated subtraction, 
division and remainder with operator symbols +, +:, *• *:, - , - :, div, mod. 

The concrete syntax is prefix with bracketing. Thus the infix operation 
3 + 5 + 7 would be represented as +(3, div (5, 7)). 

A.S.3 Memory 
Memory is explicitly represented. All accesses to memory are represented by 
array operations on a predefined array mem. Thus location 100 in memory is 
represented as mem(IOO). The type of such an expression is address. It can be cast 
to a reference type of a given format. Thus we could have (ref int32)mem(IOO). 
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A.5.4 Assignment 

We have a set of storage operators corresponding to the word lengths 
supported. These have the form of infix operators. The size of the store being 
performed depends on the size of the right-hand side. A valid storage state­
ment might be (ref octet)mem(299) :=(int8) 99. 

The first argument is always a reference and the second argument a value of 
the appropriate format. 

If the left-hand side is a format, the right-hand side must be a value of the 
appropriate size. If the left-hand side is an explicit type rather than a format, 
the right-hand side must have the same type. 

A.5.5 Dereferencing 

Dereferencing is done explicitly when a value other than a literal is required. 
There is a dereference operator, which converts a reference into the value that 
it references. A valid load expression might be (octet)i((ref octet)mem(99)). 

The argument to the load operator must be a reference. 

A.6 Machine Description 

Ilcg can be used to describe the semantics of machine instructions. A machine 
description typically consists of a set of register declarations followed by a set 
of instruction formats and a set of operations. This approach works well only 
with machines that have an orthogonal instruction set, i.e. those that allow 
addressing modes and operators to be combined in an independent manner. 

A.6.1 Registers 

When entering machine descriptions in ilcg, registers can be declared along 
with their type, hence 

register word EBX assembles['ebx']; 
reserved register word ESP assembles['esp']; 

would declare EBX to be of type ref word. 

Aliasing 

A register can be declared to be a sub-field of another register, hence we could 
write 

alias register octet AL = EAX(0:7) assembles['al']; 
alias register octet BL = EBX(0:7) assembles['bl']; 

to indicate that BL occupies the bottom 8 bits of register EBX. In this notation 
bit zero is taken to be the least significant bit of a value. There are assumed to 
be two pregiven registers FP, GP that are used by compilers to point to areas of 
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memory. These can be aliased to a particular real register: 

register word EBP assembles['ebp']; 
alias register word FP = EBP(0:31) assembles['ebp']; 

Additional registers may be reserved, indicating that the code generator 
must not use them to hold temporary values: 

reserved register word ESP assembles['esp']; 

A.6.2 Register Sets 

A set of registers that are used in the same way by the instruction-set can be 
defined: 

pattern reg means [ EBPIEBXl ESll EDll ECXlEAXIEDXl ESP]; 
pattern breg means [ALIAHIBLIBHICLICHIDLIDH]; 

All registers in an register set should be of the same length. 

A.6.3 Register Arrays 

Some machine designs have regular arrays of registers. Rather than have these 
exhaustively enumerated, it is convenient to have a means of providing an 
array of registers. This can be declared as 

register vector(S)doubleword MM assembles['MM'i]; 

This declares the symbol MMX to stand for the entire MMX register set. It 
implicitly defines how the register names are to be printed in the assembly 
language by defining an indexing variable i that is used in the assembly lan­
guage definition. 

We also need a syntax for explicitly identifying individual registers in the 
set. This is done by using the dyadic subscript operator subscript(MM,2), 
which would be of type ref doubleword. 

A.6.4 Register Stacks 

Whereas some machines have registers organised as an array, another class of 
machines, those oriented around postfix instruction-sets, have register stacks. 

The ilcg syntax allows register stacks to be declared: 

register stack (8)ieee64 FP assembles[' ']; 

Two access operations are supported on stacks: 

• PUSH is a void dyadic operator taking a stack of type ref t as first argu­
ment and a value of type t as the second argument. Thus we might have 
PUSH(FP, jmem(20)). 

• POP is a monadic operator returning t on stacks of type t. So we might 
have mem(20) := POP(FP). In addition, there are two predicates on stacks 
that can be used in pattern preconditions. 
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• FULL is a monadic Boolean operator on stacks. 
• EMPTY is a monadic Boolean operator on stacks. 

A.6.5 Instruction Formats 

An instruction format is an abstraction over a class of concrete instructions. 
It abstracts over particular operations and types thereof whilst specifying how 
arguments can be combined: 

instruction pattern 
RR(operator op, anyreg rl, anyreg r2, int t) 
means[rl := (t) op(j((ref t) rl}, j((ref t) r2))] 
assembles[op ' ' rl ',' r2]; 

In the above example, we specify a register to register instruction format that 
uses the first register as a source and a destination whereas the second register 
is only a destination. The result is returned in register r 1. 

We might, however, wish to have a more powerful abstraction, which was 
capable of taking more abstract specifications for its arguments. For example, 
many machines allow arguments to instructions to be addressing modes that 
can be either registers or memory references. For us to be able to specify this in 
an instruction format we need to be able to provide grammar non-terminals as 
arguments to the instruction formats. 

For example, we might want to be able to say 

instruction pattern 
RRM(operator op, reg rl, maddrmode rm, int t) 
means [rl := (t) op(j((ref t) rl), j((ref t) rm))] 
assembles[op ' ' rl ',' rm]; 

This implies that addrmode and reg must be non-terminals. Since the non­
terminals required by different machines will vary, there must be a means of 
declaring such non-terminals in ilcg. 

An example would be 

pattern regindirf(reg r) 
means[j(r}] assembles[r]; 
pattern baseplusoffsetf(reg r, signed s) 
means[+(j(r),const s)] assembles[r'+'s]; 
pattern addrform means[baseplusoffsetflregindirf]; 
pattern maddrmode(addrform f) 
means[mem(f)] assembles['[f]']; 

This gives us a way of including non-terminals as parameters to patterns. 

A.7 Grammar of ILCG 

The following grammar is given in Sable (Gagnon, 1998} compatible form. 
The Sable parser generator is used to generate a parser for ILCG from this 
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grammar. The ILCG parser then translates a CPU specification into a tree 
structure which is then walked by an ILCG-tree-walk-generator to produce an 
ILCG-tree-walk Java class specific to that CPU. 

If the ILCG grammar is extended, for example to allow new arithmetic 
operators, then the ILCG-tree-walk-generator must itself be modified to 
generate translation rules for the new operators. 

I* 

A.S ILCG Grammar 

This is a definition of the grammar of ILCG using the Sable grammar 
specification lanaguage. It is input to Sable to generate a parser for machine 
descriptions in ilcg. 

*I 
Packageilcg; 

I* 

A.8.1 Helpers 

Helpers are regular expressions macros used in the definition of terminal 
symbols of the grammar. 

*I 
Helpers 

letter=[['A' .. 'Z']+['a' .. 'z']]; 
digit=['O' .. '9']; 
alphanum=[letter+['O' .. '9']]; 
cr=l3; 
lf=lO; 
tab=9; 

digit_sequence=digit+; 
fractional_constant=digit_sequence?'. 'digit_sequencel 
digit_sequence '. '; 
sign='+' I'-'; 
exponent_pa rt=( 'e ·I 'E ·)sign? di git_sequence; 
floating_suffix='f'I'F' l'l' I'L'; 

I I This eol definition takes care of different platforms 
eol=cr lf I cr llf: 
not_cr_lf=[[32 .. 127]- [cr+lf]]; 
exponent=(' e' I 'E'); 
quote='''; 
all=[0 .. 127]; 
schar=[all -'' ']; 
not_star=[all- '*']; 
not_star _sl ash=[not_star- 'I' J; 

I* 
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A.8.2 Tokens 

The tokens section defines the terminal symbols of the grammar. 

*I 
Tokens 

fioating_constant= 
fractional_constantexponent_part?fioating_suffix?l 
digit_sequenceexponent_partfioating_suffix?; 

I* 

Terminals specifying data formats: 

*I 
void='void': 
octet=' octet': int8='int8': uint8='uint8': 
halfword='halfword': int16='int16': uintl6='uint16': 
word='word': i nt32=' i nt32': 
uint32='uint32': ieee32='ieee32': 
doubleword='doubleword': int64='int64': 
uint64='uint64': ieee64='ieee64': 
quadword='quadword'; 

I* 

Terminals describing reserved words: 

*I 
function='function': 
fiag='fiag'; 
location='loc': 
procedure='instruction': 
returns=' returns'; 
l a bel=· l a bel ' : 
goto='goto'; 
for=· for·; 
to='to'; 
step=' step·; 
do=' do'; 
ref='ref'; 
const='const': 
reg=' register'; 
operation='operation': 
alias='alias'; 
instruction='instruction': 
address='address'; 
vector='vector'; 
stack=' stack': 
sideeffect='sideeffect'; 
if=. if.; 
reserved=' reserved': 
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precondition='precondition'; 
instructionset='instructionset'; 

I* 

Terminals for describing new patterns: 

*I 
pattern='pattern'; 
means='means'; 
assembles='assembles'; 

I* 

Terminals specifying operators: 

*I 
colon=':'; 
semi col on=';'; 
comma='.'; 
dot='.'; 
bra='('; 

ket=')'; 
plus='+'; 
satpl us='+:·; 
satmi nus='-:·; 
map='->·; 
equals='='; 
l e=' <='; 
ge=' >='; 
ne='<>'; 
lt='<'; 
gt='>.; 
minus='-'; 
times='*'; 
exponentiate='**'; 
d i vi de=' d i v • ; 
and=' AND'; 
or='OR'; 
xor=' XOR'; 
not=' NOT'; 
sin=' SIN' ; 
cos=' COS'; 
abs='ABS'; 
tan='TAN'; 
remainder='MOD'; 
store=':='; 
deref='"'; 
push='PUSH'; 
pop=' POP'; 
call=' APPLY'; 
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full='FULL'; 
empty=' EMPTY'; 
subscript=' SUBSCRIPT'; 
intl it=digit+; 
vba r=' I ' ; 
sket=' J'; 
sbra='['; 
end='end'; 
typetoken='type'; 
mem='mem'; 
string=quoteschar+quote; 

/* 

Identifiers come after reserved words in the grammar: 

*I 
identifier=letteralphanum*; 
blank=(' 'I cr llf I tab)+; 
comment='/*' not_star*'*'+ 

Ignored Tokens 
blank,comment; 
I* 

Cnot_star_slashnot_star*'*'+)*'/'; 

A.8.3 Non-terminal Symbols 

*I 
Productions 

program=statementlistinstructionlist; 
instructionlist=instructionsetsbraalternativessket; 

I* 

Non-terminals specifying data formats: 

*I 
format={octet} octet! 
{halfword} halfwordl 
{word} word I 
{doubleword} doublewordl 
{ quadword} quadword I 
{tformat}tformat; 

I* 

Non-terminals corresponding to type descriptions: 

*I 
reference=ref type ; 
a rray=vector bra number ket; 
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aggregate={ stack} stack bra number ket I {vector} array 1 {non}; 
type={format} format! {typeid} typeidl {array}typearrayl 
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{cartesi an}sbra type cartesian* sket I 
{map} bra [a rg]: type map [result]: type ket; 

cartesian=commatype; 

I* 

tformat={signed} signed I 
{unsigned}unsignedl 
{ieee32}ieee32l 
{ieee63}ieee64; 

signed=int32l 
{int8} int8J 
{int16l int16l 
{int64l int64; 

unsigned=uint32l 
{uint8} uint81 
{ ui nt16 lui nt16l 
{uint64l uint64; 

Non-terminals corresponding to typed values: 

*I 

I* 

value={refval }refvall 
{rhs}rhsJ {void}voidl 
{cartval }cartvalJ 
{dyadic l dyadic bra [ l eft J :val ue comma [right J :val ue ket I 
{monadic lmonadi c bra value ket; 

Value corresponding to a cartesian product type, e.g. record initialisers: 

*I 
cartval=sbra value carttail* sket; 
carttail=comma value; 

I* 

Conditions used in defining control structures: 

*I 
condition= 
{dyadic} dyadic bra[left]:condition comma[right]:condition 
ketl 
{monadic }monadic bra condition ket I 
{ i d l identifier I 
{number}number; 

rhs={number}numberl 
{cast}bra type ket val uel 
{const}constidentifierl 
{deref}deref bra refval ket; 

refval=l oc I { refcast} bra reference ket l oc; 
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loc={id}identifierl 
{memory}mem bra value ket; 

number={reallit} optional sign reallitl 
{integer} optional sign intlit; 

optionalsign=l {plus}plusl {minus}minus; 
reallit=fioating_constant; 

I* 
Operators 

*I 
dyadic={plus} plus I 
{minus} minus I 
{identifier} identifier I 
{ exp} exponentiate I 
{times} times I 
{divide} divide! 
{lt}ltl 
{gt}gtl 
{call}calll 
{le}lel 
{ge}gel 
{eq}equalsl 
{ne}nel 
{push}pushl 
{subscript}subscriptl 
{satplus}satplusl 
{satminus}satminusl 
{remainder}remainderl 
{or}orl 
{and}andl 
{xor}xor; 
monadic={not}notl 
{full}fulll 
{empty}emptyl 
{pop} pop I 
{sin}sinl 
{cos}cosl 
{tan}tanl 
{abs}abs; 
I* 

Register declaration: 

*I 
regi sterdecl =reservati on reg aggregate format identifier 
assembles sbra string sket; 
reservation={reserved}reservedl {unreserved}; 
aliasdecl= 

alias reg aggregate format [child]:identifierequals 
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[parent]:identifierbra [lowbit]:intlitcolon 
[hi ghbi tJ: i ntl it ket assembles sbra string sket; 

opdecl=operation identifier means operator assembles sbra 
string sket; 
operator={plus}plusl 

I* 

{minus}minusl 
{times}timesl 
{lt}ltl 
{gt}gtl 

{le}lel 
{ge}gel 
{eq}equalsl 
{ne}nel 
{divide}dividel 

{remainder}remainderl 
{or}orl 
{and}andl 
{xor}xor; 

Pattern declarations: 

*I 
assign=refval storevalue; 
meaning={value}valuel 

{assign}assignl 
{goto}gotovaluel 
{if} if bra value ket meaning I 

{for} for refval store [start] :value 
to [stop J :val ue step [increment J :val ue do me ani n g I 

{loc}locationvalue; 
patterndecl =pattern identifier pa raml i st means sbra 
meaning sket 
assemblesto 
sideeffects 
precond 

l{alternatives}patternidentifiermeanssbraalternatives 
sket; 

par am l is t=b r a pa ram par amt ail* ket I {null pa ram} bra ket; 
param=typeididentifierl 
{typeparam}typetokenidentifierl 
{label} 1 abel identifier; 
typeid=identifier; 
paramtail=commaparam; 
alternatives=typealts*; 
a 1 ts=vba r type; 
precond=precondi ti on sbra condition sket I 

{unconditional}; 
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asideeffect=sideeffect returnval; 
sideeffects=asideeffect*; 
assemblesto=assemblessbraassemblypatternsket; 
assemblypattern=assemblertoken*; 
assemblertoken={string} string I 

{identifier} identifier; 
returnva l =returns identifier; 
/* 

Statements: 

*I 
statement={ ali asdecl} ali asdecl 1 

{ regi sterdecl} regi sterdecl I 
{addressmode} address patterndecll 
{instructionformat}procedurepatterndecl I 
{ opdecl l opdecll 
{flag} flag identifier equal s i n t l it 1 

{typerename}typetoken format equals identifier I 
{ patterndecl l patterndecl; 

statementlist=statementsemicolonstatements*; 
statements=statement semicolon; 
II 
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Appendix B: 
Software Download 

The software is available for downloading from the website associated with this 
book: 

www.dcs.gla.ac.uk/~wpc/SIMD.html 

It can be downloaded in two possible versions, both of which are distributed 
as .jar files: 

1. Source form: this is a compressed directory tree snapshot containing the 
Java, C, Pascal and ILCG sources required to build the compiler. 

2. Binary version, which contains the mm p c . j a r and vi per . j a r files 
necessary to run the compiled version of the compiler and Viper, along 
with the run-time library as a C source file, and the Pascal source of the 
system unit. 

If the binary is downloaded, it should be unpacked into a directory and one 
should set up a shell variable mmpcd i r to point to this directory. This shell 
variable is used by the compiler to locate the directory containing the system 
unit and run-time library. One should then place the directory pointed to by 
mmpcd i r on the path. 

The binary version utilises Java, Nasm, gee and latex, all of which are either 
installed or readily available for Linux systems. If one compiles with garbage 
collection enabled, it should be ensured that the gee system includes the 
Boehm garbage collector. For Windows environments these utilities may have 
to be downloaded. They are available from multiple websites. 

The website for this book also contains the sources for the example programs 
and units used in the book. 
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Appendix C: 
Using the Command Line Compiler 

C.1 Invoking the Compiler 

The compiler is invoked with the command 

vpc filename 

where filename is the name of a Pascal program or unit. For example, 

vpc test 

will compile the program test. pas and generate an executable file t e s t, 
(test. exe under windows). 

The command vpc is a shell script which invokes the Java run-time system 
to execute a . j a r file containing the compiler classes. Instead of running vpc, 
the Java interpreter can be directly invoked as follows: 

java -jarmmpc.jarfilename 

The v p c script sets various compiler options appropriate to the operating 
system being used. 

C.1.1 Environment Variable 

The environment variable mm p c d i r must be set to the directory which contains 
the mmpc. jar file, the run-time library rt l . o and the sys tern. pas file. 

C.1.2 Compiler Options 

The following flags can be supplied to the compiler: 

-A fi l en a me Defines the assembler file to be created. In the absence ofthis 
option, the assembler file is p . a s m • 

- D d i r n am e Defines the directory in which to find r t l . o and 
system.pas. 

- V Causes the code generator to produce a verbose diagnostic 
listing to foo .l st when compiling foo. pas. 

-oexefil e Causes the linker to output to exefil e instead of the default 
output of p. exe. 
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-U 

-s 

CGFLAG 

IA32 
Pentium 
K6 
P3 
P4 

-fFORMAT 

-cpuCGFLAG 
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Table C.1. Code generators supported 

Description 

Generates code for the Intel 486 instruction-set 
Generates code for the Intel P6 with MMX instruction-set 
Generates code for the AMD K6 instruction-set, use for Athlon 
Generates code for the Intel Pill processor family 
Generates code for the Intel PIV family and Athlon XP 

Defines whether references to external procedures in the 
assembler file should be preceded by an under-bar, _. This 
is required for the coff object format but not for elf. 
Suppresses assembly and linking of the program. An 
assembler file is still generated. 
Specifies the object format to be generated by the assembler. 
The object formats currently used are elf when compiling 
under Unix or when compiling under Windows using the 
cygwin version of the gee linker, or coff when using the 
djgpp version of the gee linker. For other formats, consult 
the NASM documentation. 
Specifies the code generator to be used. Currently the code 
generators shown in Table C.l are supported. 

C.1.3 Dependencies 

The Vector Pascal compiler depends upon a number of other utilities which are 
usually pre-installed on Linux systems, and are freely available for Windows 
systems. 

• NASM 

• gee 

• Java 

The net-wide assembler. This is used to convert the output of 
the code generator to linkable modules. It is freely available 
on the web for Windows. 
The GNU C Compiler, used to compile the run-time library 
and to link modules produced by the assembler to the run­
time library. 
The Java virtual machine must be available to interpret the 
compiler. There are a number of Java interpreters and just­
in-time compilers are freely available for Windows. 

C.2 Calling Conventions 

Procedure parameters are passed using a modified C calling convention to 
facilitate calls to external C procedures. Parameters are pushed on to the stack 
from right to left. Value parameters are pushed entirely on to the stack and var 
parameters are pushed as addresses. 
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Example 

unit callconv; 
interface 
type intarr = array[l .. 8] of integer; 
procedure foo(var a:intarr;b:intarr;c:integer); 
implementation 
procedure foo(var a:intarr;b:intarr;c:integer); 
begin 
end; 
var x,y:intarr; 
begin 

foo(x,y,3); 
end. 

This would generate the following code for the procedure foo: 

: procedure generated by code generator class i 1 cg. tree. 
PentiumCG 
le8e68de10c5: 

foo 
enter spaceforfoo-4*1,1 

:8 
1 e8e68de118a: 

spaceforfoo equ 4 
: .... code for foo goes here 
fooexit: 
1 eave 
ret 0 

and the calling code is 

push DWORD 3 
1 ea esp, [esp-32] 
mov DWORD[ebp-52] ,0 
le8e68de87fd: 

cmp DWORD [ebp-52], 7 

j g near 1 e8e68de87fe 
movebx,DWORD[ebp-52] 

:push rightmost argument 
:create space for the array 
:for 1 oop to copy the array 
: the 1 oop is 
: unrolled twice and 
: parallelisedtocopy 
: 16 bytes per cycle 

imul ebx,4 
movqMM1,[ebx+le8e68dddaa2-48] 
movq[esp+ebx],MM1 
mov eax,DWORD[ebp+ -52] 
1 ea ebx, [eax+2] 
imul ebx,4 
movqMM1,[ebx+le8e68dddaa2-48] 
movq[esp+ebx],MM1 
1 ea ebx, [ebp+- 52] 
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add DWORD[ebx],4 
jmp le8e68de87fd 
le8e68de87fe: :end of array 

: copying 1 oop 
push DWORD 1 e8e68dddaa2-32 :push the address of the 

: var parameter 
EMMS 
call 1 e8e68de10c5 

addesp,40 

Function Results 

: clearMMXstate 
:call the 1 ocal 
: 1 abel for foo 
:free space on the stack 

Function results are returned in registers for scalars following the C calling 
convention for the operating system on which the compiler is implemented. 
Records, strings and sets are returned by the caller passing an implicit parameter 
containing the address of a temporary buffer in the calling environment into 
which the result can be assigned. Given the following program: 

program 
type tl = set of char; 
var x,y:tl; 
function bar:tl;begin bar : = y;end; 
begin 

x:=bar; 
end. 

The call of bar would generate 

push ebp 
add dword[esp],-128 
call 1 e8eb6156ca8 

addesp,4 
mov DWORD[ebp+ -132] ,0 

le8eb615d99f: 

cmp DWORD[ebp+ -132] ,31 
jg near 1 e8eb615d9910 
mov ebx,DWORD[ebp+ -132] 
movq MM1, [ebx+ebp+ -128] 
movq[ebx+ebp+-64],MM1 
moveax,DWORD[ebp+-132] 
leaebx,[eax+8] 
movq MM1. [ebx+ebp+ -128] 
movq[ebx+ebp+-64],MM1 
1 ea ebx, [ebp+ -132] 

: address of buffer on stack 
:call bar to place 
: result in buffer 
:discard the address 
: forlooptocopy 
:the set 16 bytes 
: atatimeintoxusingthe 
: MMX registers 
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add DWORD[ebx],l6 
jmp le8eb615d99f 
le8eb615d9910: 

C.3 Array Representation 

341 

A static array is represented simply by the number of bytes required to store 
the array being allocated in the global segment or on the stack. 

A dynamic array is always represented on the heap. Since its rank is known 
to the compiler, what need to be stored at run time are the bounds and the 
means to access it. For simplicity we make the format of dynamic and 
conformant arrays the same. Thus for schema 

s(a,b,c,d:integer) = array[a .. b,c .. d] of integer 

whose run-time bounds are evaluated to be 2 ... 4,3 ... 7, we would have the 
structure shown in Table C.2. 

The base address for a schematic array on the heap will point at the first byte 
after the array header show. For a conformant array, it will point at the first data 
byte of the array or array range being passed as a parameter. The step field 
specifies the length of an element of the second dimension in bytes. It is included 
to allow for the case where we have a conformant array formal parameter: 

x:array[ a .. b:integer ,c .. d:integer] of integer 

to which we pass as actual parameter the range 

p[2 .. 4,3 .. 7] 

as actual parameter, where 

p:array[I..IO,I..IO] of integer. 

In this case the base address would point at @p[2,3] and the step would be 
40, the length of 10 integers. 

C.3.1 Range Checking 

When arrays are indexed, the compiler plants run-time checks to see if the 
indices are within bounds. In many cases the optimiser is able to remove these 

Address 

X 

x+4 
x+B 
x+ 12 
x+ 16 
x+20 

Table C.2. Structure of an array 

Field 

Base of data 
a 
b 
Step 
c 
d 

Value 

Address of first integer in the array 
2 
4 

40 
3 
7 
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checks, but in those cases where it is unable to do so, some performance 
degradation can occur. Range checks can be disabled or enabled by the 
compiler directives. 

{ $r-} {disable range checks} 
{ $r+} {enable range checks} 

Performance can be further enhanced by the practice of declaring arrays to 
have lower bounds of zero. The optimiser is generally able to generate more 
efficient code for zero-based arrays. 
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