
KARELIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme in Business Information Technology

Aki Kaisanlahti

APPLICABILITY OF COMMON LISP IN GAME DEVELOPMENT

Thesis
February 2017

THESIS
February 2017
All Degree Programmes

Tikkarinne 9
80220 JOENSUU
FINLAND
(013) 260 600

Author (s)
Aki Kaisanlahti

Title
Applicability of Common Lisp in Game Development

Commissioned by
NKUAS and KUAS
Abstract

The aim of the this thesis was to find out how applicable Common Lisp is in game development
through examining the language and game development as well as trying to build a core of a
game development framework with Common Lisp.

Common Lisp was inspected as a programming language on its own, through comparing it with
C family languages as well as in game development context through earlier use in video
games. Game development was covered through examining tools and methods based on a
programming perspective. Criteria for the final evaluation of the framework and Common Lisp
in game development in general were based on what distinguishes game development from
general software as far as development is concerned.

The core of the programming library is based on Common Lisp macros; its API implementation
is based on lower level programming libraries. The game development library is designed very
strongly based on a programmer's perspective and aimed at other programmers in order to fo-
cus on distinguishing points of Common Lisp in game development.

The applicability of Common Lisp and the game development library in game development are
based on the flexibility of the language due to its design. Future development of the library and
with the library would make it possible to observe its applicability on a larger scale in game de -
velopment. It would also enable broadening the possibilities of the API and fixing current is-
sues such as foreign memory problems with foreign language library bindings or replacing
them with native Common Lisp solutions.

Language

English

Pages 51

Appendices 1

Keywords

Common Lisp, game development, macros

OPINNÄYTETYÖ
Helmikuu 2017
Kaikki koulutukset

Tikkarinne 9
80220 JOENSUU
(013) 260 600

Tekijä(t)
Aki Kaisanlahti

Nimeke
Common Lispin soveltuvuus pelinkehitykseen

Toimeksiantaja
PKAMK ja Karelia-amk
Tiivistelmä

Opinnäytetyössä tutkittiin Common Lisp -ohjelmointikieltä, pelinkehitystä ja Common Lispin
edellytyksiä siihen. Common Lispillä toteutettiin myös pienimuotoisen pelinkehitykseen
tarkoitetun ohjelmointikirjaston pohja.

Common Lisp -kieltä käsiteltiin itsenäisesti, C-pohjaisiin kieliin verraten sekä
pelinkehityskontekstissa. Modernia pelinkehitystä käsiteltiin metodien ja työkalujen
näkökulmasta ohjelmointikeskeisesti. Tämän perusteella määriteltiin kriteerit, jotka erottavat
pelinkehityksen normaalista ohjelmistokehityksestä. Kriteerien avulla voitiin arvioida
ohjelmointikirjastoa ja Common Lispiä pelinkehityksessä

Ohjelmointikirjaston pohja tukeutuu Common Lispin makroihin; ohjelmointirajapinnan
sisäinen toteutus perustuu muihin alemman tason ohjelmointikirjastoihin. Ohjelmointikirjasto
on suunniteltu vahvasti ohjelmoijanäkökulmasta ohjelmoijille, jotta voitiin keskittää huomio
Common Lispin erityispiirteisiin pelinkehityksessä.

Common Lispin ja ohjelmointikirjaston vahvuudet pelinkehityksessä perustuvat kielen
joustavuuteen kielisuunnittelun ansiosta. Jatkokehitys selventäisi laajemmin kielen
soveltuvuutta pelinkehitykseen. Jatkokehityksen myötä olisi myös mahdollista korjata
yhteensopivuusongelmia toteutukseen käytettyjen muiden ohjelmointikielten kirjastojen
kohdalla tai toteuttaa näistä Common Lispillä omat kirjastot.

Kieli

englanti

Sivuja 51

Liitteet 1

Asiasanat

Common Lisp, pelinkehitys, makrot

Content

 Glossary...6
1 INTRODUCTION...7
2 COMMON LISP...9

2.1 History and notable current implementations of Common Lisp................9
2.2 Common Lisp as a language...11
2.2.1 Language paradigms..11

2.2.2 Common Lisp syntax and language design...13

2.2.3 Language comparison ...15

2.3 Programming ecosystem in Common Lisp...17
2.4 Lisp in games...17
2.5 Performance..19

3 GAME DEVELOPMENT..20
3.1 Game development methods..21
3.2 Game development tools...22
3.3 Criteria for game development..24

4 LUCERNA: PREPARATION..25
4.1 Tests..26
4.1.1 Classimp...26

4.1.2 SDL...27

4.1.3 Cl-opengl..28

4.1.4 Combinatory tests...29

4.1.5 Deliverable executable...30

4.2 Component choices...31
4.3 Development tools...32

5 LUCERNA: IMPLEMENTATION...33
5.1 Framework component default implementation......................................34
5.2 Framework component custom implementation.....................................35
5.3 Framework component extension...36
5.4 Demo application...37

6 CONCLUSION...39
6.1 What is Common Lisp?...39
6.2 What is modern game development?..39
6.3 Tools and libraries in small scale game development............................40
6.4 Applicability of Common Lisp in game development...............................40
6.5 Evaluation and discussion...41
6.6 Future development...42

 References...44

Appendices
Appendix 1

5

Glossary

XNA A framework for making games made by Microsoft. Intended to run on

Microsoft platforms such as Xbox 360 and Windows.

SFML Simple and Fast Multimedia Library is composed of five parts that cover

system, window, graphics, audio and network usage. Originally developed for

C++, it has multiple language bindings today. Developed by Laurent Gomila

(Gomila, 2016).

SDL Simple DirectMedia Layer is similar to SFML, but is older, more well

known and used. Used partly in Unreal Engine 4 and e.g. In FTL: Faster Than

Light.

OpenGL Open Graphics Library is a specification made by Khronos group along

with others. Used widely in many different platforms.

Vulkan is a new, lower level specification made by Khronos group aimed to give

more control in graphics over the GPU.

CFFI Common Foreign Function Interface, Common Lisp's foreign function

interface that enables handling foreign code and memory. The cornerstone of

Common Lisp language bindings of common libraries such as SDL.

6

1 INTRODUCTION

The aim of this thesis is to examine Common Lisp as a programming language

and reflect on its applicability in game development. In order to examine this,

the main questions set were: What is Common Lisp? What distinguishes game

development? What tools and libraries are necessary to enable small scale

game development? How applicable is Common Lisp in game development?

The choice of small scale game development and low level library testing is

based on the fundamentals. If you can establish reliable rendering, windowing,

input and output and such, other components of game development are more

about scaling and abstraction.

The game development framework development process started from seeing a

video on live editing code with Common Lisp. Seeing it is possible to compile

code, run and see changes live while working on the code seemed like a huge

quality of life improvement compared to more static environments like those

generally found in the C++ ecosystem. This is within using the same language,

scripting languages and interpreters are a different matter entirely.

Having the desire to obtain a centralised, easy to use and easy to extend or

modify framework was where I started. If the environment made it possible to

change and see the changes live, I wanted to see if it was possible to make a

core framework for the environment and make working with it even easier. If the

user of the framework should not be happy with all parts of it or wanted to

integrate some other systems into it, it would make adapting the framework

easier as long as the core API and functionality was deemed acceptable.

Trying to learn Common Lisp basics while still working on C# and C++ code

trying to separate implementation details from the abstracted API, I did some

experiments to see how easy it would be to change some parts in C++ world.

Separating the API from the implementation by a layer proved to be fairly easy,

but I found the basic idea to be even easier in Common Lisp.

7

After testing components of lower level libraries through the foreign function

interface in Common Lisp, I started to work on the idea of separating the

structures and function calls of the API from the implementation. In spite of

having it possible to type out the arguments for speed, one could also just as

easily choose not to type them and have them be automatically typed. As long

as functions had easily determinable input and output, it would be fairly easy to

control the API in order to make it possible to extend or to change the actual

implementation without touching the API itself. As long as classes or structures

reflected this by having clearly marked data types that they required, they could

be constructed by just having proper input to their constructing functions.

After going through this, I came upon the idea to make the first step in making

the tools for extending and changing implementations. This was because even

if I was personally happy with how the separation of the API and implementation

was going, I would never know what components could be developed using the

same principle in separate projects, nor could I possibly expect to have the best

implementation of even my own functionality. As long as the whole project

wouldn't be unusable and it had a good design behind it API wise, ease of

extensions, integrations and implementation changes would make it easier to

adopt the framework into use in the potential future.

In order to answer the questions put forward, the thesis is constructed into two

main parts. In the first part, the theory behind Common Lisp and game develop-

ment is explored. In the second part, a framework basis for future game devel -

opment is implemented.

In the section about Common Lisp, its history is briefly looked at. After that, the

section focuses on the programming language itself, as well as its ecosystem,

previous usage in games and performance.

Game development section is about seeing the current state of game develop-

ment and defining criteria for the practical implementation part of the thesis.

Looking at game development, we define what it is, what methods are usually

used in game development, take a look at tools used in it and define the criteria

8

for game development as a whole so we have a comparison basis after having

implemented the framework.

The practical part of the thesis is divided into two parts. In the first part, the

design and tools base for the framework is introduced in order to limit the scope

of it.

The second part is all about the actual implementation of the framework, taking

a look at it from a high level perspective by looking at the system as a whole

and how the subsystems are tied into it.

In the final part of the thesis, results are examined and discussed based on the

criteria defined earlier. Future development options and improvements are dis-

cussed. Problems and areas that the framework fell short on are also pointed

out.

2 COMMON LISP

This section concentrates on Common Lisp. The contents include a short

history of Common Lisp as a language from design to standardisation. The

language is introduced as well as main similarities and differences to mainly C-

family languages are discussed, but the focus will be on the language itself.

Comparison is mostly made due to their prevalence in software development

and the games industry. Common Lisp's community and ecosystem are

discussed with game development focus in mind. The section finishes with

some known examples on the use of Common Lisp in games.

2.1 History and notable current implementations of Common Lisp

9

Common Lisp is a multi-paradigm programming language that began to form in

the 1980s (Gabriel & Steele 1993, 20-22). The first ANSI standard was formed

in 1994 (ANSI, 1994). After standardisation, there have been multiple Common

Lisp implementations of the standard, although there are no standardised tests

each implementation must fulfill and thus their compatibility with the standard

has not been recorded. Besides providing implementation of the features

required in the standard, many implementations provide other features that

aren't in it, e.g. threads, making for a “robust and vibrant language”. (Weinreb,

2010.)

Some of the more notable Common Lisp implementations are Steel Bank

Common Lisp, Allegro Common Lisp, LispWorks and Armed Bear Common

Lisp. This is due to having a fairly optimised compiler, commercially used and

liked toolkit or having the possibility to include code from another programming

language and ecosystem in it.

Steel Bank Common Lisp was originally forked from CMU Common Lisp (SBCL,

2004). CMU itself was a project in Carnegie Mellon University that started as a

part of their Spice project in 1980. Originally named Spice Lisp, it was renamed

CMU Common Lisp afterwards as Common Lisp's first standard had come out.

(MacLachlan, 1999.) SBCL is known for having a compiler that compiles

Common Lisp into fairly optimised machine code.

Allegro Common Lisp is a Common Lisp implementation made by Franz Inc. It's

a commercial Common Lisp available on multiple platforms such as Windows,

Linux and Mac OS X. It has been used in a number of commercial applications

and projects, such as the 3D software Mirai used in Lord of the Rings movie

trilogy, Game Oriented Object Lisp in Naughty Dog. (Franz Inc, 2015b.)

Furthermore, Allegro Common Lisp was used as the base for multiple products

of Nichimen Graphics used in the games industry in the late 1990s to early

2000s. (Franz, 2015a.)

Armed Bear Common Lisp is notable as being a Common Lisp implementation

that runs on the Java Virtual Machine. What this effectively means is that ABCL

lives inside the huge Java ecosystem, having access to the libraries that

10

operate on the same JVM platform while still being an implementation of

Common Lisp itself. (ABCL, 2015)

2.2 Common Lisp as a language

Common Lisp is a multi-paradigm language. In this chapter some of the more

well known and used aspects of Common Lisp are explored and compared to

other mainstream languages of mainly the C-language family due to them being

ubiquitous in general software as well as video games.

2.2.1 Language paradigms

Common Lisp supports object-oriented programming through its Common Lisp

Object System (CLOS). When Common Lisp was standardised, CLOS was

included in it. Although the language offers object-oriented features, they differ

from languages like C++. (Seibel, 2003b.) In Common Lisp, methods that may

operate on a class do not belong to the class itself, but to a generic function

instead. Generic function defines a name and a lambda-list, but does not have

an implementation and cannot be invoked. Instead, a method that specialises

one or more parameters of the lambda-list defines an actual operation that will

be invoked for the proper type(s). A method can have multiple specialisations,

making it a multimethod. (Seibel, 2003b.) Multimethod somewhat looks like a

function or method overloading in C++, but is not exactly the same. The method

with the most specialised arguments is guaranteed to be called and the code

placement for handling objects of different classes doesn't have to reside within

them, but outside of them.

Common Lisp has first-class functions. This means being able to create new

functions dynamically and being able to bind them to variables like other values

11

and entities. Higher-order functions are functions that can take functions as

parametres as well as return them from the function itself. Since the language

allows higher-order functions and it has first-class functions, it can be said to

include functional programming as one of its paradigms, although a

programmer isn't forced to program in a purely functional fashion.

In Common Lisp, parametres for functions and e.g. macros are defined through

lambda-lists. A lambda-list may contain none or all of the following five parts:

normal specifiers for required parametres, followed by lambda-list keywords

&optional, &rest, &key and &aux. Optional parametres are as the name

implies, optional. Rest takes a list of arguments that can be anything in size.

Key parametres are named and correspond to a key. Auxiliary variables aren't

technically parametres, but rather variables that can be included in the lambda-

list. (Steele, 1990.)

Listing 1 includes functions that have basic examples of all of the five different

parts that can be included in a lambda-list. Function example-params uses

normal named parametres and multiplies its parametres. In example-optional

&optional is used in naming a parametre that is initialised in the definition as

being five in case it's not provided. Otherwise the functionality is the same.

Keyword &rest is demonstrated in example-rest, where all of the given values

to the function will be picked one by one and multiplied by five. Although it

doesn't show inside the function, example-key does define the function

differently in use. It requires the programmer to use it by calling the parametre

name with a colon before it, in this case :param2 or :param3. As mentioned

before, &aux is technically not even a parametre, so it only shows up in the

function definition and is used inside the function, it cannot be called from the

outside, example-aux shows a basic example of this, it multiplies the given

parametre with 5 which is the value of auxiliary1.

12

Listing 1. Examples of function definitions with different lambda-lists, including

all of the five types of keywords. All of the functions do basic multiplication.

2.2.2 Common Lisp syntax and language design

The Common Lisp syntax is based on symbolic expressions, shortened S-

expressions. S-expressions consist of either an atom or a list. Naturally, the list

can be a nested one, including other lists inside of it. Everything that is not a list

is an atom, including symbols and numbers. The only entity that is both an atom

and a list is the empty list, also known as NIL. Although the syntactic tree is

based on s-expressions, not every s-expression is a valid Lisp form. (Luger &

Stubblefield, 2009.) Listing 2 has five examples of S-expressions. The first one

is a basic string, second and third examples feature numbers. The fourth one is

a list with three members in it and the fifth one is a list as well with four numbers

in it.

13

Listing 2. Examples of S-expressions. First three are atoms, 4. and 5. are

examples of lists.

Valid Lisp forms are either Common Lisp atom elements or lists that start with a

symbol. Symbol is a named object that can either refer to an operator or a

variable and when evaluated on its own will return the value of the variable tied

to it. (Seibel, 2003a.) There are three different kinds of valid Lisp forms that are

not atoms and they start with an operator; function, macro or a special operator.

Listing 3 contains examples of valid and invalid Lisp forms.

Listing 3. Examples 1. and 2. are proper Lisp forms, they have a function as the

first element of a list, while 3. is a valid s-expression, but not a proper Lisp form,

since it starts out with an atom that's not a macro, function or a special operator.

Lisp has list as a built-in type and has multiple functions associated with lists

(Reddy, 2008). This is due to Lisp evolving as a language alongside rapid

prototyping and including features such as lists as a fundamental type alongside

other features such as keyword parametres (Graham 1993, 284). This does

imply that some of the features do come at the cost of speed and efficiency in

certain cases.

14

One of Common Lisp's more prominent features is macros. Macros in Common

Lisp work very differently compared to Macros in C or C++. C++ macros are

written exclusively for the proprocessor that reads them before the compiler and

replaces the defined identifier with text (C++ reference, 2011). In Common Lisp

there are three different types of macros: symbol macros, read macros and

compilation macros. Symbol macros look like symbols instead of function calls

and as such don't use parametres, but they can substitute any Common Lisp

code in a manner that compilation macros can (Graham 1993, 105). Read

macros work with the Lisp reader that reads the code before compiling it

(Graham 1993, 225). Read macros enable reading code differently or for

example making it possible to embed JSON syntax into Common Lisp (Gupta,

2014). Compile-time macros are generally expanded at compile time, although

this is not defined by the standard. They must return a valid S-expression.

Macros enable using regular functions and Common Lisp as a language itself

instead of relying on its own macro language which makes it possible to define

a new domain specific language while still using the same syntax as the base

language, Common Lisp. This means that the programmer doesn't have to jump

hoops or go outside the base language to define new constructs. It also allows

to write code that writes code itself, whether it's a macro that defines an

anonymous function or even a macro that defines another macro that in turn

returns code to be actually run. (Seibel, 2003c.)

2.2.3 Language comparison

Although C# started to support functional features since version 2.0 and

increased it later on, the language is based on the family of other C style

languages and thus is based on imperative programming. Since Common Lisp

is very flexible due to its macros, it would be possible to write code that

resembles imperative languages, but at its core the language is more oriented

towards functional programming, which is showcased against imperative

programming below in listing 4. The Common Lisp example applies a function

15

on each element of the list with mapcar, taking the function as a parametre. In

this case it's an anonymous function that multiplies the element with itself.

Listing 4. An example of a way to multiply every member of a list by itself in

Common Lisp (first line) and C# (last four lines).1

In both examples the code ends up with a list that has its members raised to the

second power. The Common Lisp example starts out with the default function

mapcar which takes as its parametres a function and a list and applies the

function to the members of the list given to it. The function given to it is created

through the use of lambda macro. The function takes x as its parametre and

multiplies it by itself, making the number a second power of the original. The

final element in the expression is the list given to mapcar.

The C# version uses the basic for loop due to the fact that mutating a changing

collection with something like foreach will not work. In the loop, there's a

temporary variable i that is incremented on every iteration of the loop until it

reaches the last element of the list. In the loop itself, the element is multiplied by

itself and assigned to the same place in the list, effectively raising it to the

second power.

As mentioned above, there are multiple ways to solve the issue of applying an

operation to each element in a list, depending on the operation and situation. In

C# one can use ForEach designed for generic collections and apply a function

through it. Common Lisp can also use user-defined or standardised looping

macros to achieve somewhat similar code when compared to C#.

1 It is possible to use e.g. iteration macros to make the Common Lisp code seem more like the C# code,
but that is not the conventional way of doing it.

16

2.3 Programming ecosystem in Common Lisp

Common Lisp has often been claimed absent of enough libraries to support

productive development of many applications, including games. This is

especially the case when considering a well known and centralised system for

getting and installing libraries. In the case of an appropriate library existing, it

might require a lot of work to set up, discouraging from using it. One project that

aims to resolve this is Quicklisp which makes installing most libraries in the

project a simple process. The Quicklisp project currently includes more than

1000 libraries in it that are easily set up in a Common Lisp working environment

across multiple implementations of the language. (Beane, 2011.) Installing a

library into your working environment requires just a single call: (ql:quickload

”library-name”), ql being shorthand for Quicklisp. If the library depends on

some other system, it's downloaded automatically for the user. Libraries that

use the Common Lisp foreign function interface need their dynamically linked

libraries to work.

As is fairly apparent though, Common Lisp is not one of the mainstream

languages at the time of writing. In late 2015, Github had nearly 9500

repositories using Common Lisp as a language based on their search system.

Meanwhile, C++ had over 400000 repositories. Although it is hard to estimate

fully how a programming language ecosystem works and how lively it is, the

numbers do point out that the ecosystem is very likely to be a lot smaller based

on public, open source code available.

2.4 Lisp in games

The games industry has adopted C++ as its de facto language for development,

as can be seen from many game engines and job listings (Klint, 2016). Although

the rise of indie development beside the AAA development studios has given

17

raise to other languages, such as C# and Java, Common Lisp hasn't taken off

in a similar manner as of yet. In fact, many of the cases where a Lisp or

Common Lisp variant has been used in games is from the time when C++

wasn't always the obvious choice. In this section Naughty Dog and its GOOL as

well as Crack Dot Com's Abuse are taken a loot at.

Naughty Dog is commercially a very successful game development studio

founded in 1984, currently owned by Sony Computer Entertainment. It has

developed many commercially successful titles including e.g. Crash Bandicoot

series and the Jak and Daxter series.

Crash Bandicoot, for the Playstation console, was developed using a language

called GOOL, Game Oriented Object Lisp. The language as well as the

associated tools of the studio were created using Allegro Common Lisp

provided by Franz Inc. GOOL and the associated tools were developed to

overcome many of the contemporary limitations of technology in game

development. Many problems, such as inconsistency of syntax and text based

macros of C, were solved by GOOL, making for rapid development (Gavin,

1996.)

GOOL allowed to solve many problems that other programming languages had

at the time. The language had, among others, the following features: LISP

macros, light threading and dynamic linking. These allowed for many of the

things some contemporary languages, such as C or the early C++, didn't.

Macros made extending the language easier while having consistent syntax and

small memory usage is helpful on consoles. Since GOOL compiled to assembly

in the end, it had speed as well, not having to make sacrifices to that end.

(Gavin, 1996.)

For their other game series, Jak and Daxter, Naughty Dog developed another

language and a batch of tools. The language and its compiler were still

developed with Allegro Common Lisp. The language was reformed, named

Game Oriented Assembly Lisp (GOAL) and it had several features its

predecessor did not, including the titular ability to write assembly within the Lisp

expressions. (White, 2002.)

18

Abuse is another example of the usage of Common Lisp. It's a PC game

released in mid 1990s, made by a company called Crack dot Com. The game

features a Common Lisp interpreter that implements most of the Common Lisp

ANSI standard, although it does not support structures or objects. The game

engine of Abuse was mostly written in C++ while Common Lisp was mostly

used for game scripting. After the development of the engine, the actual game

development only lasted four months. (Perry, 1995).

As can be seen above, many of the games that use Common Lisp were made

in 1990s or early 2000s. Although Naughty Dog used it successfully in AAA

titles for many years, it faded away from use. This is partially due to C++ being

more mainstream, so programmers for it were easier to find compared to

Common Lisp (White, 2002). This might explain why the language hasn't been

seen in video games in the last decade.

2.5 Performance

Performance is important to an extent in game development, especially in the

AAA game industry. This is due to the fact that games are by their very nature

interactive and their core game loop is often even run 60 times per second.

Even if the game is updated less than 60 times a second, the game might be

rendered that many times on screen (Nystrom, 2009b).

Focus on performance is further compounded by the fact that currently and

historically AAA games run on video game consoles which have fixed hardware

(Garney & Preisz 2010, 293). As markets expect more from games every year,

companies have to attempt to squeeze as much performance as they can from

the console they're developing the game for. This is less so in the case of

smaller games from smaller teams, but interactivity is still crucial, so truly

abhorrent performance on the game code won't cut it even in the case of indie

titles.

Performance for a language is hard to measure as it depends on multiple

factors. There are some benchmarks that put Steel Bank Common Lisp most of

19

the time at roughly 2-4 times execution time to that of C++ (Fulgham & Gouy,

2015). The benchmarks themselves are based on certain algorithms and their

implementations and thus are in isolation. This implies that taking into account

the differences currently in compiler optimisations and such, Common Lisp is

slower than C++ in general cases. This doesn't mean that Common Lisp code is

always slower without a question, nor that it isn't comparable to other languages

used for game development, but gives a starting point for evaluating

performance.

3 GAME DEVELOPMENT

This chapter aims to look at game development and how it generally works.

There's a general overview, but the criteria that I base my thesis on are mostly

based on programming, although there's a large overlap in general game

development and game development as far as programming goes. This section

is not focused on e.g. quality assurance, content creation or marketing.

Game development is highly iterative. Many game development studios employ

agile methods for development, iterating the project in small timeframes. This is

not the case for all studios however, some employing some currently less

known methods such as the Cerny method or even waterfall. (Tozour, 2014.)

Since game projects may employ people from different disciplines from design

and storytelling to art and programming, studios either make or license tools in

order to get input from multiple disciplines without always having a programmer

piece the game together.

These tools range from simple frameworks such as XNA or SDL all the way to

full blown environments and editors such as with Unreal Engine 4 or StingRay.

There are also more specialised tools that only tackle a single problem or

integrate two tools together, such as Bullet physics engine or A.R.T for Unreal

Engine 4 and Autodesk Maya.

20

In this chapter the basis for evaluating how well Common Lisp and its

ecosystem can fit in game development is also evaluated. The basis is

determined based on examining game development, its tools and methods.

3.1 Game development methods

Game development especially in large scale is often divided into five phases:

concept, preproduction, production, postproduction and aftermarket (Sloper

2009, 791). These five stages may include different things depending on the

exact development method chosen, but all of them are generally part of creating

a game.

In the concept phase, the general concept of the phase is explored and decided

as well as written down. In larger franchises and premade intellectual property

of a publisher, the concept for a game can already be fairly ready, not needing a

designer to work on it. (Sloper, 2009, 791-794.) A concept document is written

in this phase and it's generally kept brief, spanning e.g. a few pages.

Preproduction consists of forming the team and writing a design document for

the game (Sloper 2009, 794). In the Cerny Method, this is also the phase in

which the first playable is made. The reason to push a first playable version of

the game as early as possible is to reduce overall costs for a studio or a

publisher. If the project doesn't seem promising, only time and money up to this

point will be sacrificed instead of going through full production. (McLean-

Foreman, 2002.)

After preproduction, production naturally begins. This is the phase where the

majority of the work on the game is done. If the first playable wasn't built in the

preproduction phase, it is generally done here as soon as possible in order to

evaluate the upcoming product (Sloper 2009, 816). Late in the production

phase, the majority of the content, especially art, has been completed, but

programming is not fully done (Sloper 2009, 821). This depends on the scale

and type of a game built.

21

Postproduction is after the game has been completed in its design and art, but

some programming pieces are generally still missing or bugs have yet to be

fixed (Sloper 2009, 824). In some definitions postproduction is extended to be a

phase that lasts even after the initial launch of a product, covering bug fixes and

even content patches. Most of the time postproduction is about polishing and

finishing the product for consumers.

The majority of game studios employ agile methods of development while

working on a game (Tozour, 2014). According to the findings of Koutonen and

Leppänen (2013, 6) based on a survey made to Finnish game developers,

practices used in Scrum are most commonly used in preproduction and

production as opposed to postproduction or the concept phase.

The concept and and definition may differ, but many studios use an idea of a

first playable. Mark Cerny defines this as a ”publishable” first playable in his

description of the method named after him. Publishable first playable version of

a game has two finished levels or areas and all needed features implemented

for those levels. (Academy of Interactive Arts & Sciences, 2012.) This allows to

make a more rational decision on whether to continue making to game or to

scrap it. The publishable first playable might also be called minimum viable

product or MVP (York, 2012).

3.2 Game development tools

Since game development is most of the time very iterative, tools need to be

easy to use and content has to fit in to the game with little effort once the actual

production starts. In the preproduction it isn't as crucial to have an easy to use

content pipeline, but once production ramps up, due to the multi-discipline

nature of development e.g. must have an easy access to the tools to import

their creations from specialised software, or someone else has to use their

possibly productive time to put the content in to the game. This can cause a

bottleneck in production that will waste resources.

22

Game development tools are tools that are specifically designed to be used in

developing games, although there are no formal definitions. In general, tools

such as 3D modeling software or digital audio workstation software are left out

of this, as they can be used for other purposes as well, unlike a game specific

editor. The definition will likely never be robust, as there have been examples of

3D short films being developed with game engines. One example of these is

The Butterfly Effect made with Unity (Zioma, 2012).

On the lower abstraction level of tools, there are game development

frameworks. They are there purely to help the programmers of a project. They

abstract certain low level systems and have an API for programmers to interact

with, but they have little value to non-programmers. Examples of frameworks

include SDL, XNA and SFML.

Frameworks and libraries do not necessarily include any code for implementing

or automating the process of developing a certain type of game and instead

only abstract low level systems, such as rendering, input & output operations or

playing sound. It's generally left to the programmer to implement the actual

engine code in this case. The engine code will be responsible for making sure

the low level systems work together as intended.

On a higher level, there are editors that interact with the engine and framework

code. These editors might not be game specific yet, such as a general level

editor or an object editor. They are also useful for other disciplines, such as

game designers and artists that want to tweak objects or levels in the game to

reflect their vision.

On an even higher level of abstraction, there are tools to help make a specific

game. If the game needs a lot of hand crafted content or its procedural

generation requires a lot of hand crafted pieces in order to start generating

levels or content, it might have at least one editor for a specific type of content

the game requires. These include quest or mission editors that have specific

formats, or AI behaviour editors that are game specific, i.e. non-navigational

editors, unless the game uses a special pathfinding for its non-playable

characters.

23

3.3 Criteria for game development

In order to distinguish game development from other software, there are certain

criteria that have to be met. Game development can come in many sizes all the

way from one man studio to thousands of developers on a single project in a

AAA studio. Since their needs are slightly different, we will mostly take a look at

things they have in common, not taking too specific requirements from either

end. The criteria are based on programming and the technical side of

development.

As has been discussed earlier, game development is considered fairly iterative

by nature, so the easier it is to iterate parts of the game or its assets while

developing the faster the development speed itself is. So one criterion is clearly

flexibility. (Nystrom, 2009a.) One example could be flexibility in technical

design like having a Lua scripting above C++ engine makes it possible to

reiterate the game code or level layouts while the game is being tested.

Game development often works in multiple abstraction levels in the actual

production phase. This can involve code very close to hardware as well as very

high level gameplay code in terms of scripting and abstracting different

hardware specific APIs. (Llopis 2009, 184-185.) Thus, abstraction is one of the

criteria as well.

Scalability is also often important due to different hardware that the end user

might have on PC or different mobile devices (Llopis 2009, 181-182). Console

hardware doesn't usually change, but other platforms may vary wildly in their

power and configuration. For example PCs have wildly variable hardware

configurations from low end integrated graphics cards to high end double

graphics cards.

Multi-platform development is also fairly common in game development,

especially in contemporary game development. There often have to be multiple

configurations of tools and assets to compile and distribute the game on

24

multiple platforms due to different underlying hardware (Llopis 2009, 184-185).

This includes PC, mobile platforms as well as consoles, e.g. X86 processor

versus the old PS3 Cell processor. Not all companies can do this, but from

medium sized indies up to big AAA studios often port their games on multiple

platforms.

Game development isn't only defined by these criteria. Other points of view

from a technical standpoint could include e.g. performance. The criteria could

also be split into smaller sections such as scalability concerning CPU and GPU

separately as well GPU capabilities within certain graphics APIs. This could

have implications on a more detailed level in a longer paper concerning a bigger

project, for example in optimisation. A full breakdown of game development is

outside of the scope of the thesis however, which is why these four higher level

criteria were chosen.

4 LUCERNA: PREPARATION

As a part of the thesis a rough core of a game development framework in

Common Lisp was made. This was done in order to find out in a qualitative

manner how working in the Common Lisp ecosystem works in practice. The

framework core was made use of in a small demo application in order to ensure

its components worked as intended.

In order to build the demo application and the framework, the basics had to be

established first, including tools, components and basic tests to ensure that the

actual work was feasible due to the fact that the Common Lisp ecosystem has

not established itself to the mainstream developer community.

As has been established earlier in discussion on Common Lisp programming

ecosystem, it does not have a huge number of developers nor standard

frameworks in game development. As of the late 2016, there are not that many

game oriented libraries or frameworks, but there are some. In order to establish

25

how well the language is suitable for game development though, a basic

framework will be implemented out of lower level libraries in order to find out

how easy it is to establish technological base for developing games.

4.1 Tests

Although not strictly made to be a certain model of test driven development, I

approached building the framework and its components through making very

small tests and slowly expanding on them. This was due to my starting point

with the project: not having a lot of expertise in a language as large as Common

Lisp, not much documentation was available for the language bindings of

common libraries and the fact that the bindings were not converted in any way

1:1 with the originals, but many authors had made changes so some of the calls

were renamed, changed, added or modified to look similar to some Common

Lisp conventions.

The tests do not cover every functionality of the libraries that were used. This is

due to the fact that the aim of the thesis is not to make a benchmark program

nor is it to make a full test suite or a full test framework for a given library. The

tests were conducted to ensure that the Common Lisp language bound libraries

were working as intended on a base level so development could start.

4.1.1 Classimp

In Assimp it was most important to test that importing files itself would work and

thus was tested. There were a couple of the most common post processing

flags used, but testing all of them wasn't important, since Assimp is only used

as a temporary solution to loading 3D file formats. More optimised frameworks

and engines can use custom file format and code to go along with it.

In order to see if the library worked correctly, there were three models loaded.

Stanford Bunny and Dragon as well as a random 3D .obj model. The Stanford

26

models' vertices were checked against an online diff tool to see if there were

differences, none were found.

The only issue is that Assimp itself can't load really large files, especially when it

comes to the Stanford Polygon File Format .ply. Testing it on the highest

resolution Stanford dragon, the file fails to load with Assimp, coming up only nil

in Common Lisp. The issue was fixable in very large models by splitting them

into submeshes with Assimps SplitLargeMeshes post processing flag.

4.1.2 SDL

SDL had to cover my windowing, basic looping and the input in this case, so I

tested these sections in parts as well as combining them. For the core of the

framework I did not think sound was necessary, atlhough in an actual game

sound is almost always crucial and SDL supports playing sound by default. All

of the tests were done a desktop computer, one monitor setup with a basic

mouse and keyboard.

Listing 5. Snippet from window testing with different flags. Full file included as

appendix 1.

Since SDL in this project was used for its windowing, input and OpenGL context

capabilities, they had to be ensured to work to a degree. Testing window part

proved to be difficult at start since the window is not visible by default in some

working environments due to having set the Windows' own flag for showing

windows to be false. Since SDL does not check this flag when launched, it will

be different and has to be fixed by toggling the window invisible and back to

visible.

27

Events that are related to input or the window seem to be working normally and

SDL's GL context creation seemed to produce the results that the graphics card

supported as well.

Basic windowing works. Since the framework uses SDL, I tested basic

windowing functionality with it. I did get some issues when opening the window

in SLIME with Emacs open. After much digging this might happen if something

sets the operating system flags for window visibility off while SDL itself has not

toggled any of its own flags. In development environment one can use a hack to

bypass this issue by toggling window visibility off and on while creating a

window. This ensures that the SDL flagging of the window visibility is the same

as the one the operating system uses.

4.1.3 Cl-opengl

I did basic testing to ensure that using OpenGL in Common Lisp itself seemed

to work normally. This involved setting up basic vertex and fragment shaders

and rendering a triangle. This was done in order to ensure that the basics were

working. Extensive testing was not covered due to drivers and graphics cards

being outside of the scope for this thesis.

28

Listing 6. Snippet from OpenGL tests, featuring a basic vertex shader and its

compilation and info logging.

Before creating the demo program with test meshes, basic rendering with cl-

opengl was tested in order to ensure that the bindings themselves worked as

expected. The basic rendering consisted of using modern OpenGL and GLSL to

render a basic polygon with basic shaders to ensure basic functionality of the

graphics pipeline, in this case OpenGL 3.3. was used. The rendering was part

of the following combinatory tests since visual verification of rendering naturally

requires a window to work with and it has to have some permanence. There

were no issues with basic rendering.

4.1.4 Combinatory tests

Besides the very small tests for individual functionality, some tests were made

that combined these into small programs and see them in full action. The

combinatory tests used parts from other tests, such as creating a window or

checking for a specific type of event and including basic rendering and model

loading. The main difference to the demo program is that the test programs

include code as is from the given frameworks instead of working using the

framework code itself.

29

Picture 1. A test that had a basic window, one version of the Stanford Dragon

model loaded and rendered with minimalistic shaders, no lighting involved.

4.1.5 Deliverable executable

Deliverable executable with Steel Bank Common Lisp essentially always works

through save-lisp-and-die which takes multiple parametres and saves the

environment in a certain state to be opened from a specified function. There are

some tools to help with this, namely Buildapp by Zachary Beane, though it does

call the same function in the end. It is just designed to reduce necessary build

script work from a developer. The final demo program uses a custom buildscript

which is run from command prompt instead of Buildapp. Intial tests on this had

satisfactory results, although there were some issues when loading foreign

libraries to the environment for the executable. Even with two libraries in the

exact same location were loaded in exactly the same way, only one of them

loaded properly. This is mostly an inconvenience in development, since in the

final version all libraries are in the current working directory of the executable

30

and are able to be loaded from there regardless of loading complications in

development.

4.2 Component choices

In this section I will go through what lower level libraries I used. Due to time

constraints as well as in the interest of scope, I chose to glue together existing

components for the framework and focus more on non-networking components

as opposed to network components, they are left out of the thesis. In the end, I

focus on the very basics, such as working with basic windowing, input & output,

file system, importing, rendering, sound. Libraries and frameworks chosen for

these components include: classimp, cl-opengl, cl-sdl2.

Classimp is the Common Lisp language binding of Open Asset Import Library

shortened Assimp. It is an open source library that supports importing multiple

3D file formats including most of the common ones (.3ds, .dae, .obj, .blend, .fbx)

as well as some rarer ones. It also has some exporting functionality as well as

other capabilities, but it is mostly used for importing and the intended use is to

convert the imported formats to a custom file format for faster use. The design

and implementation of a 3D file format is outside of the scope of this thesis.

Wavefront's open .obj format is an example of what goes into making a

specification for a 3D file format (Boulos, 2003).

OpenGL has its own binding in cl-opengl. OpenGL is at the time of writing still

one of the two bigger standards of 3D programming interfaces that graphics

card manufacturers implement drivers for. It is a fairly low level interface,

although the upcoming Vulkan works on an even lower level and allows for

more control. OpenGL itself generally is built upon in frameworks and beside

DirectX works to provide a base for a graphics engine.

Naturally cl-sdl2 is the binding of the second version of Simple DirectMedia

Layer SDL. It is a library that offers many basic functionalities packed into one

library, e.g. windowing, input, sound and it even interacts well with OpenGL,

31

which saves effort and time due to not having to have a separate library for just

setting up OpenGL to the window like GLFW.

4.3 Development tools

The tools for implementing Lucerna include Emacs, Superior Lisp Interaction

Mode for Emacs (SLIME), and various Common Lisp bindings of libraries, such

as cl-sdl2, classimp, cl-opengl. These tools are used in order to provide the

basis for combining utilities into a single framework without having to write

everything from scratch.

Emacs is a text editor. Its job in the project is to host the development process.

It works well with Common Lisp for spacing and matching parentheses as well

as providing the platform for compiling and running an instance of SBCL with

SLIME. Emacs itself is also extendable through its own Lisp. This can be used

to configure it. Emacs was chosen due to its support of Lisp through SLIME

mostly, as Visual Studio and other conventional tools don't currently support

creating a similar environment for development on Lisp. They may support

basic syntax highlighting and parentheses matching, but not an environment

where you can move withing the editor and Lisp itself, reflecting changes in one

to the other.

SLIME is an interaction mode in Emacs for Common Lisp. It's designed to

integrate Common Lisp runtime with Emacs, making it possible to work with

Common Lisp in Emacs while writing, compiling, running and changing code on

the fly.

As the name implies, cl-sdl2 is the Common Lisp language binding of second

major version of Simple DirectMedia Layer. Classimp is binding of asset

importing library Assimp.

32

5 LUCERNA: IMPLEMENTATION

The base and the implementation is based on a few principles and macros with

in-depth descriptions below. These are called defextension and

defimplementation that follow the general naming scheme in Common Lisp

that has definitions starting with def, followed by the actual thing being defined.

The goals of defextension are mainly the following:

• Make it easy to extend the development of the framework with a module

and have it be separate from the main framework.

• Have the API be consistent and make it easy to include extensions in the

same or similar packages as the original ones.

• Make it easy to define a custom extension for a game to the framework

while leveraging the possibilities of multiple implementations for other

development as well as having the code ready within development

environment.

• Easy to look up full code without having to separately go to a source file

while in development.

• Easy to manipulate code ready in hand.

The goals of defimplementation are mainly the following:

• Make it easy to swap out implementations of functionality. This can be

another framework or just a different version using same underlying code

if there's a need for comparison.

• Consistent API regardless of underlying implementation code.

• Easy live editing of code while making it possible to run multiple versions

of the same code due to only running a different implementation of the

function call. Easy to swap implementations live for comparisons or just

return to the default in case there's a problem with the new

implementation of functionality. This is possible since the parametres are

the same, the only difference is in calling the implementation name in the

parametre list if you don't want the default one.

The current state is examined in the following parts of this chapter. It was made

after making personal research into Common Lisp, framework source code from

SDL and SFML for example.

33

5.1 Framework component default implementation

The default implementation currently uses macros to set it up just like extension

options, with the only difference being that the code for the default

implementation is provided for the user out of the box. In the thesis phase, it

depends on the component libraries such as classimp and cl-opengl.

The default implementation is decoupled from the libraries on the inner API in

order to make it easibly replacable by future code. It's layered so that the actual

implementation of the functionality uses library calls, but the API has an in-

between layer that calls the actual implementation in order to separate the

implementation from the inner API. The user API has macros that use the

intermediate layer.

The basic design follows the principles of making the framework flexible by

allowing extensions and custom implementations of the API.

34

Chart 1. An example of the chain of calls happening from the top level down to

the implementation level.

As shown in chart 1, the first call is naturally made to the Lucerna API. In order

for it to fetch the Window object in this case, it will call a macro that has

implementation possibilities. The macro then calls a custom macro or a function

that the underlying implementation uses. The next call will actually use the

platform specific calls to construct the object that is then returned in the chain to

the top. In this fashion, the Lucerna window does not have to worry about

platform code nor the underlying implementation library in any way. In the thesis

version, the underlying implementation is done by SDL which naturally calls its

own platform specific code to construct the SDL Window that Lucerna uses in

its implementation handle. The implementation could be easily swapped to use

e.g. SFML windowing system, since the window handle type is not specified

and the macros of the API could be defined to use custom implementations, in

this case the SFML ones.

5.2 Framework component custom implementation

Custom implementation of components is directly supported by the

defimplementation macro. The macro enables one to redefine parts of the

framework without touching the API. This makes it easier to adopt and use with

existing code as well as change the functionality of the framework without

having to touch the source code directly.

As the defimplementation macro can be used to redefine a macro, and is

currently set to do that, the compiler should be able to cut the cost of using it

out, so it enables flexibility without having a significant overhead or possibly

overhead at all.

35

5.3 Framework component extension

The extendability of the Lucerna framework uses defextension as its core

functionality. The defextension macro currently defines a new macro with the

standard call defmacro. In order to make custom implementations easier from

the get go, it also defines given code to it as the default implementation and

makes branching with cond. The code is saved to a hash table so it can be

checked live as well as edited, this also enables editing it for a custom

implementation, since the code is not saved by Common Lisp image itself. It

could be extended to save the extension macro to a file in the future.

Listing 7. Defextension macro.

This regardless of whether the extension is made for the future of the

framework or just for a single project that wants a quality of life improvement

while having the consistent API calls and code on demand for live checking and

editing.

The defextension is mostly made for programmers. It does not offer any

particular feature when it comes to game code, but its use comes in developing

tools for a project or the framework itself. It is intended to make adapting and,

as the name implies, extending framework easier.

36

5.4 Demo application

The demo application has a basic window with a test model rendered as a

default with basic controls that control rendering. The main reason to build a

similar demo to the largest combinatory test is to demonstrate the core of the

framework in action. Many of the macros used could be defined as custom

implementations or new functionality for the API could be written as extensions.

Listing 8. Demo application code with debug prints and comments.

What's mostly done in the demo is a showcase of the API. Although not the

most expansive use and test of it, the rendering is made slightly different in its

alternative implementation. Since making a rendering library itself is a huge task

37

and the demo is meant to just show the principles, the rendering functionality

has been implemented mostly with the defextension. It's easy to look at,

modify and change implementation of it. Of course, just like regular code, it can

just be deleted to start from scratch.

Listing 8 has the demo code included. Progn and prog2 allow sequential

functions or macros to be called instead of just one function at a time. Cond

allows for conditional execution of code and loop naturally loops a body of code.

The code goes to a basic loop that handles events and when there are no

proper events, the framework returns an empty event as a sign of no events, it

renders the test model depending on the rendering mode chosen by keyboard

prompts or the default it starts out with.

Listing 9. Debug rendering implementation of basic rendering used in the demo

program.

As seen in listing 9, the debug rendering is a simple wireframe rendering of the

meshes given to it implemented through defimplementation macro. It is a simple

demonstration of the principles of the API core that does not represent a

complex use case of switching a library for a different implementation, but rather

a simple implementation that one can use to test a small difference in execution

while keeping the main code exactly the same.

38

6 CONCLUSION

In this thesis the following questions were asked: What is Common Lisp? What

distinguishes game development? What tools and libraries are necessary to en-

able small scale game development? How applicable is Common Lisp in mod-

ern game development? The following sections aim to dissect the content dis-

played earlier on in this thesis.

6.1 What is Common Lisp?

As established in section 2, Common Lisp is a multi-paradigm programming lan-

guage based around simple syntax with symbolic expressions, very influenced

by functional programming. It has a small history of being used in video games

from smaller games to bigger ones, but is not very widely used in or outside of

games right now. Decent performance, flexibility and library solutions such as

Quicklisp make it a potential language for development.

6.2 What is modern game development?

Game development was largely covered in section 3. Based on its iterative

nature, game development is involved with multiple platforms, needs flexibility,

is concerned with scalability due to changing hardware on mobile and PC and

due to working on multiple different levels of code and configurations, is subject

to many abstractions and abstraction levels. More on the criteria for game de-

velopment in section 3.3.

39

6.3 Tools and libraries in small scale game development

Covered mainly in game development tools in 3.2. The lowest level tools

needed for development are generally low level libraries that programmers can

use to build other layers and tools. Higher level abstraction and tools are useful

for speeding up development.

6.4 Applicability of Common Lisp in game development

Based on the criteria, examining the language of Common Lisp, its use and per-

sonal experience with the language through starting a framework, Common Lisp

does seem applicable as a game development language even in contemporary

use.

The strengths of the language in game development lie in its simple design

which allows for a great deal of flexibility in the form of different type of macros

especially. Macros in turn create possiblities for domain specific languages

which can be used to create tools or game specific building blocks without hav-

ing to jump outside Common Lisp to use scripting languages or tacked on data

formats.

Besides macros, Common Lisp offers a handy read-eval-print loop that can be

leveraged in a live manner, editing code and running it in a really short feedback

loop. Contemporary tools allow for compilation and reflecting that to the live Lisp

image as well, making iterating really easy and quick.

There are difficulties and challenges when developing with Common Lisp. As

established in 2.3 and 2.4, there is a Common Lisp community, but it is smaller

than a mainstream language such as C++ has. The same goes for more well

known and bigger titles developed with Common Lisp. With less developers,

there are fewer examples, learning sources and co-developers to work with

when developing a game. Overcoming the initial learning curve of not using a

mainstream C-family language without as many resources as those languages

have makes development more difficult.

40

A smaller community does affect the developer scene through tools and librar-

ies as well, especially where more specialised tools are concerned. Although

Common Lisp ecosystem has many general libraries and even has come

around to having an easy way to get them to a developer's own environent

through Quicklisp, the scene is still very reliant on low level foreign libraries and

their language bindings through the CFFI. It is slower to start the progress of

development with no higher level tools to speak of such as Löve2D, Unity or

Unreal Engine for example. Language agnostic tools do make it possible to

make content for games, but programming is somewhat hindered by the current

situation.

6.5 Evaluation and discussion

Testing the basic libraries used as the basis for the framework was relatively

simple although some steps required stepping in to the source of the bindings

due to the fact that the syntax has been changed to resemble other Common

Lisp code and there is very little documentation in any of the libraries. It also re-

quired some further digging into source, examples and other developers' code

to see how the bindings worked when trying to dig for data that the bindings

didn't explicitly account for but what was present in the original library. This was

definitely the case with SDL, for example in its event data.

Unreal 4 has small use of SDL splashed in its HTML 5 and Linux portions. So

the use of SDL in the actual implementation in the beginning seems justified

even in tools, not just in games themselves. Other library choices such as the

Common Lisp binding of Assimp seemed to work fine as a temporary tool to

work with different 3D file formats while the current version lacks its own

pipeline for 3D files.

Framework core was developed. The core was intended to leverage Common

Lisp features and design. There were some issues with the core considering

foreign memory and the intention of extensive uses of compile-time macros. As

objects that were used in compile-time macros needed to have instructions on

41

how to construct them at that point, they broke down when using foreign

memory and different frameworks that didn't have directions on how to initialise

those objects.

The issue of initialisation in compilation could be fixed in the future by develop-

ing the implementations of the basic functionality of the framework natively.

There might be workarounds by extending the language bindings of existing lib-

raries. Some features and tools that help develop the framework and applica-

tions could be used even without fixing the problem as they aren't relying purely

on compile-time macros, but rather the ease of development through easy ac-

cess to code and basically a domain specific language that abstracts parts of

simple programming out of the way, while still retaining the possibility to exam-

ine said programming easily and quickly within the environment.

The core of the framework tying together other libraries and its aim to make

development easier is a bit lackluster due to its issues with foreign memory

initialisation in compile-time. It shows potential, as the code is easy to write and

examine in SLIME, but the current solution can not fully leverage the principles

set forward in the beginning of section 5 as well as 5.1 and 5.2. At current state

the API core can not make working with classes and data in general as flexible

and easy as it aims to do for functions and macros.

6.6 Future development

Future developments of the framework include working with more file formats in

importing assets, including sound, adding animation capabilities. Developing the

API and underlying systems, possibly switching some implementation

frameworks out for own implementations. Graphics API could take some

influence from CEPL frameworks' Varjo and jungl.

Other improvements would make extensions and implementations even easier,

plausibly giving the option to choose which kind of extensions the user would

want and give macro help in writing them. An example of this idea would be to

make a function, macro or a method based on what the programmer requires.

42

An extension of the principle applied in this thesis could be a library that is more

generic and aimed at making development cycles easier and faster with more

options on reading and modifying code as well as creating a Common Lisp

package and system definition files for them.

The demo application is mostly a demonstration of the API on a basic level. The

next target would be to make a small game while extending the framework in

order to ensure its functionality and design so they serve actually developing

games. After that would be a bigger game and possible tech demos to polish it

up.

Due to time contstraints the extensions and implementations only used single

frameworks instead of multiple ones. This is a very natural way of using the idea

and could be explored in the future. The demo application didn't use it, but a

bigger demonstration could use multiple underlying implementations of e.g.

windowing with SDL, GLFW or even qt.

43

References

ABCL, 2015. Armed Bear Common Lisp. https://common-
lisp.net/project/armedbear/ 14.8.2016.

Academy of Interactive Arts & Sciences. 2012. D.I.C.E. Summit 2002 – Mark
Cerny. https://www.youtube.com/watch?v=QOAW9ioWAvE. 27.10.2015.

ANSI. 1994. X3.226-1994.
http://webstore.ansi.org/RecordDetail.aspxsku=ANSI+INCITS+226-1994+
(R2004), referenced 26.2.2014

Beane, Z. 2011. Quicklisp Beta. http://www.quicklisp.org/beta/. 3.6.2014.
Boulos, S. 2003. B1. Object Files (.obj).

http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf. 27.10.2016.
C++ reference. 2011. Replacing text macros.

http://en.cppreference.com/w/cpp/preprocessor/replace. 7.9.2016.
Franz Inc. 2015a. Game Development Systems.

http://franz.com/success/customer_apps/animation_graphics/nichimen.lht
ml

Franz Inc. 2015b. Animation/Graphics.
http://franz.com/success/customer_apps/animation_graphics/

Fulgham, B., & Gouy, I. 2015. The Computer Language Benchmarks Game.
http://benchmarksgame.alioth.debian.org/u32/compare.php lang=sbcl&lang
2=gpp 9.6.2015

Gabriel R., & Steele, G. 1993. The Evolution of Lisp. Cambridge,
Massachusetts, USA. ACM SIGPLAN.

Gavin, A. 1996. AI and Character Control in Crash Bandicoot. http://all-things-
andy-gavin.com/2011/03/12/making-crash-bandicoot-gool-part-9/.
19.03.2014

Garney, B & Preisz, E. 2010. Video Game Optimization. Cengage Learning.
Graham, P. 1993. On Lisp. Prentice Hall.
Gupta, C. 2014. Reader Macros in Common Lisp. http://lisper.in/reader-macros/

. 7.9.2016.
Klint, J. 2016. What Programming Language Should You Learn to Get a Job in

the Game
Industryhttp://www.gamasutra.com/blogs/JoshKlint/20160718/277319/Wh
at_Programming_Language_Should_You_Learn_to_Get_a_Job_in_the_G
ame_Industry.php

Koutonen, J & Leppänen, M. 2013. How are agile methods and practices
deployed in video game development? A survey into Finnish game
studios.
http://www.researchgate.net/publication/255823539_How_are_agile_meth
ods_and_practices_deployed_in_video_game_development_A_survey_int
o_Finnish_game_studios

Llopis, N. 2009. Game Programming: Languages and Architecture. In
Introduction to Game Development by Rabin, S. (ed.). Charles River
Media. USA.

Luger, G., & Stubblefield, W. 2009. AI Algorithms, Data Structures, and Idioms
in Prolog, Lisp, and Java. Addison-Wesley.

McLean-Foreman, J. 2002. Conversations From GDC Europe: Mark Cerny,
Jonty Barnes, Jason Kingsley. Gamasutra.

https://common-lisp.net/project/armedbear/
https://common-lisp.net/project/armedbear/
http://www.researchgate.net/publication/255823539_How_are_agile_methods_and_practices_deployed_in_video_game_development_A_survey_into_Finnish_game_studios
http://www.researchgate.net/publication/255823539_How_are_agile_methods_and_practices_deployed_in_video_game_development_A_survey_into_Finnish_game_studios
http://www.researchgate.net/publication/255823539_How_are_agile_methods_and_practices_deployed_in_video_game_development_A_survey_into_Finnish_game_studios
http://www.gamasutra.com/blogs/JoshKlint/20160718/277319/What_Programming_Language_Should_You_Learn_to_Get_a_Job_in_the_Game_Industry.php
http://www.gamasutra.com/blogs/JoshKlint/20160718/277319/What_Programming_Language_Should_You_Learn_to_Get_a_Job_in_the_Game_Industry.php
http://www.gamasutra.com/blogs/JoshKlint/20160718/277319/What_Programming_Language_Should_You_Learn_to_Get_a_Job_in_the_Game_Industry.php
http://lisper.in/reader-macros/
http://all-things-andy-gavin.com/2011/03/12/making-crash-bandicoot-gool-part-9/
http://all-things-andy-gavin.com/2011/03/12/making-crash-bandicoot-gool-part-9/
http://benchmarksgame.alioth.debian.org/u32/compare.php?lang=sbcl&lang2=gpp
http://benchmarksgame.alioth.debian.org/u32/compare.php?lang=sbcl&lang2=gpp
http://benchmarksgame.alioth.debian.org/u32/compare.php
http://franz.com/success/customer_apps/animation_graphics/
http://franz.com/success/customer_apps/animation_graphics/nichimen.lhtml
http://franz.com/success/customer_apps/animation_graphics/nichimen.lhtml
http://en.cppreference.com/w/cpp/preprocessor/replace
http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf
http://www.quicklisp.org/beta/
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+226-1994+(R2004
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+226-1994+(R2004
https://www.youtube.com/watch?v=QOAW9ioWAvE

44

http://www.gamasutra.com/view/feature/2959/conversations_from_gdc_eu
rope_.php

MacLachlan, R. 1999. CMUCL: Project History.
http://www.cons.org/cmucl/doc/cmucl-history.html. 22.05.2014

Nystrom, R. 2009a. Game Programming Patterns: Architecture, Performance,
and Games. http://gameprogrammingpatterns.com/architecture-
performance-and-games.html

Nystrom, R. 2009b. Game Loop. http://gameprogrammingpatterns.com/game-
loop.html

Perry, M. 1995. Abuse FAQ. http://abuse.zoy.org/wiki/doc/faq. 26.05.2014
Reddy, A. 2008. Features of Common Lisp. http://random-state.net/features-of-

common-lisp.html. 3.6.2014
Seibel, P. 2003a. 4. Syntacs and Semantics.

http://www.gigamonkeys.com/book/syntax-and-semantics.html
Seibel, P. 2003b. 16. Object Reorientation: Generic Functions.

http://www.gigamonkeys.com/book/object-reorientation-generic-
functions.html

Seibel, P. 2003c. 8. Macros: Defining your own.
http://www.gigamonkeys.com/book/macros-defining-your-own.html

Sloper, T. 2009. Game Production and Project Management. In Introduction to
Game Development by Rabin, S. (ed.). Charles River Media. USA.

Steele, G. 1990. Common Lisp the Language, 2nd Edition. Woburn,
Massachusetts, USA. Digital Press.

SBCL. 2004. History & Copyright. http://www.sbcl.org/history.html. 22.05.2014
Tozour, P. 2014. The Game Outcomes Project, Part 1: The Best and the Rest.
http://gamasutra.com/blogs/PaulTozour/20141216/232023/The_Game_Outcom

es_Project_Part_1_The_Best_and_the_Rest.php 9.6.2015
Weinreb, D. 2010. Common Lisp Implementations: A Survey. http://common-

lisp.net/~dlw/LispSurvey.html 26.2.2014
White, S. 2002. Postmortem: Naughty Dog's Jak and Daxter: the Precursor

Legacy.
http://www.gamasutra.com/view/feature/131394/postmortem_naughty_dog
s_jak_and_.php

York, T. 2012. Making Lean Startup Tactics Work for Games.
http://www.gamasutra.com/view/feature/168647/making_lean_startup_tact
ics_work_.php 23.9.2016.

Zioma, R. 2012. THE BUTTERFLY EFFECT PROJECT.
http://blogs.unity3d.com/2012/11/07/the-butterfly-effect-project/ 2.5.2016

http://blogs.unity3d.com/2012/11/07/the-butterfly-effect-project/
http://www.gamasutra.com/view/feature/168647/making_lean_startup_tactics_work_.php
http://www.gamasutra.com/view/feature/168647/making_lean_startup_tactics_work_.php
http://www.gamasutra.com/view/feature/131394/postmortem_naughty_dogs_jak_and_.php
http://www.gamasutra.com/view/feature/131394/postmortem_naughty_dogs_jak_and_.php
http://common-lisp.net/~dlw/LispSurvey.html
http://common-lisp.net/~dlw/LispSurvey.html
http://gamasutra.com/blogs/PaulTozour/20141216/232023/The_Game_Outcomes_Project_Part_1_The_Best_and_the_Rest.php
http://gamasutra.com/blogs/PaulTozour/20141216/232023/The_Game_Outcomes_Project_Part_1_The_Best_and_the_Rest.php
http://www.sbcl.org/history.html
http://www.gigamonkeys.com/book/macros-defining-your-own.html
http://www.gigamonkeys.com/book/object-reorientation-generic-functions.html
http://www.gigamonkeys.com/book/object-reorientation-generic-functions.html
http://www.gigamonkeys.com/book/syntax-and-semantics.html
http://random-state.net/features-of-common-lisp.html
http://random-state.net/features-of-common-lisp.html
http://abuse.zoy.org/wiki/doc/faq
http://gameprogrammingpatterns.com/game-loop.html
http://gameprogrammingpatterns.com/game-loop.html
http://gameprogrammingpatterns.com/architecture-performance-and-games.html
http://gameprogrammingpatterns.com/architecture-performance-and-games.html
http://www.cons.org/cmucl/doc/cmucl-history.html
http://www.gamasutra.com/view/feature/2959/conversations_from_gdc_europe_.php
http://www.gamasutra.com/view/feature/2959/conversations_from_gdc_europe_.php

Appendix 1

Library tests

Appendix 1

Library tests

Appendix 1

Library tests

Appendix 1

Library tests

Appendix 1

Library tests

Appendix 1

Library tests

Appendix 1

Library tests

	Glossary
	1 INTRODUCTION
	2 COMMON LISP
	2.1 History and notable current implementations of Common Lisp
	2.2 Common Lisp as a language
	2.2.1 Language paradigms
	2.2.2 Common Lisp syntax and language design
	2.2.3 Language comparison

	2.3 Programming ecosystem in Common Lisp
	2.4 Lisp in games
	2.5 Performance

	3 GAME DEVELOPMENT
	3.1 Game development methods
	3.2 Game development tools
	3.3 Criteria for game development

	4 LUCERNA: PREPARATION
	4.1 Tests
	4.1.1 Classimp
	4.1.2 SDL
	4.1.3 Cl-opengl
	4.1.4 Combinatory tests
	4.1.5 Deliverable executable

	4.2 Component choices
	4.3 Development tools

	5 LUCERNA: IMPLEMENTATION
	5.1 Framework component default implementation
	5.2 Framework component custom implementation
	5.3 Framework component extension
	5.4 Demo application

	6 CONCLUSION
	6.1 What is Common Lisp?
	6.2 What is modern game development?
	6.3 Tools and libraries in small scale game development
	6.4 Applicability of Common Lisp in game development
	6.5 Evaluation and discussion
	6.6 Future development

	References

