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PREFACE TO THE FIRST AND SECOND 

EDITIONS 

THIs book is, in a sense, a continuation of my Jntroduction to 

Econometrics. Like the Introduction to Econometrics it is the 

result of lectures delivered at the Department of Political Economy 
of Warsaw University. 

Detailed notes of these lectures were taken by Mr. A. Bana- 

sinski who also helped me in editing this work, for which I would 

like to express my thanks. 

The students who attended the lectures were already acquainted 

with the Introduction to Econometrics and, therefore, in my expo- 
sition I concentrated on a number of other problems. 

The main subject of the book is a mathematical interpretation 
of the Marxist theory of reproduction and accumulation. In the 

first two chapters an attempt is made to interpret this theory in 
a rigorously mathematical way; then multi-branch schemes of 

reproduction are discussed, followed by an analysis of inter- 

branch flows. 

I then analyse the influence of investment on economic growth 
and, in this connection, design a model of economic growth in 

which I try to explain both the causes of business cycles in a capi- 
talist economy, and the reasons why business cycles do not exist 

in a socialist economy. In contradistinction to most contemporary 

western writings on mathematical economics which explain the 
phenomenon of business cycles without accounting for the phe- 
nomenon of economic growth (trend), the model described in this 

book—in accordance with the Marxist theory of capitalist repro- 
duction—introduces both the trend and the business cycle as 

peculiarities of the development of a capitalist economy. I took 

advantage of Michał Kalecki’s ideas which constituted a basis of 

his theory of business cycles. The main ideas of this chapter were 

published in Ekonomista, No. 3, 1959 in the paper: A Model of 

Economic Growth (Model wzrostu gospodarczego). In the second 

edition of this book the mathematical interpretation has been 

improved and expanded. 
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The last chapter deals with the theory of depreciation and 

replacement. This problem is of special importance to a socialist 

economy. The application of the tools of mathematical demo- 

graphy make it possible to plan more efficiently for the replace- 

ment of production facilities. In this context, I also discuss an 
interesting problem of re-investment cycles in a socialist economy 

and show that whilst trends toward such cycles may develop in 
consequence of an initial cumulation of investments, they disappear 

quickly against the background of general growth of a socialist 

economy. 
The problems discussed in this book are interpreted in terms 

of mathematical economics. The results lend themselves, however, 

to an economic application in practice. ) 

The book contains two appendices. One describes a model 
designed by the author for the purpose of solving the problem of 

planning inter-branch flows and planning for economic growth. 

If, for instance, the existing productive capacity and the planned 
rate of growth of the particular sectors of the economy, as well 

as the planned level and structure of consumption are given, this 

model enables us to determine the investments required for 

this purpose, their material structure and allocation to different 

sectors of the national economy. From this model we can also read 

off the total production of each sector of the national economy 
resulting from the objectives of the plan. 

This model can be constructed both in a hydraulic and an electri- 

cal version. A simplified electric model was constructed by the 

staff of the Chair of Automation at the Metallurgy and Mining 

Academy of Cracow, under the direction of Professor Henryk 

Górecki in co-operation with Professor Bolesław Kłapkowski, 

Chairman of the Chair of Political Economy of the Academy. The 

Warsaw University model is now at the Department of Political 
Economy and is being used in experiments. 

The second appendix provides general information on differ- 
ential and differeńce equations. It will help the reader in under- 
standing chapters 4 and 5 of this book. For this reason it should 
be read before these two chapters. Appendix 2 was written by 
Mr. A. Banasiński. 

OSKAR LANGE 
Warsaw 



CHAPTER 1 

GENERAL THEORY OF REPRODUCTION 

IN this chapter we shall deal with the general theory of repro- 

duction and accumulation, with the influence of accumulation on 

production growth and with a number of particular problems 

relating to depreciation and replacement. 

The problem of reproduction and accumulation appears in 
every socio-economic system. 

In every system there is production which consists in making 

material objects for the purpose of satisfying human needs. The 
activity that produces these goods is human labour. However, the 

objects used for the satisfaction of needs are not made of nothing. 
They are made of materials provided by Nature. 

In the process of production we have, then, the following ele- 

ments: materials provided by Nature, called objects of labour, and 

human labour which transforms these materials. Moreover, even 
in a most backward society human labour is not performed with 
bare hands but with the help of material objects called means of 

labour. Some of them, the most specialized ones, are called tools 

of labour; others, such as factory buildings, which are not of so 

specialized a nature, are called auxiliary equipment. 

The process of production consists in transforming objects of 
labour by human labour, with the help of means of labour. In 

other words, the process of production is a process performed on 
objects of labour with the help of means of labour. 

Objects and means of labour are usually called means of pro- 

duction; therefore, the process of production can also be defined 
as the making of certain objects called products by the application 

of labour to certain means of production. 

This nature of the process of production is universal and inde- 
pendent of any social system. Only in most primitive societies may 

there not exist means of labour (such a society is called a “society 

of gatherers”). 
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In the process of production, objects of labour and means of 

labour are used up in different ways. Objects of labour are usually 

completely transformed into products (such objects of labour are 

called materials), and means of labour are gradually worn out 

during the process of production, some faster, some more slowly. 

Some means of production are used up completely during one 

production period (cycle), others may be used in production over 

a long period of time and their period of wear and tear may last 

for several years (e.g. buildings). The former, i.e. the ones which 

are used up in one production cycle are called working capital 

means, and the others—fixed capital means. 

If a process of production is of a constant nature, the used up 

means of production must be replaced by new ones. Thus, in the 

course of production it is necessary to replace the used up means 

of production. This process of replacement of means of production 

is called reproduction. 

Some means of production, namely, working capital means, are 

replaced immediately, before the start of a new production cycle, 

while fixed capital means of production are replaced gradually, as 

they wear out. 

The theory of reproduction deals with the problem of the 

replacement of used up means of production and endeavours to 
ascertain the consequences which may ensue if means of production 

were not replaced in time or if they were not fully replaced. 

It is obvious that if the amount of the means of production 

decreases normally, at a given level of technology, this results 

in a decline in the amount of the product. The level of technology 

prevailing in production can be determined by the magnitude of 

productivity by which we understand the amount of product 

obtained per unit of labour input and used up means of production. 
The measuring of productivity, thus defined, is a separate and 
complex problem. 

Productivity may increase owing to technical progress. Technical 
progress, understood in the broadest sense of this word, that is, 
interpreted also as improvements in the organization of production, 
makes it possible to maintain the existing level of production 
without full replacement of used up means of production. For the 
time being, in our further considerations, we shall disregard 
technical progress, i.e. we shall assume that the conditions of 
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production do not change. Under these circumstances, to maintain 
a steady level of production from one period to the next, we must 

replace the used up means of production and also have at our 
disposal, during each production period, the same number of the 

labour force, i.e. the same amount of potential capacity to perform 
the work. 

We shall analyse more closely the role of labour in the pro- 

duction process. Labour may be looked upon in a similar way as 

means of production, and we can speak of its reproduction simi- 

larly as we speak of the reproduction of means of production. 
However, the matter is not so simple and it can easily be seen that 

the role of labour in the production process depends upon the 

social system. Indeed, in a slave system, there is really no difference 

between the reproduction of means of production and the repro- 
duction of slave labour. In ancient Rome, the process of replace- 

ment of slaves employed in production was the same as the pro- 

cess of replacement of cattle. 

In other social systems the situation is different, and the re- 

production of labour takes place in a different way from the 
reproduction of means of production. The fact is, however, that 

under given technical conditions, to maintain the process of pro- 
duction at a steady level, the supply of labour must also be main- 

tained at a steady level. 

The production process in which the means of production are 

fully replaced and in which the amount of labour is constant (and, 

moreover, as we have assumed above, there is no technical pro- 

gress) is called the process of simple reproduction. Under conditions 

of simple reproduction, the national economy does not expand; 

this means that it is stationary. 

If during the process of production the means of production are 

not fully replaced, or if the amount of labour employed decreases, 

we are faced with contracted reproduction. If, however, in the 

process of reproduction the means of production are not only 

fully replaced but their quantity is increased from one period to 

another, and the amount of labour also increases sufficiently to 

use the additional means of production, we speak of expanded 

reproduction. 
As we know, the process of economic development consists in 
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expanding reproduction and in increasing productivity which, for 

the time being, we shall not discuss. 

/The process of increasing the amount of means of production 

tógether with a simultaneous increase in employment is called 

accumulation. Thus, in case of expanded reproduction there must 

inevitably be accumulation. But in the process of contracted re- 

production decumulation (or negative accumulation) occurs; it 

consists in decreasing the amount of means of production as well 

as of employment. Finally, in the case of simple reproduction 

accumulation equals zero. 

By studying various production processes we can discover cer- 
tain laws which are called the technical balance-sheet laws of 
production.1 We shall deal with them presently. Their very name 
suggests their nature and origin. 

First of all, there exist in the process of production certain 

relations of a technical nature: in order to produce commodities 

it is necessary to use defined quantities of means of production 
and of labour. For instance, to produce 1 ton of steel certain 

quantities of iron ore and coal are required as well as certain 
fixed capital means (blast furnaces, buildings, transportation 

means, etc.), and a certain amount of labour. The amount of 

means of production and of labour required to produce a unit of 

a given product is expressed by the technical coefficients or technical 

norms, determined on the basis of the technological process used. 

In addition to the relationships of a technical nature described 

above there are others resulting from the availability in every 

production process of certain supplies of material objects (means 

of production) and of labour. These factors of production are 

always scarce, and if more of them are used up for one purpose, 

there are fewer left for other purposes. For example, in the pro- 

cess of producing steel, we cannot use up more coal than we 

obtain from current extraction, imports and available stocks. These 

relations are called balance-sheet relations because they are usually 
expressed in the form of a balance-sheet of means of production 
and of labour. 

Technical balance-sheet laws are, as a rule, independent of any 
social system. They are of a historical nature, similarly as is the 

i See Oskar Lange, Political Economy, Pergamon Press, London- PWN, 
Warsaw, 1959, p. 58 ff. 



General Theory of Reproduction 5 

development of the productive resources of society. Technical 

balance-sheet laws depend upon productive resources and do not 
depend directly upon social relations. 

Different configurations of social relations affect the production 
process in two ways: firstly, they shape it in a specific way and, 

secondly, as changes occur in the social relations in which the 

production process takes place, other relations connected with 

the social relations are added to the basic technical balance-sheet 
laws. For instance, under capitalist conditions, the nature and 

magnitude of reproduction depend upon expected profits. Expand- 

ed reproduction takes place, then, primarily, in those branches 

of production which are more profitable. The branch of production 
which yields no profit gradually shrinks or disappears. 

In a socialist economy the factors of production which de- 

termine the magnitude of reproduction are completely different. 

Reproduction in a socialist economy depends upon the plan based 

on other premises than incentives affecting the development 
of a capitalist economy. 

The starting point for our further considerations will be the 

analysis of the basic technical balance-sheet laws of production 

disregarding, for the time being, the specific relationships resulting 

from prevailing social relations. In our analysis we shall use as an 

example an economy with modern productive resources prevailing 

both under conditions of a capitalist and a socialist economy. 
After having become acquainted with the laws of reproduction 

at the most advanced stage of development of productive resources, 

it will be easy to check whether these laws are applicable to other, 
earlier social structures. We assume here that one of the ways of 

understanding the functioning of primitive economic organisms 

is by acquiring a knowledge of the structure and functions of more 

advanced economic organisms, as the key to understanding the 

anatomy of an ape is the knowledge of the anatomy of man.? 

The history of modern theories of production goes back to the 

Physiocrats who were the first to attempt a study of the whole 

production process. The further development of the theory of 

2 Compare the opinion on this subject contained in K. Marx’s essay, An 

Introduction to the Critique of Political Economy in Przyczynek do krytyki 

ekonomii politycznej (A Contribution to the Critique of Political Economy 

in Polish), Warsaw, 1953, p. 252. 
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reproduction is presented in Chapter 3, Volume 2 of Capital. 

Later works in this field virtually consist in rendering Marx’s 

analysis more concrete. 
Marx’s approach to the analysis of reproduction takes the form 

of schemes which can also be presented as formulae. Let us assume 

that in the process of reproduction, within a unit of time, say, one 

year, the used up means of production, or the input of the means 

of production, is c and the amount of work performed during this 

period isv-+m. By using up the means of production in the amount 

c and the labour input in the amount v-++m, the amount of product 

obtained is X. | 

The first problem arising from this assumption is to determine 

the mode of measuring quantities c and v-+-m and the quantity of 
the product obtained. The quantities of the means of production 

could be measured in physical units and then c would consist of 

a whole list of various means of production (buildings, tools, raw 

materials, etc.) used up in manufacturing product X. The amount 

of work could be measured in, say, man-hours. But we should 

distinguish here between the specific work of various kinds of 

workers, as v-+m would represent work performed by workers of 
different skills and qualifications. 

We must simplify the problem by expressing all quantities 

appearing in the production process in monetary units, e.g. in 

zlotys, or in units of value, e.g. in man-hours of average social 
labour. 

It is possible to express quantities c and v--m in monetary units 

instead of physical units because this procedure does not affect 

at all the essence of technical balance-sheet laws studied by us. 

Indeed, monetary units represent certain definite amounts of social 

labour and, moreover, by expressing, say, v--m in monetary units 

we “weight” the work of various kinds of workers according, for 

instance, to the rule that 1 hour of work of a skilled worker equals 

3 hours of work of an unskilled worker. In a capitalist economy 

this “weighting” is reflected on the labour market by the level of 
remuneration for the job. In a socialist economy “weighting” is 
based on properly arranged wage rates. 

It should be noted, however, that assumptions of this kind limit 
the analysis of technical balance-sheet laws to contemporary cap- 
italist and socialist economies. The laws arrived at on the basis 
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of such assumptions cannot be applied directly to, say, a feudal 
economy. This problem would require a separate study. 

By c we shall understand, then, the value of the used up means 

of production expressed in zlotys, and by v--m we shall denote 

the value of labour input. Thus, we can add together the outlays 

on different means of production and labour input. 

With these assumptions we obtain Marx’s well-known formula: 

P = c--(v--m) which means that the total input P required to 

obtain the given amount of product X equals the sum of «, i.e. 

the value of the used up means of production and (v-++m), i.e. the 
labour input which, in turn, is the sum of the components z, i.e. 
the cost of labour, and m, i.e. the value of the surplus product. The 

value of the surplus product m is not paid out in the process of 
production and constitutes a surplus of total outlays P over the 

value of the used up means of production c and the cost of labour 

employed v. The total outlay P = c+v-++m determines the value 

of the product, X. 

As to formula P=c+(v+m), a few comments on the ter- 

minology used are necessary. 

Since the used up means of production c are also the effect of 

labour and represent a certain amount of labour performed earlier, 

to distinguish from this component the amount of labour used 
up now, we call the component (v+m) the input of living labour. 

Marx calls component c—constant capital, and v—variable capi- 

tal. In Soviet economic literature, component m is often called the 

product for society.3 However, for the sake of consistency in ter- 

minology, when discussing the process of production both under 

capitalist and socialist conditions, we shall call component m—the 

value of the surplus product. 

In Marx's schemes component v is interpreted in the same way 

as component c, i.e. as the cost of reproduction of labour. The 

same interpretation of v, under conditions of a socialist economy, 

would not hold because in a socialist economy the whole compo- 

nent of the product corresponding to labour input, i.e. (v-+m), 
even if it is partly earmarked for, say, accumulation, is actually 

used up for the needs of the society. The part of labour input, 

3 This term was introduced by Józef Stalin in: Ekonomiczne problemy 

socjalizmu w ZSRR (Economic Problems of Socialism in the U.S.S.R., in 

Polish), Warsaw, 1953, pp. 60-61. 
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denoted by v is, as we know, direct remuneration for labour. 

While the level of this remuneration cannot go below a certain 

limit, corresponding to the cost of replacing used up labour, it 

may be higher. A socialist economy strives to raise this level 

gradually. . 

Let us also comment upon the units of measurement correspond- 

ing to the quantities P, c, v and m. All these quantities are expressed 

in units of social labour or in monetary units per unit of time 

usually “per year”. Using the method of determining the dimension 

of the units of particular economic quantities, analogous to the 

method used in physics,4 we state that the dimension of the quan- 

tities P, c, v and m should be written symbolically as W/T, or WT"! 

which means that these quantities are expressed in units of value W 

(e.g. in units of social labour or in monetary units) per unit of 

time T (e.g. per year). To know the proper dimension of the 

economic quantities studied is of great importance because it 

enables us to avoid misunderstandings.5 

/The use of the terminology introduced by Marx, without 

paying attention to the unit of measurement of the quantities 

studied, may lead to serious errors. For instance, Marx assumed 

in his considerations that all constant capital c is used up during 

one production cycle of one year’s duration. In this case the 

4 Let us remember that units of all physical quantities can be expressed 

by the units of the system (cm, g, sec), i.e. centimetre, gram, second, or the 

dimensions of the system (L, M, T), i.e. length, mass, time. The units in which 

a physical quantity is expressed constitute its dimension. E.g. the dimension 

I, 
of a unit of velocity is written symbolically as r" LT-!; the dimension of 

a unit of acceleration: LT-2; the dimension of a unit of force: MLT-2; the 
dimension of a unit of labour: ML2T-2, etc. 

5 W. S$. Jevons was the first to use consistently in economics the method 
of determining the dimension of the quantities studied. In his book, The Theory 
‘of Political Economy, published in 1871, he devoted to this problem a separate 
chapter. Jevons made certain errors in determining the dimension of economic 
quantities. These errors were corrected by P. H. Wicksteed. See P. H. Wick- 

,steed, The Common Sense of Political Economy, vol. 2, London, 1946, Supple- 
ment: “Dimensions of Economic Quantities”. This supplement is a reprint of 
the paper published in Palgrave's Dictionary of Political Economy. See also 
S.C. Evans, Mathematical Introduction to Economics, New York, London, 
1930, Chapter 2. 
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value of c has the dimension W, i.e., it is expressed simply 
in units of value. If, however, constant capital, as usually happens, 

does not wear out in the course of one production period, then 

the dimension of c is WT-1, and thus c is expressed in units of 

value per unit of time (year)./ 

A clear distinction must, therefore, be made between quan- 

tities with dimension W (e.g. the total value of stocks of means of 

production used in production) and quantities with dimension 

WT-1, which is the dimension of, say, quantity c (or v) denoting 

the value of means of production (or labour) used up in production 
in the course of one year. 

The quantities expressed in dimension W will be called stocks and 
the quantities expressed in dimension WT-!—/lows.6 Economists 
who are not accustomed to thinking in precise mathematical terms 

do not always realize the dimension of the quantity about which 

they speak. Worth remembering is a saying of one of the pro- 
minent economists (M. Kalecki) who once jokingly remarked 

that “economics is a science in which the notions of stocks and 

flows are always confused and, therefore, errors are committed”. 

Let us illustrate the quantities discussed by using some relevant 
statistical examples. On the basis of data from the 1960 Statistical 

Yearbook (pp. 66-67) and from the publication of the Central 
Statistical Office, Poland's National Income 1955-1960 (Dochód 

narodowy Polski 1955-1960) the following quantities of c,v, mand 

P can be obtained for the whole Polish economy in 1957, 1958 and 

1959. 

Polańd In millions of zlotys per year 
(at current prices) 

1957 392878.3 c-}+-179617.0v +121825.0 m == 694320.3 P 

| 1958 427226.9 c+190382.6v+130951.1 m = 748560.6 P 
| 1959 469214.0 c+200283.4v+145543.2 m = 815040.6 P 

The method by which we have obtained the figures shown in 

the table above requires an explanation. Marx's schemes, as we 

6 Analogously, the water in a container is called the stock of water and is 

measured in, say, litres, and the water flowing out of the container is called 

a flow and is measured in, say, litres per second. 
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know, apply to a pure capitalist economy, 1.e. they comprise the 

workers employed in production and the capitalists who derive 

income from a surplus product. According to analogous rules, 

schemes can be prepared for a pure socialist economy. In our 

conditions certain complications arise, however, due to the exist- 

ence of a small private sector. It is, therefore, necessary to add to 

component v a part of income from private peasant farming and 

from the non-socialized sector outside agriculture. 

Thus, included in v are: 

(1) Both the regular employment and the contract work wage 
funds for those employed in material production; 

(2) Net production from peasant farming less land tax, and 
income from additional sources earned by the rural population; 

(3) Net income from the non-socialized sector outside agri- 

culture, i.e. net production less taxes, and additional income of 

the urban population (collection of usable waste, building on 

one’s own account). 

Included in component m for socialized enterprises are: 

taxes, budget differences, profits (or losses), social insurance, 

non-material costs outside regular employment and the contract 

work wage funds. Also included in m are taxes from the non- 

socialized sector. 

The estimate obtained is a little too high for v and too low 

for m, since net investments from means coming from the non- 

socialized sector are here included in v, while they should be 

included in m. For the time being, there are no sufficiently detailed 

data available to separate this item and, therefore, no attempt was 

made to introduce this correction. In spite of this inaccuracy, the 
figures quoted give some idea concerning the magnitudes of the 
particular components of Poland’s social product. 

Similar statistical information on the value of the gross national 
product P and of its components c, v and m for Great Britain in 
1950 was obtained by V. S. Nemchinov,7 member of the Academy 

d “Nekotorye voprosy ispolzovanya balansovogo metoda v statistikye 
vzaimnosvyazanykh dynamicheskikh ekonomicheskikh system”, Doklady 
sovetskikh uchonykh na XXXI sesyu Myezhdunarodnogo Statisticheskogo Insti- 
tuta, Moscow, 1958, Reprinted in Uchenye zapiski po statistike, vol. 5, Moscow, 
1959. 
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of Sciences of the USSR, on the basis of inter-branch flows pre- 
pared for the economy of Great Britain.’ 

The results obtained, after certain adjustments made by us,? 
are as follows: 

| Great Britain | In millions of pounds for the year 

| 1950 | 7677 c-+6225v +7003 m = 20905 P 

On the basis of statistical data of this kind it is possible to 
determine certain relations existing in the national economy. These 
relations may concern either the structure of the gross national 

product by value or the outlays made during the process of pro- 

duction. Let us begin by discussing the relations of the first type, 
i.e. certain structural relations. 

First of all, we single out part Y = v-+m of the gross national 

product which we shall call the total value added in a year, or the 
national (social) income. 

The term “value added” is used because the society, by its 

productive labour, replaces not only the used up means of pro- 

duction but also adds a certain, amount over and above component 
c. This value added Y = v--m corresponds to the input of living 

labour, expressed in monetary units. The first interesting structural 

relation is the ratio of the value added Y to the value of the gross 

Ve v+M 

P  c+o+m 
national product P, i.e. » which we shall call the 

income-product ratio. 
The reciprocal of the income-product ratio, i.e. the ratio 

a = SDE we shall call the efficiency of living labour.0 
ry otm 

s Examples of tables of this kind are given in the Appendix to the book by 

Oskar Lange, Introduction to Econometrics, Pergamon Press, London- PWN, 

Warsaw, 1962. See also 1960 Statistical Yearbook (In Polish), pp. 70-73. 

° Nemchinov gives as the value of component c the amount of 4868 million, 

because he does not include in component c the value of imports of means 

of production amounting to 2809 million. 
10 The ratio P/Y is called productivity when the quantities P and Y are 

expressed in physical units. 
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The income-product ratio Y/P calculated on the basis of the 

statistical data given above is: 

for Poland in 1957—0.43 

re »  , 1958—0.43 

35 »  „ 1959—0.42 

for Great Britain 

in 1950—0.63.11 

Analogous data pertaining to the national economy in other 

countries show that, for instance, the income—product ratio in the 

United States in 1947 was 0.45, and 0.56 in the Soviet Union for 

the fiscal year 1923/24, according to Nemchinov's calculations. 

It follows from these data and from other statistical studies that 

the ratio of national income to gross national product is approxi- 

mately 0.5, or slightly less. Thus, usually more than one half of 

the gross national product is used for the replacement of the 

values used up during the production of means of production, and 

slightly less than a half of the gross national product constitutes 
the value added or the national income. 

The efficiency of living labour is slightly less than 2, which means 
that each unit of living labour produces a little more than 2 units 

of the gross national product. For instance, 1000 zlotys worth of 

living labour produces a little more than 2000 zlotys worth of the 

gross national product. 

Diagramatically, the process of reproduction may be presented 
as follows: 

v+m 

FiG. 1. 

This process can be explained most figuratively by the example 
of agricultural production. Farmers harvest grain and use part of 
the crop for sowing in the next production year; the remainder 
constitutes the farmers’ income. 

u If the value of imported means of production were not included in com- 
ponent c, the ratio Y/P would be 0.73. 
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Very interesting are the fluctuations in the income-product 

ratio in different years and in particular branches of production. 

First of all it should be stated that in capitalist countries there 

appear distinct fluctuations in the total income-product ratio; 
these are related to the course of the business cycle. 

Studying the magnitude of the income-product ratio in various 
branches of production, we find (as might be expected) that the 

sectors of the national economy better equipped in means of 
production have usually a lower income-product ratio. This is 

explained by the fact that with an increasing supply of means of 

production in a given sector of the economy, the share of the 

replacement of means of production increases and simultaneously 
the share of the component Y = v-++m in the gross national product 

decreases. In consequence, the ratio Y/P decreases. 

In agriculture, for instance, the replacement of means of pro- 
duction is relatively smaller (in relation to the gross national 

product) and, therefore, in this sector of the economy, value added 
constitutes a major part of the product. In industry the situation 
is reversed, namely, a relatively large part of the gross national 

product is used for the replacement of used up means of pro- 

duction. 

Below are given some data on the income-product ratio in 

various countries and in different branches of the economy. It 

follows from the data obtained from the 1960 Statistical Yearbook 
(pp. 66-67) that the Y/P ratio in Poland in some sectors of the 

national economy was (in percentages) :12 

1957 1958 1959 

Manufacturing 
and handicraft 36.1 36.0 35.6 

Construction 50.7 51.9 51.0 

Agriculture 44.5 44.5 44.1 

12 The reciprocal of the income-product ratio is the efficiency of living 

labour. As can be seen from the figures quoted, this efficiency was the lowest 

in manufacturing, then in agriculture and in the third place—in construction. 
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The income-product ratio for agriculture and for agricultural 

industries in Great Britain was 44.8 per cent in 1955, and for the 

same sectors of the economy in the United States it was 55.2 per 

cent, which is probably due to more extensive farming in the 

United States than in Great Britain. | 

Analogous data for the coal and power industry were 80.2 per 

cent in Great Britain and 55.2 per cent in the United States, and 

for the metalurgical industry—64.6 per cent in Great Britain and 

40.4 per cent in the United States. 
Let us consider now two further structural relations: 

(1) The organic composition of inputs, k,13 which is the ratio of 

the values of used up means of production c to the value of labour 

input v4 16 K= cle, 

(2) The rate of surplus product s is defined as the ratio of the 

value of surplus product to labour input remunerated in the form 

of wages; thus s = m/v; under capitalist conditions, we call this 

ratio—in accordance with Marx—the rate of surplus value. 

Statistical values of these ratios are:15 

for Poland iń 19357 ke 2419, «s 220.68 

>» »” >» 1958 K=224 s = 0.69 

2) >» >» 1959 k == 2.34 == 0.73 

„„, Great Britain... 19350 3k = 1203 esa 

According to the information given by Strumilin, the rate of 

surplus value in Russia before the revolution was about 1 and 

in the Soviet Union (after World War 2) the rate of surplus 
product was s = 0.74.16 

According to J. M. Gillman, the rate of surplus value in manu- 
facturing in the United States increased from 1.11 in 1920 to 

13 The notion of the organic composition of inputs should not be confused 
with the notion of the organic composition of capital, introduced by Marx, 
who understood by it the ratio of constant capital engaged in means of 
production K, to variable capital Z. 

4 The value of labour is the labour input remunerated in the form of 
wages. 

15 Marx in his examples assumed: s=1 and k=4 (e.g. P =4000 e 
--1000v--1000 mn). 

16 Nekotorye voprosy ispolzovanya balansovogo metoda vy statistike vzaim- 
nosvyazanykh dynamicheskikh ekonomicheskikh system, p. 11. 
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1.64 in 1929. Then, due to the economic depression, the rate of 

surplus value declined to 1.36 in 1935 and afterwards it began to 

climb again to reach 1.49 in 1939. The organic composition of 
inputs in manufacturing fluctuated during this period between 3.4 
and 4.0.17 

The high rate of surplus value in the United States is due to 

the fact that the surplus product contains the capitalists’ income, 

part of which is invested, and part is used to cover non-productive 

expenditure, primarily for all kinds of services. In the United 

States services of this kind (e.g. advertising expenditure) are more 
developed than in the European countries. 

On the basis of numerous statistical studies certain regularities 

in this field have been established. It became apparent that, with 
the development of society, the share of expenditure for services 

increases, i.e. an ever growing portion of national income is 

earmarked for the satisfaction of needs by services. First, food 

requirements are satisfied, then comes clothing, household fur- 

niture and equipment etc. and finally, with further economic 

development, relatively higher expenditure goes to satisfying needs 

by services. This results in an increase in s. However, transition 

from the capitalist to the socialist system causes a decline in s 

because the part of the social product consumed by the capitalist 

and by related social strata disappears. 

With regard to the organic composition of inputs, the data 

given above show that in Poland this composition gradually grows. 

It is difficult, however, to explain why the computed organic 

composition of inputs in Great Britain is lower than in Poland. 

The organic composition of inputs k = c/v would be identical 

with Marx’s notion of the organic composition of capital defined 
as the ratio of constant capital K, engaged in production, to 

variable capital Z, only if the turnover period of constant capital 

and the turnover period of variable capital were the same and, 

as Marx assumed, if they amounted to one year. 

In reality, however, this is not so. Fixed capital means (build- 

ings, machinery, equipment, etc.) can be used in production, on 

the average, for 20-30 years, and working capital means (raw 

materials) are, as a rule, used up faster than within one year. 

17 Joseph M. Gillman, The Falling Rate of Profit, New York, 1958, p. 40. 



16 OSKAR LANGE 

Sometimes they are used up in several weeks and, thus have 

a “turnover” of several, or more, times within one year. 

For this reason, Marx introduced the concept of the turnover 

period of constant capital'8 which denotes the average lifespan of 

means of production used in the process of production; this refers 

to the average economic lifespan and not necessarily to the physical 

wear and tear. This period is denoted by t. 

The reciprocal of the period of capital turnover 7 is called the 

rate of replacement" and is denoted by „. Hence u = I/r. If, for 

instance, the period of capital turnover is z = 10 years, then the 

rate of replacement is u = 1/10. 
If we denote by K the constant capital engaged in production, 

then the following relationship holds: 

c=Ku=K— ODWEKEJCUA 

The situation is similar for variable capital Z, which is not the 

same as the annual wage fundv. These quantities would be identical 

only if the period of paying wages for work was 1 year. 

When the period of variable capital turnover—let us denote 

it by 0—is, say, 1 month, ie. 0 = >. 15 variable capital amounts 

1 
only to 5 of the annual wage fund v multiplied by the period of 

variable capital turnover, i.e.: Z = v0. 
Therefore, the organic composition of capital, according to 

Marx's definition, equals: > = 7 = Kk ‘ , L.e. the product of the 

organic composition of inputs by the ratio of the period of constant 
capital turnover to the period of variable capital turnover. 

It follows that only in some special case, when t = 0, does the 
organic composition of capital equal the organic composition of 
: ref & 
inputs, i.e. — = >, 

Zac 

18 See Capital, vol. 2, pp. 159 and ff. 
* The concept of the rate of replacement should not be confused with 

the rate of depreciation. By depreciation we understand the writing off of 
a certain amount of money for replacement, but this sum need not equal the 
actual wear and tear that occurred within a given period. The determination 
of the rate of depreciation is related to the problem of financing reproduction. 
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Let us now check the dimensions of the quantities discussed 

above. The dimension of constant capital K, as stock, is W, and 

the dimension of the value of means of production used up within 

one year, c, is WT-1. The dimension of the period of constant and 

variable capital turnover, i.e. of r and 0, is T. 

Since K = ct, the dimension of the product ct must correspond 
to the dimension of quantity K which, indeed, is the case because 

after multiplying the units of the right-hand side of the formula 
K = ct we obtain: 

WDAYT=W, 

i.e. the dimension that appears on the left-hand side of this for- 

mula. The situation is similar for formula Z = v0. 

Let us now introduce a further coefficient called the rate of 

profit p. This is the ratio of the value of surplus product to the 
sum of constant and variable capital: 

= m 

Be KZ 

This formula can be transformed as follows: 

sda 
zt m RN Ae ee Be A s 

K+Z ct+v0 Rec kt +0 (i 71)» 

v 0 

and because of the relationship previously obtained: 

K T 

AE 

we obtain the following formula: 

STYL Ses „4 
Ey 

This formula determines the dependence of the rate of profit 

p= 

; 75 PADWA 
on the organic composition of capital Z” the rate of surplus 

product s and the period of variable capital turnover 0. 
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In a similar way, we can determine the rate of profit p for 

constant capital K: 

DO iL eee 

aay Gaede 

It follows that the rate of profit from constant capital equals 
the rate of surplus product s divided by the product of the organic 

composition of inputs and the period of constant capital turn- 

over T. 
The latter formula can be transformed in a similar way to 

i Kd d 
before, using the relationship: k = Zoom We obtain: 

AR | 

ko dm R 9 : 

Zz 

From the formulae for p and p it follows that at a given rate 

of surplus value s and a given period of variable capital turnover 0, 

the rate of profit decreases when the organic composition of 
capital increases. This is Marx’s well-known theorem on the ten- 

dency of the rate of profit in a capitalist economy to decline in 

consequence of a steady growth of the organic composition of 

capital. 

However, a certain complication arises here. From the for- 
mulae: 

224 s d rz. Ss 

als eae Es i 
it follows that if the period of variable capital turnover could be 
reduced, then the rate of profit would increase even though the 

organic composition of capital remained the same or even 
increased. 

This fact can easily be explained. For a shortening of the 
period of variable capital turnover means that in the process of 
production, with the same annual wage fund v, a smaller amount 
of variable capital Z = v0 can be used. 
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It is interesting to note the dimension of a unit rate of profit 

Kaz’ Since the dimension of the numerator of this expression 

is WT-1 and of the denominator W, the dimension of the rate of 

p= 

SW 
profit p is w 

of the rate of interest or of the replacement coefficient. If, for 

instance, K--Z = 1000 milliard zlotys and the value of surplus 
product m = 100 milliard zlotys per year, then the rate of profit 

equals 10 per cent “per annum”. In this case the rate of profit, 

say, “per 1/2 year” would be 5 per cent and “per 2 years”—20 per 

cent, etc. All ratios of flows to stocks have the dimension T~. 

Let us note that, on the contrary, the ratio of the stock to 

1 fae : ; 
== {fb = +: This is the same dimension as that 

: K A 
the flow, e.g. the period of turnover t = —> has dimension T, 

C 

since ike Mee — 

Wrst 

In order to examine further structural relations let us transform 

the formula for the gross national product P=c-+v-+m as 

follows: 

R= ER v=(k+-1+s)v. 
o 

It follows that when the organic composition of inputs k and 

the rate of surplus value s are constant, the gross national product 

is proportional to the input of labour v. The coefficient of pro- 

portionality in this relationship is the expression: k--1--s = >: 

which determines the size of the gross national product per unit 

labour v. 

The formula for the gross national product: P = (k--1--S)v, 

applied to the statistical data pertaining to Poland, quoted above, 

is as follows (in zlotys, at current prices): 

in 1957  694320.3 = (2.19--1--0.68) * 179617.0 
in 1958 748560.6 = (2.24+-1--0.69) - 190382.6 
in 1959  815040.6 = (2.34+1+-0.73) * 200283.4 
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It will be helpful to use in our further analysis the input coeffi- 

cients (parameters) which play an important part in present day 

input-output analyses of production. They determine the amount 

of input (means of production or labour) necessary to produce 

a unit product and, thus represent the share of means of pro- 

duction or labour in the value of the product. 

The input coefficient of means of production, or the input of 
means of production per unit product is: 

c 
Ce ĘDE 

Similarly, the labour input coefficient per unit product is 

U 
Gos tps 

We shall also introduce in our considerations the coefficient 

dwa which determines the proportion of the surplus product 

to the gross national product, i.e. the amount of the surplus 

product per unit gross national product. 

From these definitions it follows directly that a,+a,+a,, = 1, 

and that each of these coefficients is less than one. It is obvious 

that all the coefficients are positive. 

In the table below are given coefficients a,, a, and a„, deter- 

mined on the basis of statistical data for Poland for the years 

1957, 1958 and 1959 and for Great Britain for 1950: 

Coca | Poland Great Britain 

1957 | 1958 | 1959 1950 

a. 0.566 0.571 0.576 0.37 

ay 0.259 0.254 0.246 0.30 

dy 0.175 0.175 0.178 0.33 

It follows from this table that in 1959, for instance, in Poland 
the share of the input of means of production in the gross national 
product was close to 58 per cent and the share of outlays in wages 
was over 24 per cent. The surplus product constituted about 18 
per cent of the gross national product. 
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Let us note that the income-product ratio (the share of the 

: : 3 : pe 
national income in the gross national product) = can be deter- 

mined by the coefficients a, and a,,. Indeed 

4 vtm 
ye = arg = UST 

The income-product ratio for Poland for 1959 was about 0.42 
which is consistent with formula 

= = d, +d, = 0.246+-0.178 = 0.424. 

Also, the organic composition of inputs k and the rate of 

surplus product s can be conveniently expressed by the coefficients 

a,, a, and a,,. We have 

ge ee 
a,P 5 

PASA E EOS 
A —— = =. 

U Ub ea. 



CHAPTER 2 

EQUILIBRIUM CONDITIONS OF THE 

PROCESS OF REPRODUCTION 

WE shall now analyse the conditions of the process of repro- 

duction, assuming that the: national economy is divided into 

a number of branches. We shall begin with an analysis of simple 

reproduction in which the gross national product P, consists of 
two divisions (departments): one containing the products which 

serve as means of production P; and the other the products which 

serve as means of consumption P2. Thus: P = Pi+P2. 

Dividing into components each of the two parts of the gross 

national product, in accordance with Marx’s schemes, we obtain 

the following table: 

=p GE Em 

Vi 
/ 

J 

Co | +0,+m, = P, 

cHokm=P 

As we know, simple reproduction occurs when the gross na- 
tional product contains exactly the amount of means of production 

needed to replace the used up means of production. As can be 
seen from the table, the amount of means of production used up 

in the process of production in both divisions is c1-+c and the 

amount produced (in Division 1) is citwitmi. Since ci+c2 
= ¢c;+v,;+m,, then 

C2EV4-M4. (1) 

This is the well-known condition of equilibrium of inter-branch 
flows, discovered by Marx, which must be satisfied in the case of 
simple reproduction. 

22 
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This condition can also be obtained in a different way. In the 
process of simple reproduction the whole national income v--m 
is consumed and therefore: 

U--M = C,+%,+m, 

or 

Uy +02 +M,+M, = C,+v,+m2. 

Hence 

011 My Cre 

The scheme of simple reproduction can also be presented as 
an input-output table: 

Gy és td 
V7} U |0 

My m |m 

P, P, 

The rows of this table show how the results of production are 

distributed between Division 1 and Division 2. Similarly, the 

columns show how the production inputs are distributed. 

It is evident that to maintain equilibrium in inter-branch flows 

the following equilibrium conditions must be satisfied: 

c= P, or sotm=P2. 

This leads to the condition previously obtained: 

C2 =V01--m = 

It is interesting to note that only inter-branch flows, i.e. the 

elements v1, m; and c» affect the conditions of equilibrium in the 

process of reproduction. The remaining elements of the process, 

Ci, V2 and ma do not affect the equilibrium. An increase in, say, 

c, increases simultaneously production and demand for the total 

product of Division I, i.e. Pi, without disturbing the equilibrium 

of the process of simple reproduction. 
The process of simple reproduction can be presented as a cy- 

bernetic diagram shown below: 

1 More extensive considerations on this subject can be found in the book 

by O. Lange, Introduction to Econometrics, ed. cit., Chapter 3. 
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Va+lMNg 

FiG. 2. 

It can be seen from this diagram that inter-branch flows in the 

process of simple reproduction must balance, but the part of the 

product that remains in a given branch has no effect on the equi- 

librium of the process. 
The conditions of equilibrium are well illustrated by another 

diagram: 

Fic. 3. 

The shaded components of the total products, i.e. %1-+m; and 
cz equal one another. The remaining components do not affect 
equilibrium. 

Finally, the above mentioned condition of equilibrium of the 

process of simple reproduction can be presented by using input 

coefficients. Expressing the components of the total product of 
both divisions of production, P; and P2, by using input coefficients, 
we obtain the following table: 

Q,-Pi+ Lay, Pitan Py = Pas 

Ż 

a 
Z =") : 

|a.P, | + gy P2-0, Po =e OF 
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The equilibrium condition c> = vi-+m may then be expressed 
as follows: 

Aye P> = 04, Pi +A P, 
or 

P, dac 

P, a dy Tim . (1a) 

The condition in this form states that to maintain equilibrium 

in the process of simple reproduction the ratio of the total product 
of Division 1 to the total product of Division 2 must equal the 

ratio of the input coefficient of means of production in Division 2 

to the income-product ratio of Division 1, because 

Y, | 
R, = Ay dym 2 

It can also be seen from formula (la) that for given input 

coefficients in both divisions, the equilibrium of the process of 

reproduction depends only upon the ratio of the aggregate prod- 

ucts of both divisions, and not upon their absolute size, i.e. the 

scale of the production plans of the divisions. Thus, for example, 

a twofold increase of the aggregate products of both divisions 

does not disturb the existing equilibrium of the process of repro- 

duction. 

In this connection the question arises: in which case does the 

proportion of production of both divisions, i.e. the ratio a 
2 

change? It follows from formula (la) that this may happen when 

the input coefficient of means of production in Division 2, i.e. 
a,,, changes, or when the income-product coefficient of Division 1, 

i.e. d,,+a1,, changes. 

Considering that 

AtctQjy+Qim=1 and a@,+42,+a,,, = 1, 

the relationship (la) can be presented further in a different way 

P, dac SA) eee Ze. ib 
P 1—a,, ( ) 

or 

Pi ND aan (Ic) 

P, A, Aim 
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Finally, starting with the formulae: 

we can write the equilibrium condition of the process of simple 

reproduction as follows: 

ką0 = (1+51) 0%, 

or 
Ky A, Pp = (1451) 1,P,. 

Hence 

Pra ką CZ 

P, fe 1+s, | Ay 
(1d) 

The equilibrium conditions in the form (la), (or (1b) or (Ic), 

or (1d)) are the starting point for our further considerations and 

provide a simple tool for analysing the proportions between the 

division for the production of means of production and the 
division for the production of means of consumption. This problem 

has long been a subject of heated discussion in political economy. 

We shall now try to determine in a similar way the equilibrium 

conditions of the process of extended reproduction. As we know, 

in the process of extended reproduction, the surplus product m 

is not entirely consumed; the part not consumed constitutes ac- 

cumulation. 

Let us divide the surplus value m in each division into three 

components: m == m,+m,+m, where m, denotes the part of 

accumulation earmarked for increasing constant capital, m,—the 

part of accumulation earmarked for increasing variable capital and 
imo—the part of the surplus product which is consumed. 

The structure of the total product of both production divisions 
can then be presented as follows: 

Division 1: c,+v,+m,,.+m,,+m) = P, 
Division 2: +02 M, |Ma, Mg = P. 

In Marx's schemes, and in later considerations by Lenin, the 
simplifying assumption has been made to the effect that accu- 
mulation is invested in the same branch as that in which it is rea- 
lized. In reality, however, there afe flows of accumulation between 
branches and, under capitalist free market conditions, they bring 
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about the equalization of the rate of profit. In a planned economy, 
accumulation takes place primarily in Division 2 and it is invested 
mainly in Division 1. 

If we reject the simplifying assumption that accumulation ac- 
crues to the branch in which it has been realized, then the com- 

ponents ™,, m,,, and, similarly, mz, and m, will be divided into 
two parts. 

Thus, for instance 

M4, = Mie, My, , 

where m,,, denotes the part of accumulation m,, invested in means 

of production of Division 1, and m,.,—the part of accumulation 

m, invested in means of production of Division 2. 

Analogously 

Mię = My, + Myo. 

Similarly, also 

My = Mac, Mac,» 

M, = May, +My, . 

Therefore, the structure of the aggregate product of Division 1 

and Division 2 will assume the following form: 

Division 1 Cp ie, Mies te | U1 Mya, + Myy,+M 19 = joe 

4 
v 

+02 May, HM2g, Mag = Po. Division 2 | 2--Mac, Mac, 

The equilibrium condition of the process of extended repro- 

duction can be obtained by comparing the requirements of both 

divisions in means of production with the production of Division 1. 

Hence we obtain the equation: 

C1 01 Me, +My ce, Myy; -+ Myo, HM1q9 

= C1 Cz Myo, HM4cz Mac; HH Mac, + 

After simplifying the foregoing, the following equilibrium condi- 

tion of extended reproduction is obtained: 

C+ Mg, Me, = VUz+Myy,+My,+M0- (2) 

This condition means that the equilibrium of the process of 

extended reproduction is maintained where equilibrium in inter- 
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branch flows has been achieved. When there is equilibrium in 

flows, it is a matter of indifference where accumulation of a given 

branch is invested, but it does matter where accumulation has been 

realized. In this connection, the equilibrium condition (2) can be 

written in a simplified form: 

Cz Mac = Vi; +My+M19, (2a) 
Where 

Nye = Mae Mae, ~ and “Mj, FĘ My, T My, : 

The equilibrium condition of the process of extended repro- 

duction is presented in the two diagrams below: 
\ 

VitlN4y +IN40 

Mo; mę ży 

Fic. 4. 

FiG. 5. 

Whether the equilibrium condition is satisfied, entirely depends 
upon the equality of the quantities represented by the shaded 
rectangles. The quantities represented by the unshaded rectangles 
may be of any size since they do not affect the equilibrium of the 
process of reproduction. These quantities, however, do affect 
significantly the rate of economic growth. 

The equilibrium condition of extended reproduction can be 
expressed by the coefficients of inputs and accumulation. 
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The values of the aggregate products of Division 1 and Di- 
vision 2, expressed by the input and accumulation coefficients, can 
be presented as follows: 

Division 1: ay, P1+04.P1 +a), P;+-04, Py +049 P; = P, 

Division 2: Are P+ 04, P,+-04, Ppt. Potdir Po = Fe 5 

In the above formulae, we have denoted by a the input coefficients 

of the means of production (a,) or of labour (a,), and by a the 

coefficients (rates) of accumulation which determine what part of 

the total product of a given division is accumulated in order to 

be transformed into means of production («,), or to be used for 

augmenting the wage fund («,); the coefficients %,) and «+, denote, 

respectively, the part of the total product of Division 1 or Di- 

vision 2, which is the consumed surplus product. 

Thus we have 

dim = Ale FM1y 0010» 

An = dac Kay + O29 
and 

Aye tOetAyyp+%X,+%1 = 1, 

Axe + Uz¢+ Ary 1-02, + 0029 =]. 

The first two of these relationships mean that the share of the 

surplus product in the total product of a given division equals the 
sum of the accumulation coefficients and the consumption coeffi- 

cient of the surplus product. 
The equilibrium condition of the process of extended repro- 

duction, (2a) may also be written in the following form: 

(02,02) Pą = (01,--01,-010) Pi. 

Hence 

P, ań Ane + dac , 

P, A491 0404 0010 

Considering that a;,+-0,,--04,+-0,, +04, = 1, we may transform 

formula (2b) as follows: 

P, dac + dac 

P, — 1—aye—O1¢ 

(2b) 

(2c) 

The formulae (2b) or (2c) determine the proportions between 

the value of production in Division 1 and Division 2 (depending 
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upon the input and accumulation coefficients) which ensure 

equilibrium in the process of reproduction. Thus, formula (2b) 

states that the process of reproduction can be realized in practice 

if the ratio of the value of production in Division 1 to the value of 

production in Division 2 equals the ratio of the sum of the input 

coefficient of means of production in Division 2 (a) and the 

coefficient of accumulation in this division earmarked for 

increasing means of production (a«+.), to the sum of the 

labour input coefficient in Division 1 (a,,), the coefficient of 

accumulation in Division 1 earmarked for augmenting the wage 

fund (a,,) and the coefficient of consumption of the surplus 

product in Division 1 (10). | 

Let us note further that in the special case when a, = 4, = 0, 

i.e. in the case of simple reproduction, formula (2c) is trans- 
formed into formula (1b) which is the equilibrium condition of 

the process of simple reproduction. 

Analyzing formula (1b), we find that the proportion between 

the value of production in Division 1 and Division 2, in the case 
of simple reproduction, depends upon the input coefficients a, 

and a,,. The greater they are the greater is the ratio a this 
2 

means that the share of the total product of Division 1 in the 

gross national product is then larger. 

If the coefficients a,, and a,, decrease, at the same time the 

saa By 4 : 
ratio P. also decreases. If, however, input coefficients a,;. and a,, 

2 

change in the opposite direction, i.e. if a,, grows and a,, declines, 

(which, in practice, would be a fairly strange phenomenon), then 

nothing can be said in advance about the direction of change in 

the ratio a 
P, 

In the case of extended reproduction, as follows from formula 
(2c), the proportion between the value of production in Division 1 
and Division 2 depends not only on the input coefficients a,. and 
dą, but also on the accumulation coefficients «,. and «,. 

The means of production input coefficients a,, and a,. are of 
a technical character, i.e. they depend exclusively upon the existing 
state of production techniques. But the coefficients of accumulation 
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earmarked for means of production, i.e. a, and «, depend upon 

economic decisions. Under conditions of a capitalist economy, 

the quantities «,, and a, are influenced by numerous decisions of 

capitalist entrepreneurs, based on the expected rate of return from 

an investment in new means of production. In a socialist economy 

the magnitude of the accumulation coefficients «,, and «2, depends 
upon the economic plan. 

If accumulation earmarked for means of production grows in 
: ra: Roce! Be 

both production divisions, the ratio 12 increases, and production 
2 

in Division 1 grows faster than production in Division 2. If ac- 

cumulation earmarked for means of production in both divisions 

5 8 
declines, the ratio e decreases, and thus the share of pro- 

2 

duction of Division 1 in the aggregate production declines. 

The situation is more complex if, for instance, «>, grows and 

simultaneously «,, declines (or vice versa). 

It is impossible to tell in advance how this will affect the value 

NE x z ) ł i 
of the ratio 3 but in each specific case this ratio can be cal- 

2 

culated on the basis of available statistical data. 

The formulae (1b) and (2c) decide, in principle, under what 

conditions production in Division 1 will grow faster or more 

slowly than in Division 2. In any case, it follows from these for- 

mulae that if accumulation earmarked for means of production 

in both divisions grows, production P; in Division 1 must grow 

more rapidly than production P2 in Division 2. Similarly, if the 

input coefficients earmarked for means of production in both 
production divisions increase (which means that we are faced 
with what is known in western literature as the capital intensive 
type of technical progress), then production P; also grows faster 

than production P>. If, however, technical progress is of the 

: ; MIE 
capital saving type, the ratio i decreases. 

2 

2 All the above conclusions could have been reached without complex 

mathematical considerations and formulae. It is directly obvious, for instance, 

that if in Division 2 the demand for means of production increases, production 

in Division 1 must increase. 
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As we have mentioned above, the problem of proportions 

between the value of production in Division 1 and Division 2 

is the subject of numerous discussions and controversies. The 

NIE } ; 
point is to decide whether the ratio > increases with economic 

2 

growth. 
HK i z 

The traditional view that the ratio ee increases all the time, 
74 

based on the assumption that the share of inputs for means of 

production a, and a, increases constantly, has been questioned, 

among others, by Professor Bronisław Minc.3 

Professor Minc states that the outlays on means of production 

per unit product (i.e. coefficients a,;, and a., do not necessarily 

have to grow as a result of technical progress. His contention 

applies particularly to a socialist economy. 

The stand taken by Professor Minc was criticized by A. Pashkov 

to whom Professor Minc, in turn, replied.4 

It is clear that this controversy cannot be settled solely on the 

basis of purely theoretical considerations. Only concrete facts and 

statistical observations could explain the problem and help to 

determine whether or not means of production input coefficients 

actually grow with technical progress. 

However, the argument that technical progress which consists 

in providing the process of production with more and more means 

of production, i.e. in increasing the amount of technical means 

per unit of living labour, always results in an increase of the 

. ś b Sa a 
ratio sh is not correct. In fact, changes in the ratio — do not 

2 2 

depend upon the organic composition of capital, but they depend 

upon outlays on means of production made in a given production 

> See Bronisław Minc, Aktualne zagadnienia ekonomii politycznej socjalizmu 
(Current Problems in the Political Economy of Socialism, in Polish), Warsaw, 
1956, p. 261-304, and Zagadnienia ekonomii politycznej socjalizmu (Problems 
in the Political Economy of Socialism, in Polish), Warsaw, 1957, Chapter 5. 

* See A. Pashkoy, Ob odnoi traktovke zakona preimushchestvennogo 
rosta proizvodstva sredstv proizvodstva, Voprosy Ekonomiki, No. 6, 1958, 
and Bronisław Minc, Studia i polemiki ekonomiczne (Economic Studies and 
Polemics, in Polish) Warsaw, 1959, pp. 16-39. 
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period, i.e. ci and cz, or more exactly, upon the ratio of these 

parameters to the total product P; or P2. 

Indeed 

_ 4 Mm 
1 = P, ar P, 

and 

dy, ha K a 

ą P, P, 

It follows that the magnitude of means of production input 

coefficients a,, and a>, is determined by constant capital K, re- 

placement coefficient u and the aggregate product P. The technical 
composition of the process of production does not directly affect 
a;, and a,,. 

In the process of extended reproduction, the allocation of a part 

of the total product for accumulation in means of production 

results in an increase in the ratio —, which follows immediately 
P, 

: W; 
from formula (2c). An increase of the ratio > means, of course, 

2 

an increased share of the production of means of production P; 
in the gross national product, and vice versa, an increased share 

of the production of means of consumption in aggregate pro- 

duction entails a reduction of the accumulation coefficients «,, 

and @»,. 

It follows from the above considerations that formula (2c) 

brings to light the factors which directly affect the production 

proportions between Division 1 and Division 2. 

Formula (2c) can be transformed so that the organic composi- 

tion of inputs (flows) or the organic composition of capital (stock) 

appear in it. Although we do not gain much by such a transfor- 
mation, since the form of formula (2c) is more convenient for 

an analysis of the factors affecting the ratio z it will be useful 
2 

if only because in many broad discussions the problem of the 
proportion between production in Division 1 and in Division 2 

is related to the organic composition of capital. 
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As we know, the organic composition of the inputs (and, 

therefore, of the flows) in, say, Division 2 is: 

Ci az, Pz dac 
ko = = = . 

U2 Ary P> day 

Hence a>, = kar. 3 

On the basis of the simplifying assumption that accumulation 

is divided into the additional means of production and the addi- 

tional wage fund, in proportion to the organic composition of 

inputs, we obtain: 

= ZE, \hence m, = kod, 
oy 

The coefficients a,, and «,, can be determined analogously. 

Thus, the formula (2c) will assume the following form: 

Py apt tag a (Gap 20) 
= = ? 3 

P, b=a; 4; | (6, 7%,) ©) 

Formula (3) can be transformed further by introducing in it, 

instead of the organic composition of inputs, the organic compo- 
sition of capital (stocks) of Division 1 and Division 2, which we 

denote by w;, and wa, respectively. 

Since 

K, C1 T1 Ty 
OS Se Sh 

* Żą 0,0) i 0, ; 

therefore 

ky SS R 
Ty 

and, analogously 

0 
Kk, == (py © M 

T2 

Thus, formula (3) assumes the form: 

0, 
02 — (4,0, P, 27, (Gwda) 

ARK TAC FL (4) 
1—a, = (81,+0,,) 

1 
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It follows from this formula that if the organic composition of 
: : 0 

capital w; and w» is constant (ceteris paribus) when — or e 

the ratio of the period of variable capital turnover to the period 

P, 
of constant capital turnover) increases, the ratio p, also increases. 

2 

Formula (4) is not very handy, and, therefore, it is more 

convenient to introduce into it, instead of the periods of turn- 
over of capital 0 and t, their reciprocals, i.e. the periods of 
replacement. Thus, we obtain the formula: 

Mac 
02 = (0,02) 

P, M2» , 

pF A : (4a) 

> lo, — (24,04) 
Hip 

We infer from formula (4a) that for given organic composi- 

tions of capital in both divisions, the ratio > grows with an 
2 

increasing ratio of the coefficients of replacement of constant 

and variable capital in Division 1 and Division 2. If, for instance, 

the period of turnover of the means of production is 30 years, 
and a transfer is made to less durable means of production with 
a turnover period of, say, 20 years, thus increasing m,. and um,, 

Z BT a z ee : 
the ratio A will also increase. This is explained by the fact that 

2 

each year more means of production have to be produced for 

replacement. 

We have already pointed out that the most useful formula 

for analysing the size of the ratio a is formula (2c). The other 
2 

formulae (3) and (4) or (4a) are more convenient in so far as they 

contain the organic composition of input or of capital. Generally, 
it may be said that for studying conditions of inter-branch equi- 

librium it is most convenient to use input coefficients while the 
use of structural coefficients leads to more complex formulae. 
The situation is reversed when we study the process of accumu- 
lation; it is then very convenient to use the structural coefficients 

introduced by Marx. 
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Let us turn back to the problem of equilibrium in the process 

of extended reproduction. The formulae expressing the ratio 2. 
2 

were introduced on the assumption that the conditions of equi- 

librium of this process were satisfied. If there is no equilibrium, 

the proportions may be different than it would appear from the 

formulae (2c) and (3) or (4); thus, for instance 

Pi + Are dac : 

Pą |=a, Bic 

However, if the equilibrium condition of the process of re- 

production is not satisfied, this process cannot be realized. *Bottle- 
necks” appear in the process of reproduction and production 

shrinks in proportion to available means which are in relatively 

short supply. If, for instance, means of production constitute such 

a bottle-neck and there is a shortage of means of production 

necessary for a given process of reproduction, this causes a decrease 

in the production of means of consumption. 
NB sę RE 

Let us denote by 4 the ratio = when the condition of equili- 
2 

brium is satisfied. Thus = A, hence P; = AP2. Let us now 
2 

assume that the equilibrium condition of the process of reproduc- 

tion does not hold, and let P; < AP2. Then, production in Di- 

vision 2, i.e. Pa, will decline to P;, such that zk = 4. 

2 

: P 3 — 
If for instance, 75 = then P> must decrease to P>, satisfying 

2 

the condition P; = AP. Therefore, = AP> = AP», hence P> = 1P, 

which means that production in Division 2 will decline by 25 per 
cent. , : 

If, however, means of consumption are a bottle-neck, i.e. the 
entire available labour force required to use the means of pro- 

duction cannot be employed (ie when Pi > AP2, e.g. Pr = 71 , 

then P; must again decrease correspondingly which means that 
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in the process of reproduction part of the existing means of pro- 
duction is superfluous. 

We can see that, if the equilibrium condition of extended 

reproduction is not satisfied, the scale of production falls and 
adjusts itself to the bottle-neck. 

As we know, the equilibrium condition of the process of 
extended reproduction may be presented in the following form 
(see formula (2a)): 

Mop = Vi +My +Myy—C2. 

Adding m, to both sides of this equation we obtain: 

Myce Mac = Vy TM HIM y+Myy— Cp. 

The latter formula can be simplified as follows: 

mę = 01 M —C2, (a) 

where m, > 0. 

This condition of equilibrium of the process of extended re- 

production was discussed by Marx (without giving any formula) 

in volume 2 of Capital. In the case of simple reproduction, the 
equilibrium condition is 

C2 =V1 HMI. (b) 

From a comparison of the formulae (a) and (b) it appears that 

extended reproduction occurs when %1--m1 > C2. Then, the differ- 

ence v;--m1—C2 is invested in one or both divisions of the eco- 

nomy. The surplus %1--m1—c can be called the accumulation of 

means of production (it is the net supply of means of production, 
i.e. the surplus production of means of production over replace- 
ment requirements); the left-hand side of equation (a), i.e. m., 

determines the total amount of investment (the demand for 

additional means of production). 

Condition (a) states that, in the process of extended repro- 
duction, accumulation of means of production must equal total 

investment. 
In connection with the above considerations, Nemchinov has 

introduced the coefficient 

Me 

os U1+M—G ’ 
(5) 

which he called the balance coefficient. 
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Coefficient Q can also be called equilibrium coefficient. When 

‘the process of reproduction is in equilibrium, Q = 1. Oa; 

then only part of the accumulated means of production is used 

for investment. In other words, investments are insufficient to 

absorb the available surplus production. Owing to the existence 

of surplus accumulation over investments, stocks of non-invested 

means of production form.’ The condition © > 1 does not occur 

in practice. If Q exceeds 1, then in a capitalist economy investment 

stresses arise; there is inflation and prices of means of production 

increase. 

Nemchinov tried to calculate coefficient Q for Great Britain.‘ 

On the basis of statistical data mentioned in Chapter 1, Nemchinov 
discovered that for Great Britain in 1950: 

V1 +m,—C, = 2663v,+2010m,—2196c, =2477, 

and, at the same time, m, = 2143. Hence 

2143 
0= ATT 7 0.865. 

From these calculations Nemchinov concluded that in Great 

Britain in 1950 there was a shortage of investment of the order 

of 13.5 per cent.7 This means that the national economy could 

have invested more means of production than it actually did. 

It follows from another calculation by Nemchinovs that coeffi- 

cient Q for England in 1935 was 1.24. Thus, this should have been 

a period of investment stresses. 

In a capitalist economy the current production of means of 

production and thus also the supply of additional means of pro- 

duction depends upon investment decisions made in the past on 

the basis of expected future profitability of a given branch of 

* Of such cases Swedish economists say that “unintentional investments” 
are created in the form of increased stocks. 

sv. Nemchinov, Nekotorye voprosy ispolzovanya balansovego metoda 
v statistike vzaimnosvyazanykh dynamicheskikh ekonomicheskikh system, p. 17. 

7 The year 1950 was the period when recession was coming to an end. 
s See V. Nemchinov, Ob sootnoshenyakh rozshirennogo vosproizvodstva, 

Voprosy Ekonomiki, No. 10, 1958, p. 31. 
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the economy.’ In a socialist economy, the magnitude of coeffi- 

cient QO depends upon the economic plan and, as a rule, this 

coefficient should equal unity. In Poland, during the 6-year plan 

period, there was a tendency to fix Q > 1, and thus the plans 
were prepared on too optimistic basis and could never be fully 
implemented. 

In concluding our considerations on the equilibrium conditions 

of the process of extended reproduction, let us explain one more 

problem of a terminological nature. If the right-hand side of 

equation (a), i.e. 1-701 —C2 is greater than the left-hand side, i.e. 

than m,, then the equilibrium condition is not satisfied because 
stocks of unnecessary means of production are formed. In western 

economic literature a different terminology is used although it 

expresses the same thing. An appraisal of the degree of dis- 

equilibrium in the process of reproduction is based on the size of 

the ratio of investments to savings. This is tantamount to studying 

mM, 

U1-+-M,— C2 

is no equilibrium. In periods of expansion savings are smaller 

than investments, and in periods of economic recessions the 

opposite situation exists: investments are smaller than savings. 
This terminology speaking of the lack of equilibrium between 

investments and “savings” as the source of depressions was ori- 

ginally introduced by Swedish economists and became widely 

known in western economic literature. 
We can also introduce the condition of disequilibrium defined 

as D = Q—1. As we can see, D may be either negative or positive. 

According to the results of Nemchinov’s studies, the condition of 

disequilibrium for Great Britain in 1950 was 

D = Q—1 = 0.865—1 = —0.135 = —13.5% 
and in 1935 

D = Q—1 = 1.24—1 = 0.24 = 24%. 

In a Marxian analysis of equilibrium of the process of repro- 

duction, the whole production is divided into two specialized 
divisions. In particular, according to Marx’s assumption, means 

the ratio . If this ratio does not equal unity, then there 

9 Compare the mimeographed lectures by O.! Lange on: The Theory of 
Economic Development, Chapter 5, The Publishing Department of the Uni- 

versity of Warsaw, Warsaw, 1958. 



40 OSKAR LANGE 

of consumption cannot serve as means of production. In practice, 

however, different situations arise. In agricultural production, for 

instance, grain serves simultaneously as a means of consumption 

and a means of production (grain for sowing and as fodder for 

livestock). The situation is similar in other branches of production 

(e.g. coal). For this reason statistical calculations concerning the 

division of the economy into industries, according to Marx’s 

schemes, are fairly difficult. In our statistics as in those of the 

Soviet Union, the national economy is divided into divisions A 

and B, on the basis of the principles outlined in Marxian schemes; 

but they are not identical with them. In other words, the production 

Divisions A and B are not identical with the specialized Marxian 

Divisions 1 and 2. For example, Division A includes the whole 

armaments production which certainly is not the production of 

means of production. The whole coal production is included in 

Division A, while some. coal produced is earmarked for con- 

sumption, etc. 
An additional problem is that of foreign trade. The question 

arises, for instance, whether export should be included in the 

means of production or in the means of consumption. An ade- 

quate solution of this problem would depend upon what is bought 

in exchange of exported goods. If, for instance, with the proceeds 

from the export of bacon we purchase machine tools, then the 

corresponding part of the bacon production should be included in 
Division 1. If, on the other hand, with the proceeds from the 
export of bacon we buy grain, then the exported part of the pro- 
duction of bacon should be included in Division 2. 

Thus, if the analysis is to be more precise, we must go beyond 

the division of the economy into two parts. Even Marx, in 

Volume 2 of Capital, divided Division 2, i.e. the production of 

consumer goods, into two further subdivisions: (a) the production 

of means of consumption purchased by the capitalists (which we 
called luxury goods), and (b) the production of means of con- 

sumption purchased by the workers (which he called life necessi- 
ties).10 

10 What are the equilibrium conditions for an economy divided into three 
branches? See Capital, vol. 2, p. 424 and ff. A similar distinction is often made 
today in Western economic literature for commodities purchased from wage 
incomes (wage goods). Strictly speaking, Marx assumes that a part of life 
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Let us write out a scheme corresponding to the division of 

the national economy into three branches. It will serve as a transi- 

tion to a multi-branch scheme of the national economy which we 
shall discuss in the next chapter: 

Branch 1: c,+0,;+m,.+m,+myy) = P, 
Branch 2: c2.+-¥2+m.-+My+My = P» 
Branch 3: ¢3+23+m3,+M3,+ Mag = Pa 

c+U+ m+ m, + m, = P 

What are the equ'librium conditions for an economy divided 
into three branches? Of course, the production of means of 

production must continue to equal the demand both for the 
replacement of used up means of production and for increasing 
their stock. This condition may be written as follows: 

Cy U Mic HM Myy = Cy Ca Fg +My t+ Me +M3c- 

Hence, after reduction and transposition we obtain 

Cot C3 Mac Mze = Vi +My tM. (6) 

It follows from this formula that, to maintain equilibrium, the 

surplus production of means of production, not retained in Branch 

1, must equal the sum of the flows of production from Branch | to 

Branch 2 and Branch 3. It is easy to check that condition (6) is 

similar to the equilibrium condition arrived at when the economy 

is divided into two production divisions. However, when the 
economy is divided into two divisions, there is only one channel 

of inter-branch flows; and if the economy is divided into more 

than two branches, the number of channels is greater. Therefore, 

if the economy is divided into, say, three branches, in addition 

to condition (6), we have two further analogous equations: 

CoH V2 + Mac Ma, Mag = Vy +V2 + U3 +My t+ My + Mp - 

Hence, after reduction 

CM. Mag = 04103 +My + M3p5 (7) 

and 

C3 U3 + M3e+ My + M39 = Myo Mag" M30, 

necessities is purchased by the capitalist. To simplify the exposition, we assume 

here that they are purchased by the workers only. 
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or 

C3 + U3 +3 e+ May = Myo Mag. (8) 

The first of these two additional conditions, i.e. condition (7), 

follows from the assumption that production in Branch 2, Le. 

the production of means of consumption for the workers equals 

the sum of the wage fund in all three branches, i.e. 71-02-03 

plus what is earmarked for increasing this wage fund, i.e. my, 

1-913, . ; 

Condition (8) is derived from a similar assumption concerning 

the equality of the production of means of consumption ear- 

marked for the capitalist and the part of the surplus value ear- 

marked for consumption. ~ 
It can be shown, however, that conditions (6), (7) and (8) 

are not independent; in other words, if two of them are satisfied, 

then the third must also be satisfied. Indeed, deducting both 

sides of equation (7) from equation (6) we obtain 

C3 M2 FM3c—Ma2c— Mag = Myy—V3— My, 

and hence 

C3+U3+ M3c-H M3, = M4yg- Mg; 

which is condition (8). 

The interdependence of conditions (6), (7) and (8) follows 

from the fact that the value of the aggregate production is deter- 

mined in advance. 

Let us consider once more the conditions of equilibrium of 

the process of reproduction for the case of the division of the 

economy into three sectors. Condition (6) states that the surplus 
production in Branch 1 (the right-hand side of equation (6)) 

equals the demand for the products of Branch 1 forthcoming 
from the remaining branches. Conditions (7) and (8) may be 

interpreted in a similar way. On the basis of these comments it is 

possible to predict what the conditions of equilibrium may be for 

a larger number of branches. If the national economy is divided 

into n branches, then there are n—1 independent conditions of 
equilibrium, and each of these conditions expresses the fact that 
the surplus production in a given branch (i.e. the quantity not 
consumed by this branch) equals the sum of demands for products 
of this division forthcoming from the remaining branches. 
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At first no attention was paid to Marx’s two- and three-branch 

schemes. Only toward the end of the last century has the discussion 

on this subject begun. Lenin published at that time (1893) the 
study “On the So-called Market Problem” (W zwiazku z tzw. 

kwestią rynku)"’ in which he argued against the views expounded 

by the Narodniks that in Russia the development of capitalism is 
impossible because there is no market. In this study Lenin used 

Marx’s schemes of reproduction in the analysis of the problem 
of accumulation and of development of the economy. A little 

later, the well-known Russian economist, Toukhan-Baranovsky, 

tried to prove, on the basis of Marxian schemes, that capitalism 
as an economic system has unlimited possibilities of development. 
The discussion around these views and on the importance of 
Marxian schemes of expanded reproduction in asserting the 

prospects of development of the capitalist system of production 

lasted 30 years. It has not led to any conclusions because, as it 

turned out, the schemes of production equilibrium do not suffice 

for solving the problem which was the subject of this discussion.12 

11 See V. I. Lenin, Dzieła (Works, in Polish), vol. 1, Warsaw, 1950. 

12 This discussion is described by P. M. Sweezy in: The Theory of Capitalist 

Development, London, 1949 and in the mimeographed lectures by O. Lange, 

Teoria rozwoju gospodarczego (The Theory of Economic Development, in 

Polish), Part I, Chapter 3. 



CHAPTER 3 

MULTI-BRANCH SCHEMES OF 

REPRODUCTION 

IN the twenties and thirties of this century, interest in Marx’s 

schemes has again been aroused although its source was different 

from that discussed toward the end of the preceding chapter. New 
studies have resulted in the development of multi-branch schemes 

of reproduction. 

In the Soviet Union, during the period of drawing up the 
first 5-year plan (1928-1932), economists began to deal with the 

problem of the theory of expanded reproduction and accumulation 

in connection with economic planning and the preparation of 

socio-economic balance-sheets (balance-sheets of labour, raw 

materials, personal incomes and expenditures, etc.). Overall 

compilations of all these various balance-sheets were to provide 

the information for the general balance-sheet of the whole 

economy and to serve as a basis for the drawing up of its 

development plans. 

Under socialism, socio-economic balance-sheets began to play 

a role similar to that played in a capitalist system by economic 

accounting which makes possible control and provides a basis 

for new decisions. Similar balance-sheets are in use today also 

in some capitalist countries. They constitute a further stage in 

the development of economic accounting and form a basis for 
social (national) accounting. The development of this form of 

accounting in capitalist countries was undoubtedly prompted and 
influenced by the balance-sheet method used in the U.S.S.R. 

This was the origin of the system of balanced production and 

consumption of commodities which came to be known later as the 
input-output analysis or the inter-branch flows analysis. 

V. Leontief, an American économist of Russian descent, is 
generally considered to be the founder of the modern input-output 

44 
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analysis. In 1941 he published the study: The Structure of American 

Economy 1919-1939,! in which he used and developed the method 
of input-output analysis for production.2 Basic ideas for this 
analysis were conceived in connection with the studies on the 

balance-sheet of the national economy of the Soviet Union. 

Leontief, who was then still in the U.S.S.R., published in 1925 

a paper entitled: Balance of the National Economy of the U.S.S.R. 
(Balans narodnogo khozyaistva SSSR) in the journal Planovoe 

khozyaistvo. In this paper he presented the idea of input-output 
analysis. 

A more detailed discussion of input-output analysis can be 
found in various studies of an economic or econometric nature.3 

We shall, therefore, confine ourselves to a brief description of 
only the most general features of this method. 

Let us assume that the national economy is divided into n 

branches. Let X; and x;(i=1,2,...,m) denote the aggregate 

product and the final product of the i-th branch, respectively, and 
let x;;(i,j = 1, 2, ..., n) stand for reproduction flows from branch 

i to branch j. Moreover, let Xo denote the whole labour power, 

Xo;(i = 1, 2, ... n) the amount of labour employed in particular 

branches of production, and x»—the amount of labour employed 

outside production or not employed at all. 

Let us draw up a balance-sheet of production according to 

the scheme shown overleaf.4 

It is evident that there exist many relationships between the 

quantities shown in this table. First of all, the sum of reproduction 

flows contained in each row of this table and of the final product 

'V, V. Leontief, The Structure of American Economy 1919-1939, 2nd 

edition, New York, 1951. 
2 This, incidentally, was not the first study by Leontief in this field. The 

first paper on this subject was published by him in 1937 in the Review of 

Economic Statistics. 

3 See for instance O. Lange, Introduction to Econometrics, ed. cit., Chapter 3 

entitled Theory of Programming. See also P. Sulmicki, Przepływy między- 

gałęziowe (Inter-branch Flows, in Polish), Warsaw, 1959 and T. Czechowski, 

Wstęp matematyczny do analizy przepływów międzygałęziowych (Mathematical 

Introduction to Inter-branch Flows Analysis, in Polish), Warsaw, 1958. 

4 Examples of specific balance-sheets of production drawn up according 

to these schemes can be found in the Appendix to the text-book by O. Lange, 

Introduction to Econometrics, ed. cit. 
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Vi Xo1 X02 Xon xo Xo 

XU XQ = one AR X1 Xi 

X21 ‘X22  ... Xan X2 X 
a 

ci 

Xn Xn2 ++» Xnn Xn Xn 

M; m Ma ... Mn 

| zak 

Pi A AO) wo 2H 

equals the total product of a given branch of production. An 

analogous equation holds for labour. In this way, we obtain 

n+1 balance-sheet equations for labour and for production in n 

branches: 

Xo = XortXo2+ SSE = XonalnX0 = Xoj TX0 

n 

j=1 

At Xi ia ee ne SE X1j FX1 

n 

j=1 
n 

X =Xnu1X2|- ... |-Xo, |-X2 = = Xaj -X2 
j=l 

a... zee eee ozeze eee eee te. 

Xn = Xu rauz +++ FXm X, = AE A 

These balance sheet equations may be briefly written as follows: 

%= | syta (i= Oy lees mans (1) 
ja 

All the quantities appearing in the balance-sheet table can be 

expressed either in physical units (tons, litres, metres, etc.) or in 
value units, i.e. in monetary units (eg. in zlotys), or in labour 
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units (e.g. in man-hours). If physical units are used, then only 

the components in rows can be used and the balance-sheet equa- 

tions given above can be obtained. If the quantities shown in 
the table are expressed in value units, then the columns can also 

be added. 

Adding up the components of any column, e.g. of the i-th one, 

we obtain the cost of production in branch i composed of the 
labour input xo; and the means of production input (x,;+; 

+ ... ++x,i). Since the value of the product is, as a rule, greater 

than the cost of production, a surplus is obtained; it is called the 

surplus value (profit) m;. Thus, there exist for each branch pro- 

duction input equations (cost equations) which can be expressed 

as follows: ; 

X, = Xjji+Xoi +m; (i = 1:2, „o (2) 

j=1 

The structure of production input equations (2) is the same 
n 

as that of Marx’s schemes. Indeed, we can write » Xji = Cj, 
j=l 

Xo; = v;, and, therefore, the total product of branch i is X; =c, 

+v;+m;. It can be seen that the production input equations are 

an extension of the division of the Marxian schemes into n 
branches. 

Leontief makes a very general assumption from a mathematical 

point of view, namely, that the output of each branch can be used 

either as a production input in any other branch, or as a means 

of consumption. It can, of course, also be assumed that some 

branches of production are of a specific nature, as Marx did in 

his two- or three-division schemes. For instance, if the output 
of branch i is not used as a means of production in branch J, 

then x;; = 0. In the case of the division of the national economy 
into the two specialized Marxian divisions x21 = 0 and possibly 

also x22 = 0 which means that production in Division 2 is not 

used as a means of production either in Division 1 or in Division 2. 

In general, in the matrix (the square table marked by double 

lines in the balance-sheet) composed of the components x;; 

(i, j = 1, 2, ..., n) denoting reproduction flows and the production 

retained within a given branch (the components x;; located on 

the diagonal of the flow matrix), some values x;; may equal zero 
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or be so close to zero that, for all intents and purposes, they can 

be assumed to equal zero. 

Let us also note, that all the quantities in Leontief’s table are 

flows and, therefore, their dimension is WT-1. Indeed, X;, x;, xij, 

etc. denote the quantities or values of output produced or used 

up during a unit of time, e.g. during 1 year, 

Comparing the right-hand sides of equations (2) and (1), we 

obtain the equilibrium equations of inter-branch flows: 

n n 

a ee AS 2: (3) 
Pel j=l 

Equations (3) can also be called equations of equilibrium 

between the demand for, and the supply of, the product of each 

branch. Indeed, the left-hand side of equations (3) shows what 

the given branch of production takes and produces and the right- 

hand side of these equations shows what the branch supplies. 

Equations (3) can be transformed by removing from both sides 

the component x;;; thus we obtain the most frequently used form 

of the equilibrium equations of inter-branch flows: 

eae ae wen an) (3a) 
J#i jźi 

There are n equilibrium equations, but only n—1 are inde- 

pendent ones because having n—1 equilibrium equations we can 

derive the nth equation.5 

The meaning of equations (3a) can be expressed as follows. For 
each branch of production the value of the products that this 

branch obtains from other branches plus the value of labour 

and profit equals the value of the products that the branch sup- 
plies to other branches of production plus the final product 

produced in this branch. 

It can easily be shown that the general equilibrium equations 

conform to the condition of equilibrium given by Marx. We shall 
show this, using the example of the process of simple reproduction. 

5 Cf. the comments on the equilibrium of the process of reproduction when 
6 economy is divided into 3 branches, made at the end of the preceding 
chapter. 
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When the economy is divided into two specialized divisions n = 2, 
X21 = 0 and x; = 0 (because there is no accumulation in Divi- 

sion 1); the table of the balance-sheet of production is as follows: 

X01 X02 Xo Xo 

| X11 X12 | xu=0 Xi 

| X21 FE 0 X22 | X2 X 
| | 

m1 Ma 

X X» 

The equilibrium equation of inter-branch flows (3a) will then 

assume the following form: 

X01-LX1--X21-/M1 = X11-X12-X1. 

If we assume that x2; = 0 and x; = 0, we obtain xo1--m1 = X12 

or, using Marx's notations, vi+m = c1. This is the well-known 

Marxian condition of equilibrium for the process of simple re- 

production. 

We shall now deal in greater detail with the process of expanded 
reproduction, using the input-output method of analysis. We 
shall divide the final product of each branch x;, into two parts: 

the part earmarked for consumption xf and the part earmarked 
for investments J;. Since, however, the part earmarked for in- 

vest ments may be placed in different branches, we divide, in turn, 
I, into the components J;,, Jj2, ..., Ji, which denote the amount 

of the final product of branch i earmarked for investments in 

branches 1, 2, ..., n, respectively. Thus 

X= XfO4G = x30+-Iq fa ... in. 

Considering the division of the final product given above, we 

obtain the following expanded table of the balance-sheet of pro- 

duction inputs and outputs: 
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Xo1 X02 Xon he SG 2 x(0) % 

Mi Sam ee ŁZY! lu lz 000 Tn AO) XG 

N21 X22 ... Xon br, ba ... bn x(0) 6 

1 

Xn1 Xn2 +++ Xnn Ji WEB ono Ibs x) xe 

matrix of reproduction matrix of investment 
flows flows 

A | 

A 

In statistical practice, it is possible to divide inter-branch flows 
into flows earmarked for reproduction and investment, but the 

task is undoubtedly fairly cumbersome. Let us note that the quan- 

tities located on the diagonal of the matrix of investment flows, 

ie. Li1, doz, ..., Inn Constitute the investments of the final product 

in its own branch, i.e. in the branch in which the final product 

had been produced. In the above table, we have also divided 

labour into Xg;, i.e. labour employed in reproduction, and x%4;, i.e. 

labour employed in investments. 

Equation (3a) will assume the following form: 

n n n 

Si xjt xem = DRE DW EEC 

jl jźl j=l 

(i= 1,2, ...,71). (3b) 

In the case of the two-division Marxian scheme, the table of 

the expanded input-output balance sheet is as follows: 

Xo1 X02 X61 Xoo | xO Xo 

Xu X12 Tn Tz 0 xX 

0 0 0 In KO? X 

m Ma 

Xi, X2 
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The equilibrium condition in this case is: 

X01 HMM = X2+hithe, 

and using the notations introduced by Marx we have: 

U1--My = C21M101-M,. 

Considering further that m = m,.+7 +m, the last equation 

can easily be transformed into the known equilibrium condition of 
the process of expanded reproduction: 

Vz+My+Myo = Cz + Mac. 

We shall now calculate the aggregate product of the national 

economy (the gross national product) 

i=l 

We shall use equations (3) whose left- and right-hand sides 

represent X;, i.e. the total product of branch i. We obtain: 

X= >= dart) > Y m= = rt | ae 

Let us note, first of all, that the double sums appearing on 
both sides of the last equation equal each other, and can therefore 

n 

be reduced; >" xo; constitutes the total amount of labour employed 
i=1 

n 

in production and equals v, pa m, is the total surplus value m 
i=1 

and 5° x; constitutes the net product of the national economy 
d=l 

which we denote by x. 

Hence, equation: v-+-m = x which expresses the known theorem 

that the national income v-+m (the sum of wages and surplus 

value) equals the net product x, i.e. that part of the aggregate 

product which has not been used up for reproduction.® In partic- 

ular branches of the national economy this condition may not 
hold, but it is satisfied in so far as the whole national economy is 

concerned. 

6 Let us remember that in statistics the sum v-+m is called value added. 

Thus, the value added for the whole economy equals the net product. 
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Let us now analyse production balance-sheet equations (1). 

We shall introduce into our considerations the technical coeffi- 

cients of production a;; defined as follows: 

dj SLE ANI 70) 
ee | 

The technical coefficient of production a;, tells us what amount 

(or what value) of the product of branch i is necessary to produce 

a unit (in physical or value terms) of the product of branch j.7 

If the coefficient a,; is determined as the ratio of x;; to X; expressed 
in value-monetary units, then a;, is called the input coefficient. 

It follows from the definition of the technical coefficients of 

production that inter-branch flows can be determined from the 
relevant technical coefficients (input coefficients) and from the 
size of the total products of particular branches. 

Indeed, x;; = 4;;X;(i,j = 1, 2, ..., n), and then the balance- 

sheet equations (1) can be presented in a developed form as follows: 

X = yy Xx Hy. X2+ .3. +n XX, 

Xo = dy X19. X24 ... + on Xn +2, 
ME EWELINA a 
X = Any Żar M2 ... Ham Xn tXn, 

These equations can also be presented in the following form: 

| (1—a,) X;—a,, X— ... a, X, = X, 

—d4 X (1—a7) X— ... —dy X, = X, (5) 
a... zo ee ee ei 2 rs 

—4n1 © G leat X— RET (l= 435) 45 dns 

The system of equations (5) consists of n linear equations 
containing 2n unknowns: X1, X, ..., X,, and x1, X, ..., x,. If we 
assume that the final products x1, x2, ..., x, are determined (e.g. 
by the economic plan), then the remaining unknowns X, X, ..., 
..., X, 1.6. the total products, can be determined from the system 
of equations (5). 

7 A more detailed discussion of the technical coefficients of production 
and the methods of solving a system of balance-sheet equations (with respect 
to x; or X;) can be found in Chapter 3 of Introduction to Econometrics. 
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The condition for obtaining a universal solution of the linear 

equations (5) is that the determinant of this system of equations 

shall not equal zero, i.e. 

(=a; i) ay = a;5 | 

—Ay, (1—02) ... —Ary 

a..z... ey 

ant zg) 

By solving the system of equations (5) we shall be able to 

analyse more closely the relations (proportions) that must exist 

between the total products and the final products of various 
branches. 

Moreover, if we divide the final products appearing on the 
right-hand side of the system of equations (5) into parts ear- 

marked for consumption and investments: 

X1 =k1 x1+ 1 X1; 

X2 = ką X2 b X2, 

| 
| Xn =k xs tl, Xn> 

where the coefficients k; and /; denote, respectively, the share of 

consumption and investments in the final products, it will become 
apparent that the proportions obtaining for the total products 
and the final products also depend upon these coefficients of 

consumption and investments. 
In this way, we obtain a method which enables us to study the 

proportions between the total products of particular branches 

when the national economy is divided into any number of branches 

and not only into two divisions, as in the case discussed in the 

preceding chapter. 
Assuming that the matrix of production technique 

lan  —dy ...  —dn 

eee eee eee eee eee ee eo toee 

POO e ewww renee eee eee eee essere eeeee® 

Peewee eee eee meee ee eeeeeeeeeeeeeee 
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is of rank n which means that the determinant D composed of 

the components of this matrix does not equal zero,’ the solution 

of the system of linear equations (5) with respect to the total 

products Xi, X», ..., X, can be presented as follows :° 

2, Djstj 
0 Wys GG = 152;25m), 

or 

X, =D Au ea Reco (6) 

SE 

Oy) Dji . 
where the quantities 4;; = D e the components of a matrix 

inverse! to the matrix of production technique. 

8 If it is found that D = 0, then, depending upon the rank of the matrix 

of production technique, the size of one or several total products could be 

chosen arbitrarily. If, for instance, the matrix is of rank n—1 (i.e. not all 

minors with n—1 rows and n—1 columns of this matrix equal zero), one of 

the quantities X1, X2, ..., X„ can be chosen arbitrarily and the remaining ones 
will be determined by the system of equations (5). 

9 We use here the Cramer rule for solving a system of linear equations. 

10 The inverse matrix A~! with respect to a given square matrix A = ||azj|| 

is obtained by forming from co-factors Dj;;, components ajj, determinant D 
of matrix 4, the matrix: 

e SCEN 

and then by dividing the components of the matrix thus obtained by deter- 

minant D and transposing rows in place of columns and vice versa: 

Dy Dy | Dm Do DÓB 

Dy Dn | Dm 
A= | | DOD DAB 

Din Don Dpn 
D D D || 



Multi-branch Schemes 55 

Formula (6) can be written in a developed form: 

X; = Aj, X1 +A j2X2+ 206 +Azk Xx eee +AjnXn C= I 22 cess n). 

It follows that the total product of branch i is the weighted sum 

of all final products. The weights A,, appearing in this sum 

indicate by how much total production in branch i (e.g. coal) 
should be increased if the final product of branch k (e.g. steel) 
is to increase by one unit. Indeed 

aX, 
OXy == Aix, 

which means that, if the increase in x, equals 1, the increase in 

X, equals Ay. : 
The coefficients A; are called the coefficients of additional 

requirements, or the product intensive coefficients, in a broad 
sense of this word, since it may also mean an increase in, say, 

the amount and value of machinery for raising the output of 

coal. 

The product intensive coefficients (and the labour-output 
coefficients formed in a similar way) are analogous to multipliers 

used by Keynes in his studies of the effect of an increase in the 

production of consumer goods on employment.1! 

Having the solution of the system of equations (5) for unknowns 

X1, X2, ..., X„, we can determine the proportion existing between 

the total products of any two branches of production “i” and “k”: 

A;; x 

= U 
Ay Xt Apx2t -.. FAknXn (7) 

We shall show now that the general formula (7) which 

determines the proportions between the total products of any two 
branches conforms—for the special case of Marx's scheme in 
which two specialized divisions are considered—to the formula: 

P, ine dac dac sk. pan Sanka kij 

P, PGM 

11 A more extensive treatment of product intensive coefficients can be 

found in the book by O. Lange, Introduction to Econometrics, ed. cit., Chapter 3. 
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which was derived in the preceding chapter (Chapter 2, formula 

(2c)). 
The latter formula, determining the proportion between the 

value of production in Division 1 and Division 2, can be written, 

after applying the more general notations used in this chapter, in 

the following way: 

x ale 012-012 

X 1—an—on 
(8) 

Indeed, the symbol ap, tells us what part of the total production 

in Division 2 constitute the means of production produced in 
Division 1 and used up in Division 2. Thus, a, is the coefficient 

of the input of the product‘obtained in Division 1 and used up 
in Division 2 which, according to notations now used, is denoted 

by symbol au. 

Similarly, coefficient «. denotes the part of the total product 

of Division 1 earmarked for investments in Division 2; this we 

now denote by symbol «2, etc. 

Formula (2) confirms the obvious fact that the greater the 

amount of the means of production needed either by Division 1 

(i.e. the greater a1: or «11) or by Division 2 (i.e. the greater a,» 

OT 12), the greater the ratio = , 1.e. the greater the share of the 
2 

output of means of production in the total product. 

In the case of two divisions (n = 2), the table of reproduction 

flows is correspondingly simplified and the determinant of the 
matrix of production technique is: 

nej Lain —4A12 i 

| 744 1=a+ 

The solutions of the system of balance equations (only two 

in this case) for X; and X> are as follows: 

oan (1—ax2) 1p G12%a yee a1 xt (=a) x2 

D D 

The ratio of the aggregate products of Division 1 and Division 2 
is determined by the following formula: 

M (1—az) x1 +412 x2 
oil kc (9) 

2 du X1+(1—a11) x2 
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In Marx’s schemes it is assumed that these divisions are special- 

ized, namely, that the product of Division 2 does not constitute 

a means of production in either of the two Divisions, and, there- 

fore, X21 = 0 and x22 = 0; and in consequence also az; = O and 

a2 =0. On this assumption, formula (9) is simplified and 
assumes the following form: 

Xi X1--012 X2 

ję * (l—an)x2 * Bo 

Let us now consider separately the case of simple reproduction 
and the case of expanded reproduction. 

In simple reproduction there is no accumulation and therefore 
the coefficients of accumulation «1 = (0 and ai2 = 0; moreover 

the whole product of Division 1 is used up for replacement, and 
thus that final product of Division 1 x: = 0. It follows that for- 

mulae (8) and (10) assume an identical form: 

X1 kz d12 

X l—an 

In the case of expanded reproduction x; > 0 and x; = u11 1 

+012X2, where «1; denotes what fraction of the total production 

of Division 1 is invested in Division 1; similarly «12 denotes the 

fraction of the total production of Division 2 composed of the 

products of Division 1 invested in Division 2. 
Moreover, in view of the specialization of the divisions there 

are no flows from Division 2 to Division 1 and the whole produc- 

tion in Division 2 is consumed; thus x2 = X2. 

Therefore, formula (10) can be transformed in the following 

way: 

X,(1—ay;) x2 

Xx, 
= X, |-44X2, 

therefore 

X, (1—ay)% 

X 

and hence (since x, = X) 

X (day) = 0 X02 X24 412%X2 , 

= 04, XFX X2 
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or 

X (1 —ay1— 411) = (Qi2 + %12) X2, 

and therefore 

X, "Gia 012 

xX, 1 = 2157099 

which is formula (2). 

We have shown that multi-branch reproduction schemes 

and formula (7) which gives the ratio between the total products 

of any two branches of reproduction are an extension of the 
Marxian schemes to cover any number of branches. If, then, 

the number of branches is limited to two and if it is assumed, 

after Marx, that these branches are specialized, we obtain the 

formula for the ratio of the total products of Division 1 and 

Division 2 which we have derived earlier directly from the 
Marxian schemes. 



CHAPTER 4 

INFLUENCE OF INVESTMENT ON THE 

GROWTH OF PRODUCTION 

IN the preceding chapters we dealt with the problem of repro- 
duction and accumulation from the static point of view and 
assumed equilibrium conditions in ‘the process of reproduction. 

We shall now appraise the influence of accumulation and invest- 

ment on the growth of production.! 

Let us recall that by accumulation we understand that part 

of the final product which is not consumed. Investment consists in 

using up this part of the final product as a means of production, 

thus returning it into the process of production. 

By accumulation and investment we increase the amount of 

means of production and the total product in the subsequent pro- 

duction periods. 
Thus, the basis for accumulation and investment is provided by 

the portion of the final product which is not consumed but saved. 
Denoting by x; the final product of branch i, by x{® the part 

consumed and by 7, the invested part of the final product of 
branch i, we obtain the following equation for each branch of 

production :2 
Ree ZOEKO (LESDB2Z MOM 

The part not consumed J; of the final product of branch i can 

be invested in any branch of production and therefore: 

h=lytlut". +, = ly (i=1,2,...,n), 
j=1 

where J;; denotes the product of branch i invested in branch j. 

1 This problem was presented by the author in the paper: Model wzrostu 

gospodarczego (A Model of Economic Growth) Ekonomista, No. 3, 1959. 

2 We exclude from our considerations the formation or depletion of 

existing stocks and the influence of imports and exports on the size of in- 

vestments and on the growth of production. 

59 



60 OSKAR LANGE 

Let us construct an expanded input-output balance-sheet table 

including both reproduction and investment flows. 

BZ6R 23, ono eet | lu Mos. Lin iD X 

Kot X22 sn. Koy In th ... Ts ' xo X 

| | 

Xn Xn2 Xnn | Im Ina «+ Inn 3. Xn 

Table (matrix) of Table (matrix) of 

reproduction flows investment fiows 
| \ 

Let us note that on the basis of the matrices of reproduction 
and investment flows we can construct a matrix of aggregate 

flows; the latter is equal to the sum of the two former matrices: 

Xutln Meth ++. Xin tyn 

X tlxy Xaatlz2 «+» Xzantłan || _ 

AGS Xn2 tte A Ag 

X11 X12 +++ Xin | Tarde 6-3 ly 

m | X21 *22 X2n Th, lx Dyn 
CA eos e r Oh UG IAN, a 

Xnt Xn2 +++ Xun iA Tha sisi "Fe 

. The balance equations, obtained on the basis of the expanded 

inter-branch flows table, have the following form: 

m; n 
Xi dada włada YO zd eae (1) 

j=l j=l 

This can also be written as follows: 

Nie AT 1) +x. (la) 

The amount of the product of branch i that should be in- 
vested in branch j in order to obtain in the latter a specified 
increase in total production is determined by the technical con- 
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ditions of production. In this connection we shall introduce the 
notion of investment coefficients b;; as defined by formula: 

eee WA, (2) 

in which 4X; denotes the increase in the total production of 
branch j. The investment coefficients are purely technical indi- 
cators since their magnitude depends exclusively upon the tech- 
niques of production. They indicate how much of the product of 
branch i should be invested in branch j to increase the total pro- 
duction of this branch by one unit. 

If the growth of the total product of a given branch is pro- 

portional to the investment flow from another branch, (as is 
usually assumed), then the investment coefficient b;; equals the 

capital-output ratio c¢;;. 
To show that this is so, we denote by K;,, the amount of the 

product of branch i engaged (in the form of a stock of means of 

production, i.e. in the form of constant capital) in branch /; this 

is the amount of constant capital in branch j in the material form 

of products of branch i. The capital-output ratio c,, is then 

defined by the formula 

Ki; 
Cij PŚ (3) 

and hence 

Ki; = Cij Xj a; 

The capital K;; and the total product X, change during the 

process of production and thus are functions of time £; therefore: 

K;;(t) == Cij X;(t). 

If we assume that the process of growth of capital K,;(t) and 

of the total product X;(t) is continuous and therefore these quan- 

tities are continuous differentiable functions, then the last equality 

can be differentiated for variable £. Hence, we obtain 

RY Me 
Fad wa od, oe 

The derivative appearing on the left-hand side of formula (4) 

denotes the increase in constant capital at any given moment 
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or (approximately) the increase in constant capital per unit time 

(e.g. per year), and therefore =. = I,,. Similarly, the derivative 

Leie approximately the increase in the product per unit 
dt 

time.3 

Equation (4) can then be written in the form: 

I,j = cy AX;. (4a) 

Comparing equation (2) with equation (4a), we see that 

bi; = cij, i.e. investment coefficients b,, equal the corresponding 

capital-output ratios Cy. | 
In studying the process of reproduction and investment we 

use two kinds of coefficients: the technical coefficients of pro- 

L SB. Ge x 
duction (more exactly of "reproduction ) 4a;; => and the 

J 

investment coefficients b;; = zu . The first of these two coefficients 

determines the amount of the product of branch i used up for 

producing a unit of the total product in branch j; the second 

coefficient determines the amount of the product of branch i 

required for producing an additional unit of the total product 

in branch j. This may be, for instance, the amount of steel needed 

to produce an additional unit of a textile product. The former 

are the coefficients expressing the technical conditions of using up 

means of production in current production, the latter are the 

coefficients expressing the technical conditions of the growth of 
production.4 

At a first glance it might appear that the coefficients a;; and 

b,, actually denote the same thing and equal one another. How- 

3 If we assume that K; j and X; are linear functions with respect to ź, then, 

dK;; e CRE 
exactly, Te = I, and a = AX; (per unit of time). 

* A more detailed discussion on this subject can be found in the paper 

by O. Lange, Produkcyjno-techniczne podstawy efektywności inwestycji 
(Production and Technical Basis of the Effectiveness of Investment), Eko- 
nomista, No. 6, 1958, pp. 1166-67. 
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ever, generally, this is not so. The equality a,, = b,, occurs only 

if the period of turnover, i.e. the lifespan of an investment, is 

l year. If, however, the lifespan of an investment is longer than 
1 year and the period of its turnover is T,,, then the investment 
coefficient: 

by = aj Ti. (5) 

Indeed, if we want to increase for instance the production of 

textiles in the following year, we must invest in a whole machine, 

» ; ] 
although in one year only part of the machine equal to T. of 

its value is used up. Here 7;, > 1. If, on the other hand, the 

period of turnover of an investment 7;; < 1, that is, if the in- 

vestment in question is for instance an additional input of a raw 

, (Rh ać : 1 
material which is used up within one month, ie. Tj; = Ip’ t9 

: ‘ ; l 
produce a unit of product it suffices to invest z of the amount 

used up during one year. Let us assume, for example, that to 

produce | metre of some fabric 1 kilogram of cotton is used up 

] k ś : 
during one quarter (r, = zj in this case, to increase the pro- 

duction of this fabric by 1 metre during | year an additional 

1 l ; 
quantity of cotton equal to 1 kg cee’ kg will suffice. 

It follows from the condition that the investment coefficient 

Ki 

d rh an b,, must be equal to the capital-output ratio, that b,, = 

therefore5 K;; = b,,X,. 
Differentiating the last equation in which the variables Ki, 

and X; are regarded as continuous (and differentiable) functions 

of time £, we obtain: 

AS Basi 
dt J dt? 

5It is tacitly assumed that the increase in production is proportional to 

the amount of constant capital additionaly invested. 
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and since the derivative sb is the increment of constant capital 
dt 

per unit of time, i.e. the investment J,,, then:6 

dX, 
Ty = by (6) 

Formula (6) means that the size of investment /,, (i.e. the 
investment of the product of branch i in branch /) is proportional 

to the velocity at which the total product of branch j increases at 

a given moment (the author distinguishes between the velocity 
and the actual rate of growth, see further). 

Formula (6) is more convenient than formula: /,, = b,, 4X; 
in which the size of investment /,, depends upon the increase 

AX; and, therefore, also upon the period for which this increase 

has been determined.7 
If instead of investment flows /,, we introduce their values, 

defined by formula (6), we can write the expanded table of repro- 

duction and investment flows in the following way: 

dX, dx, aXy 
A,X, ApX2--- Qin Xp bu gy bia gy: On Gp Z X 

dx, dX, dX), 
dy X Az +++ zn An 2a ję 722 gy © 92m gą x X 

dX, dX, dX, 
GWANNdOAZC JANA bmi "dr On ap ae bun Ge x0) xX; 

6 The same result can be obtained in a different way. We know that ij 

= bj; 4X;, and 4X; represents the increase in production per unit time: 
DC 

At = 1, If 4t 4 1, then Jj; = byy: Assuming that Ar > 0 and using the 

; Cr 4 dXj 
notion of limit, we obtain Tij = bij Tee 

7 There is an analogy, here, with the definition of velocity of motion u, 
| EZ. ś ; — As either as the ratio of increase in the path s to the increase in time ¢: v = Ai’ 

or as the derivative of the path with respect to time: 

ne aso ads: 
= Noo) ee 

At>0 At dt 

It is obvious that the second definition is more convenient and more general. 
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In consequence, the balance equations (1) will assume the 
following form: 

= aX, (t 
X(t) = Vau X(0+ ye A ) Lxfo(r) 

j=l j=l 

(= 1,2,...,n). (7) 

This is a system of n differential equations of the first order 

in which functions: X1(1), X2(t), ..., X„(t), and functions x(9(x), 
x10(t), ..., x0) appear as unknowns. They are continuous 
functions of time £ by assumption. 

The unknowns x(t), x” (1), ..., x(t), which determine the 
parts of the final product allocated for consumption at a given 

moment, may be eliminated from the system of equations (7) if 
we assume that the rates of gross investment «, or the rates of 

consumption k; are given for each branch of production. 

The rate of investment is determined by the formula:8 

Xt) xf 
a= a (8) 

This is the ratio of the surplus total product of a given branch, 

over its consumption, to the total product, i.e. the fraction de- 

termining what part of the total product of a given branch is 

used for reproduction and investment in the same or in other 

branches. 

A 
XO indicates what part of 

the total product of a given branch is consumed. 

It follows from the definition of the rate of gross investment 

and of the rate of consumption that a, = 1—k;. 

It follows from equation (8) that X;,(t)—x} (t) = «, X;(t), and 

therefore the system of equations (7), containing 2” unknown 

The rate of consumption k;= 

8 In our further considerations we assume that the rates of gross investment 

are constant. In reality they are subject to change and, therefore, are functions 

of time £ and should be written in the form «;(t). 
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functions, can be transformed into a system of equations with n 

unknown functions: 

a;X;(t) = Saux 
ye dX;j(t) 

(ais 25. 5), (7a) 

or 

dX; 
—a,X;(t)+ Santos AE Oz 

GZA 2.20): (7b) 

Equations (7b) constitute a system of n homogeneous linear 

differential equations’ of the first order with constant coefficients 

containing n unknown functions and its derivatives. This kind of 
system of differential equations can be solved by a relatively 

simple method of “trial and error substitutions” often used for 
solving differential equations. 

Since single differential equations of the first order and with 

constant coefficients have solutions in the form of an exponential 
function, we try to ascertain if solutions of the system of differ- 

ential equations of the type (7b) are exponential functions of 

the type X,(t) = k,e"". To check this assumption, we substitute 

in the system of equations (7b) the function k;e” for X;(t). We 
obtain the following system of equations: 

= OK 6" = > a,k,e”* + > b,,kjice 0 (i=1,2,...,n) (Te) 
j=l pet 

or, after dividing both sides of the equation! by e”: 

ayaa Sue sf Do byk G=0 soit Ga 
jad 

It is found that the system of differential equations (7b) is 
satisfied by the solutions: X; =k;e'* (i=1,2,...,n) if the 
values of k, and the parameter v are so chosen that the system of 

* A differential equation is called homogeneous if it does not have free 
terms, i.e. terms not containing an unknown function or its derivatives. 

10 The exponential function e”! cannot equal zero for any value of ¢. 
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homogeneous linear algebraic equations (7d) is satisfied. We know 

that a system of homogeneous linear algebraic equations is satisfied 

(except for a trivial case when all roots equal zero) only when the 

determinant of this system equals zero, and then: 

tan Pó  AytdyV  ...0y,|-bin0 

dą +10 Ag+ da rd V ... Bzy tb, 
eee eee eee eee ee eee eee eee ee ee eee ee eee ee eee eee ee ee ee 

Any FAY Any +by2V OGO = ln Opal. 

Let us note that in this determinant the components located on 

the main diagonal are of a different type from the remaining 

components of the determinant. This is so because it is only in 
the components located on the main diagonal that there appear 
the rates of gross investment «; in addition to the technical coeffi- 
cients a;; and the investment coefficients b;;. 

Condition (9) is the characteristic equation of the system of 

differential equations (7b). From the characteristic equation (9), 

we can determine v and then calculate the values of k; from 

equation (7d). 

Let us note that the determinant (9), after it is expanded, forms 

a polynomial of order n for variable v. Thus, condition (9) may 

be presented in the form of the following equation: 

A,U"+A,_iv" + ... +Aq +4 = 0. (10) 

Equation (10) of order n with respect to v has, as we know, n 

roots (some of them may be multiple i.e. may have the same 

value), real or complex; as complex roots always appear in pairs, 

to each complex root there corresponds another complex root, 

conjugate with it.1! 

Substituting successively in the system of equations (7d) the 

roots 01, V2, ..., 0, from equation (10), we obtain n systems of 

equations with n unknowns. Each of these n systems gives us 

a solution for the unknowns k;. Thus, for each k; we have n 

values corresponding to n systems of equations. Symbolically 

these values may be written as k;,(i, j = 1, 2, ..., n). 

11 Two complex numbers are conjugate if they are of the form: a+bi 

and a—bi. 
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Knowing the particular values of k and v, we can determine 

the solutions of the equation (7b) which are functions representing 

changes in time in the total products of particular branches: 

Xi(t), X(t), ..., X,(t), and each of these branches has n variants 

corresponding to different values of v. 

Finally, the functions of total products satisfying equation (7b) 

and corresponding to the i-th branch of production, X,(t) can be 

written as follows: 

ke", k;e*?', vse kj, ee" (= Ik De SEA 

We know from the theory of differential equations that if 

certain functions constitute solutions of a system of linear equa- 
tions, then their sum too, simple or weighted, is a solution of 

the given system of equations. It follows that the most general 

form of solutions of the system of equations (7b) is:12 

X(0) =) hy kye. (11) 
j= 

The coefficients A; are arbitrary constants constituting the 
weights of the sums appearing on the right-hand side of for- 
mula (11). 

Let us now analyse the economic meaning of the solutions of 

the system of equations (7b). 

At the moment ¢ = 0, the solutions (11) assume the following 
form :13 

X,0)= lyk, (= 12,1). (11a) 
j=1 

12 These formulae would be more complex if equation (10) had multiple 

roots. A certain mathematical complication would arise but it would not 
influence the final conclusions. If, for instance, v, were the r-fold root then we 
would have: 

n 

Xt) = hilkutt-1+kptr-2+ ... +kip)+ 1 h;kije”j” . 
j=r+1 

Generally, the coefficients corresponding to a multiple root are polynomials 
of order ¢, by one less than the multiple of the root. 

13 The exponential function e%Jt for t = 0 equals 1. 
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This means that the weighted sum of the coefficients k;; gives 

the value of the function of the total product X;(t) at the initial 

moment (zero). If the initial values of the total products of par- 

ticular branches of production X1(0), X2(0), ..., X„(0) are known, 

then the constants M1, ha, ...,h, can be determined from the 

system of n equations (lla). In other words, the coefficients h, 

are determined by the initial conditions of the process studied. 

Let us now investigate the following question: what is the 

economic meaning of the quantities v1,v2,...,v,, and of the 

coefficients k;; which are indirectly determined on their basis 
and what do they depend upon? The quantities v; have been 

calculated from the characteristic equation (9) in which (besides v) 

there are the technical coefficients of production a,, and the 

investment coefficients b;;, expressing certain technical conditions, 

and the ratio of gross investment a,. It follows that the quantities 
v,(i = 1, 2, ..., n) depend upon the technical conditions of pro- 

duction and the growth of production as well as upon economic 
decisions concerning the allocation of the total product to con- 

sumption and gross investment (compare formula (8) determining 

a;). We express this by saying that the quantities v1, v2, ...,v, 

depend upon the technical and economic structure of production. 
Moreover, if the roots v;,%v2, ...,v„, Which constitute the 

solutions of the characteristic equation (9) are real, they repre- 

sent the rate of growth of the total product of a given branch. 

Let us consider, first, the case when the function of the total 

product X;(t) is expressed by only one component: 

X;(t) = hy k;,e""*. 

The velocity of growth of the total product X;(t) equals the 

derivative of this function: 

dX;(t) 
dt 

But the rate of growth of the total product is the ratio of the 

velocity of growth of the total product to its size at a given mo- 

ment: 

= h, ką01e7". 

dX;(t) 

=p] (12) 
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In this case the coefficient v; gives the rate of growth of the total 

product. 

In the general case, when a function solving the system of 

equations (7b) is the sum of a certain number of components, 

i.e. when: 

X(Q= DV hykyert, 
j=1 

we obtain 

dX;(t) 

dt 

t 
= hykj0, e?' +hyk jv, e"2" - ater th, k j,0,e°" « 

\ 

The formula for the rate of growth is obtained by dividing 

both sides of this equation by X;(t): 

dX (2) 
dt ba hy kOe! thy kipv,e°*+ ... +h,k;oe?nt = 

X(t) hy ke" thy k e+ ... h,k,ent " 

The right-hand side of formula (13) can be interpreted as the 

weighted average of the roots v1, v2, ...,v„. The roots U1, V2, ...,U, 

can be called partial rates of growth and the expression defined 

by formula (13) is called the general rate of growth of the total 

product of branch i. 

Studying the general rate of growth of the total product of 

branch i we should bear in mind that the partial rates of growth 

may be more or less than zero or may equal zero; thus, the com- 

ponents of the sum determining the total product 

X(t) = hy ke" +hyk ie’ + ... thy kine?" 

may be increasing, decreasing or constant functions.14 It may 

happen, of course, that some of them are positive, some nega- 
tive and some equal zero. 

Let us consider, for the time being, some special cases. Let us 

assume that the partial rates of growth v1,v2,...,v, differ in 

value, but are all positive. The graphs of the functions e*", 

u The exponential function y = et is increasing if v> 0, decreasing if 
v < 0 and constant and equal to 1 ifv = 0. 
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e**, ..., e*' constituting the variable factor of the particular 

components, determining the total product X;(t), are presented 

ln Figure 6a. It can easily be seen from this graph that for small 

ert A ert 

Fic. 6a, b. 

values of ¢ the differences are small between the values of the 

exponential functions e”’, e*2', ..., e?n' and thus also between the 

particular components of the sum determining the total product 

X;(t). However, if it increases these differences become greater. 

In consequence, in the course of time, the component to which 

there corresponds the greatest rate of growth v, will exceed more 

and more the remaining components, so that they will cease to 

play a significant role. 
In other words, the growth of the total product of branch i, 

considered as a function of time ¢: 

X(t) = hy ke"! +hgk je?" + ... +Agk ine?” 

is composed of n trends and one of them—the one with the 

greatest rate of growth—is dominant. 
The situation is similar when all partial rates of growth are 

negative. The graphs of the functions e”", e**', ..., e”n' for each 

case are shown in Figure 6b. But here too one of the components 

of the sum 

X(t) = >) hykyerst 
j=l 
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is dominant; it is the one for which the value of the rate of growth 

v is the greatest since the components with smaller rate of growth 

values tend faster to zero. The decline in the value of this com- 

ponent is the smallest as ¢ increases. 

When some partial rates of growth are positive and some 
negative, the dominant component is the increasing one with 

the corresponding highest rate of growth. An increasing trend, 
after a certain length of time, will always overcome a decreasing 

trend. In consequence, there will always appear some dominant 

trend: an increasing one, a decreasing one, or, in an exceptional 

case, a constant one. 

Let us now consider a case in which some roots v are complex. 
We known that to each complex root v there corresponds another 

root, conjugate with it,!5 i.e. if there exists root v; equal to «,--if;, 
then there also exists root v;,, equal to «;—if;. 

Let us consider one of the components of the sum X;(t) 
n 

= > hyk,je'i, for which v, is a complex number. 
j=1 

Using Euler’s formula,'* we can transform this expression as 
follows: 

vt (%.+i6 .)t fra: 
hy ke? = h,k,,e J J = h,k,,ej'e'bit 

= hjk,je% (cos B;t-i sin B;t). 

Hence, we conclude that the component of the sum X,(t) 
n 

= Ss hykije? » to which there corresponds the conjugate 7;, is 
j=1 

a periodic function,!7 because the sum (difference) of periodic 

functions, which sine and cosine are, is also a periodic function. 

15 Here and in further formulae the letter “i” appearing as a factor denotes 

the imaginary number i = V —1; it should not be confused with the letter 
“7” used as a subscript for denoting the number of the branch of production. 

‘6 Euler's formulae: ei" = cos y+ising, e-iP = cosp—ising. In this case: 
p = Bit. 

17TIf a time function is periodic, this means that after a certain length of 
time, called the period of the function, the pattern of the function repeats 
itself in an identical manner. 
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This component represents then a cycle in the development of 
total production X;(t). 

The length of the period 7; of the periodic function considered, 
i.e. the length of the cycle, depends upon the argument of the 

trigonometric function, in this case—upon the quantity f,t. To 

determine this period, let us note that the period of the sine 
function (as well as that of the cosine function) is 2x; we have 
then 

B; T; = 20, 

hence 

2% 
is j B; 

We see that 8,, in this case, is the factor which decides about 

the length of the cycle. 

And what does «; determine? To answer this question we shall 
consider three cases: a, = 0, a, > 0 and a, < 0. 

(1) If a, =0, then e" = 1 and the cyclical component has 
the form h,k,;(cos8;t--isin8,t) and thus is the product of the 

constant quantity h,k,, by the periodic function: cosf;,£--isin8;t. 

The cyclical component is then a function with a constant ampli- 
tude of fluctuations equal to h,k,, (Fig. 7). 

hykij 

Fic. 7. 

(2) If u, > 0, then the factor e*/' increases as £ increases, and 
therefore also the amplitude of the cyclical factor, amounting to 

h;k;;e*4", increases sharply as an exponential function.!* We can 

18 An exponential function (with a base greater than 1) is one of the fastest 

growing elementary functions. 
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see that in this case the fluctuations of the cyclical factor are 

increasing; because of a rapid rate of growth we say that they 

are of an explosive nature (Fig. 8). 

Fic. 8. 

(3) If «; < 0, then, as is easy to show in a similar way, the 

fluctuations of the cyclical factor will be decreasing (dampened) 

because then the factor e*/' is a decreasing exponential function 

(Fig. 9). 
It follows from these considerations that if the compo- 

nents of which the solution of the differential equation (7b): 
n 

X(t) = X. hjkije"* is composed have the exponents v; complex, 
j=l 

then the corresponding components are cyclical with the period 
2 : : . of the cycle T; = By and their fluctuations are constant, explosive 

7 
or decreasing, depending upon the sign of a,. 

„If there are more than one cyclical component with increasing 

| fluctuations then, after a certain length of time ¢, one of them 

\ (the one in which a, is the greatest), will become dominant and 

the remaining components will gradually lose in importance 

because, with the lapse of time, they become more and more 
dwarfed by the dominant cycle. Also dwarfed by the dominant 
cycle are the cycles with constant fluctuations and the cycles with 
decreasing fluctuations which gradually disappear. 
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We have stated that the particular solutions of the system of 

differential equations (7b) which are functions of the total pro- 

duction of particular branches, X;(t) (i = 1, 2,...,n) can be re- 

duced to two kinds of components: increasing or decreasing 

trends (in exceptional cases—constant trends) and cycles with 

constant, increasing or decreasing fluctuations. It is found that 

among the trends one, as a rule, is dominant; similarly, among 
cycles there may appear a dominant cycle with increasing fluctu- 
ations. 

Fic. 9. 

The theoretical considerations outlined above correspond to 

a specific reality. In a capitalist economy there exist cycles com- 

bined with a trend, usually a growing one. 

The question arises: how many types of cycles are there in 

a capitalist economy and what are their lengths? In economic 

literature, business cycles of the duration of 8-10 years are usually 

discussed. But are there other cycles? American economists have 

pointed out that there appear short cycles lasting 3-4 years. The 

existence of such cycles can be established on the basis of graphs 

representing the economic development of the United States 

before the war. In European countries, however, short cycles 

have not been discovered. 
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There is an explanation of this fact. A long cycle is related to 

investments in fixed capital means, while in a short cycle changes 

in investments in working capital are dictated by changes in 

stocks. In the American economy stocks play a much more im- 

portant part than in European countries where, in contrast to 

the United States, a substantial part of production is based on 

orders and there is no need for building up large stocks. It may 

be, however, that short cycles have not been discovered in Euro- 
pean countries simply because statistical information was more 
scanty and less detailed. 

Some economists!” attempted to establish the existence of a third 

type of long-range cycles of 50-60 years duration. These economists 

used as a basis the years 1825-1842 which were years of long 

crises interrupted only by short periods of recovery. The years 
1843-1873, on the other hand, were a period of a general economic 

boom and the recessions appearing during those years were short- 

lived. The years 1874-1896 were again a period of crises and de- 

pressions interrupted by short booms. The next period from 
1897-1913 resembled the situation in the years 1843-1873. 

The pattern of economic development in those long-range 

periods was said to consist of short business cycles of 8-10 years 
duration, superimposed upon a long-range cycle lasting 50 to 

60 years. 

If the theories on the existence of long-range and short-range 
(3-4 years) cycles were true, there should appear in our theoretical 

considerations three types of superimposed cycles.20 

1° One of them was the Russian economist N. D. Kondratiev who published 

in 1925 the dissertation on “‘Bolshie tsikly konyunktury” Voprosy konyunktury, 

No. 1, 1925, pp. 28-79. Even earlier A. Spiethoff in the paper, Krisen in Hand- 

wórterbuch der Staatswissenschaften, 4th edition, Jena, 1923, drew attention to 

periods of intensive growth and periods of relative stagnation in the develop- 
ment of a capitalist economy, without interpreting these periods, however, 

as phases of cyclical development. The first to notice such periods were Parvus 

(A. L. Helphand), Handelskrisis und Gewerkschaften, Munich, 1901, p. 26, 
and Karl Kautsky, *Krisentheorien", Die neue Zeit, 1901/1902, vol. 2, pp. 
136-143. 

20 This was J. A. Schumpeter’s contention; he maintained that in a capi- 
talist economy there appear three types of economic cycles: long-range cycles 
of 50-60 years, medium-range cycles lasting 9-10 years and short-range cycles 
of 3-4 years duration. See J. A. Schumpeter, Business Cycles, vol. 1, New MORE: 
London, 1939, p. 162-173. 
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The existence of long-range cycles has not been theoretically 

proved. Even though historical facts cited above are not subject 
to any serious reservations, they are not sufficient proof of the 
existence of long-range cycles. To prove this theory it would 

be necessary to show that there exists a causal relation between 

two consecutive phases of the cycle and nobody has succeeded in 

showing this. The pattern of economic development in the years 
1825-1913 was the result of concrete historical facts of this period: 
rapid technical progress in transportation, industry and agricul- 

ture, rapid colonial expansion which created a steady demand for 

investment goods (shipbuilding, investments in overseas countries 

etc.). This led to consecutive periods of more or less intensive 

economic growth. For instance, the years from 1843 to 1873 were 
a period of rapid industrialization of Western European countries 

and of the extensive development of railways in Europe and 
North America. The years 1897-1913 were a period of large 
investments in overseas countries and of development of the 
electrical and chemical industries in Europe. These are concrete 

historical and economic phenomena and it is difficult to discern 

cycles in their pattern. 

Let us deal, in greater detail, with the problem of trends and 
cycles. However, since it would be too complicated to consider 
this problem in general terms (to analyse the system of differential 

equations (7b) and their solution (11)), we shall confine ourselves 
to studying the case when the national economy is divided into 

two specialized divisions of production as in the Marxian schemes. 
On the assumption that there are only two branches of pro- 

duction, the system of differential equations (7b) is reduced to two 
equations which, in a developed form, can be written as follows: 

dX. dX>(t 
—X1(1)+anX1(1)Fa12X2(1)--bn O bn = „M 0, 

dX; X2(t 
—02Xo(t)+ do1.X1(t) + a22X2(t)+ba1 O bn > = 0. (14) 

In this simplified case, the characteristic equation in the deter- 

minant form is as follows (compare with formula (9) for the 

general characteristic equation): 

| —0-+an1 -+bn10 a12b120 | 
ES (15) 

da1 ++b210 —%-A22+-b220 | 
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Equation (15) is of the second degree with respect to v and 

therefore it has two real solutions or two complex and conjugate 

solutions. 

The solutions of equations (14) may be written as follows: 

Xi(t) = hikne'"+hakue'*, 

X(t) =hkue'"+hkne'*. 

The numbers v; and v2 are either both real or both complex and 

conjugate. 
An interesting conclusion follows from this, namely if one of 

the components of the solutions (16) determines a certain cycle 

(v1 = a+if), then the second component also determines a certain 

cycle (02 = a—if). ? 

In consequence, there may appear in the solutions (16) either 

two trends (or one trend if vi =v2), or two cycles. But the so- 

lutions (16) cannot consist of a cycle superimposed on a growing 

or declining trend. 

Thus, if the economy is divided into two branches, we cannot 

obtain a model of economic development composed of a cycle 
and a trend, which in fact, is the pattern of the development of 

a capitalist economy. To obtain a realistic model of the develop- 
ment of a capitalist economy the national economy should be 

divided into at least three branches and a distinction should be 
made between, say, investments in fixed capital means and in- 

vestments in working capital (stocks). 

The division of the national economy into two branches, in 

a sense, conceals something, and hence we are not in a position 
to arrive at solutions of production balance-sheet equations that 

would produce simultaneously a cycle and a trend in the devel- 
opment of total products Xi(t) and X2(t). 

It may even happen that a cycle and a trend also appear simul- 

taneously in the case when the national economy consists of two 

specialized divisions, if we introduce certain additional assump- 
tions. 

If the divisions of production are specialized, i.e. if ay = 0 
and bi = 0, then there are neither reproduction nor investment 
flows from Division 2 to Division 1. However, we allow for the 
possibility that a22 # O and bz» 4 O which means that production 
in Division 2 may be used for the replacement of means of pro- 

(16) 
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duction of this division and for augmenting the stock of its pro- 

ducts. Then, the second of the equations (14) will be reduced to: 

BĘ 
— 02X2(t)+ a2 X2(t)+ b22 ay. = (W (17) 

The characteristic equation will assume the following form: 

—0-+a11 110 A12D120 

0 —2+422+b2Vv 

or, after it is developed, 

(—o1+@11+b11¥)(—o2+422+b22v) = 0. (18) 

Thus either 

—H+au+div = 0, 
or 

—2+42+b2v = 0. 

It follows that the characteristic equation (18) has two real 

solutions: 

__04—dn O2— da 
U1 = Bro U2 = ae (19) 

The solutions of the system of equations (14), defined by 

formulae (16) for the case when a: = 0 and by = O consist of 

two trends. 

To determine when these trends are growing ones and when 

they are declining ones, it is necessary to check the signs of v1 

and v2. 
It follows from formulae (19) that v; > 0, i.e. the first trend is 

increasing when a1—d11 > O, or a1 > ai. Similarly, v2 > O, i.e. the 

second trend is increasing when «%2—d22 > 0, or %2 > da. 

Let us remember that «:—ai: (and, similarly, «2—az2) is the 

difference between the gross rate of investment and the replace- 

ment coefficient, and bi: (or b22) is the coefficient of investment 

outlays for the products retained in a given division of production. 

Therefore, quantity v; (or v2) determining the rate of increase of 

the trend is a ratio of the rate of net investment in a given division 

to the coefficient of investment outlays from the products of this 

division. 
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The condition «1—a > 0, for which the first trend is a growing 

one, means that gross investment on the products of Division 1 

is greater than the reproduction requirements, i.e. there is a net 

investment on the products of this division. The condition 

— dm > 0 can be interpreted in a similar way. 
The trends will be decreasing if a1—aqr < 0 and o2—dz2 < 0. 

These conditions mean that in these cases reproduction contracts 

since not all used up means of production can be replaced. 

Finally, trends are constant when %1—d11 = 0 and a2.—ax = 0, 

i.e. 01 = aii and 02 = dy. 

These conclusions were evident a priori but the mathematical 

arguments outlined above will be useful for our further considera- 
tions. ; 

Let us consider now what would happen if we assumed that 

ax. = 0, i.e. that production in Division 2 is not used for replace- 
ment in this division, but, as before, bo. ¥ O, i.e. accumulation 

takes place in Division 2 in the form of accumulation of stocks 
of products of this division. Then, the second solution (19) 

would be further simplified, namely: 

es (19a) 
ba 

So far, our considerations which have led to solutions of 

balance-sheet equations without a cyclical pattern, concerned the 

situation prevailing in a socialist rather than in a capitalist economy 

because the rates of gross investment « and a in the analysed 

equations were assumed to be given in advance. We know, how- 

ever, that in a capitalist economy the rates of gross investment «1 

and a2 depend upon the profitability of particular branches of 
the economy and this, in turn, depends upon certain factors 
determined by the market mechanism. 

If the rates of gross investment a, and «2, appearing in the 
balance-sheet equations are considered as variable quantities 
determined by certain conditions influencing profitability there 
will appear in the solutions of the balance-sheet equations a cyclical 
component in addition to a trend component. Here, then, lies 
the basic difference between the course of reproduction and 
investment processes in a socialist economy and in a capitalist 
economy. 
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This idea may be expressed in yet another way. In a capitalist 

economy there exist certain relationships between investment and 

the profitability of production or the rate of profit. If these re- 

lationships are expressed by an additional equation, the solutions 

of balance-sheet equations will have both trend and cycle com- 
ponents. In a socialist economy such relationships between 
investment and profitability of production do not arise because 

the rates of gross investment a: and a are determined by the 
economic plan. 

It can be stated that the difference between reproduction and 

investment processes in a socialist economy and in a capitalist 

economy is that in a socialist economy the relationships between 

investment and profitability of production are set by the plan 

targets and not the spontaneous market mechanism. Ina capitalist 
economy, on the other hand, there exist definite relationships 

between investment and profitability which may give rise to 
production cycles. 

We shall attempt to define the relationship between investment 

and the rate of profit in a capitalist economy. 

The equations of production inputs (formula (2) from Chapter 

3):are: 

X; = xoit >) xm, GZ Dar eaty thls 

j=l 

Introducing employment coefficients a; and production 

coefficients a;; into this equation, it can be presented in the follow- 

ing form: 
n 

X; = dg, Xi + Sa Xitm,. 
=n 

Thus, the surplus product, or profit?! is: 

n 

IM; = x,((1 —Ayi— ka ay). 
j=1 ‘ 

21 Referring to a capitalist economy we call component m, surplus value. 

We are not concerned here with the subtle question of distinction between 

surplus value and profit. 
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lt follows that the profit per unit product?2 obtained in branch i is: 

n 

M; 
Pie == X, = (1-%0— 2 a). 

j=l 

The simplest assumption that suggests itself in determining 

the relationship between investment and the rate of profit is 
that net investment on products of branch i, i.e. 

n n A 

X;,— xj — aan = 4,X;— DAGA. 
j=l j=l 

(where «; denotes the rate of gross investment) is proportional to 

the rate of profit obtained from constant capital produced in 

L 
this branch, i.e. aż K, denotes the amount of products of a given 

branch that is included in the stock of constant capital of the 
national economy. 

This assumption can be written as follows: 

“Xi — ) ayłi=yrzi 621,22), (20) 
"ESI 

where y; > 0 is the coefficient of proportionality. 

Assumption (20) would result, however, in considerable com- 

putational complications.23 We shall therefore adopt a simpler 

22 The notion of “profit per unit product” zj= i.e. profit calculated 
i 

per unit product should not be confused with the “rate of profit” which is 
M 

profit per unit of constant capital: z x 
L 

n 

23 Considering that m; = 7; X; and K; = 32 bi; Xj, condition (20) can 
j=l 

be written as follows 
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assumption. We shall assume that net investment is a linear 
function of m, and K;. 

n 

a; X; — Se aX) = Pam; —giK, Graj at ar n), (21) 
j=l 

where y, > 0 and g; > 0 denote the respective coefficients of 
proportionality. 

The coefficient of proportionality y; can be called the propensity 
coefficient of investments in expectation of profits, and coefficient 

g; can be called the investment propensity coefficient for constant 

capital. , 

Let us note that condition (21) is an approximation to condition 

(20) which is evident from the fact that investments increase 
when profit m, increases, and they decline when the stock of 

constant capital K;, consisting of the products of a given branch, 
increases. 

hence, after combining with balance-sheet equations, we cbtain the equation: 

dXj(t) _ i =0. 
n 

ti XG t) 

jk lasts No by 

by Ai > 

The last equation can be presented in the following form: 

n n 

aX ;(t) 
—yiT4 X(t) + Db) be wyż = 0, 

j=1 j=l 
or 

non dX(t) 
t 

=m XiN+ SS" biybaXi =F =0. 
Suc 

(WESlĄŻ ea?) 

Substituting in the system of these equations X; = kze”! tas a trial solution 

of the system of equations) we obtain: 

n n 

—yinjkjet+ X) S* bybykicewi=0 (1=1,2,...,n) 
j=lk=l 

This is a system of n quadratic equations with respect to k;; it would not be 

easy to determine from it the values of k; and wv. 
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Condition (21) appearing in the process of reproduction and 

investment in a capitalist economy is an additional equation to 

production balance-sheet equations. In a socialist economy there 

is no such additional equation for the process of reproduction 

and investment. 

Considering that: 

(1) from the previous assumption the amount of the product 

of branch i used in branch j, as constant capital, is proportional 

to production in branch j, it follows that K,, = b,,X,, where Di, 

are the corresponding investment coefficients. 

Therefore: 
2 

L ll al L = 

(2) m, = r,X;, where x, denotes profit per unit product in 
the i-th branch, we can transform equation (21) in the following 

way: 
n 

wXi— | aX) = yi: Xi—8: )byX, (= 1,2,....0). (22) 
j=l j=l 

Combining these additional equations with the balance-sheet 
equations: 

~aatio Drank +) a O =0 (G=l28 

we arrive at the new equations: 

z 000 S by XO+ M bi 
r= 

= 0 

ua 12.8); (23) 

which allow for the additional condition, making the rates of 
investment «; dependent upon the rate of profit, and thus cor- 
respond to the conditions prevailing in a capitalist economy. 

We shall introduce one more additional assumption.24 We 

24 This additional condition constitutes a basis for the assumption on which 
Kalecki’s model of business cycles is based. See lectures by O. Lange, Teoria 
rozwoju gospodarczego (Theory of Etonomic Development), Part II, Warsaw 
University Publishing Department, 1958, 
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assume that the volume of investment at time t depends upon the 

profitability of the respective branches of the economy at time 
1—0, i.e. at a moment earlier by period 0 which we shall call 
the period of the realization of investment.25 

From this assumption and from the method of deriving equa- 
: : ee dx, 

tion (23), it follows that if investments w correspond to moment 

t, then the rate of profit determining these investments corresponds 

to moment £—0. Thus, equation (23) will assume the following 
form :26 

saa) 1-0] ŻĘ . 
j=l 

BE M (23a) 

If the period for the realization of an investment 0 is taken as 
a unit of time (0 = 1), then 

dX;(t) Ke ini X(t—-D+8: > byXi(t—1) + A 

GERISZ ea (23b) 

Equation (23b) differs from normal differential equations in 

that the magnitudes of unknown functions X;(t) (j = 1, 2, ..., n), 

appear at different moments, namely at moment ¢ and moment 

t—1. Equations of this kind are called differential-difference 

equations; a system of such equations is solved in the same way 

as a system of differential equations. 
Let us assume that the solutions of the system of equations 

(23b) are in the form X;(t) =k,e”', and let us substitute these 
values in the system of equations (23b). We obtain: 

—y,n;k,e?(-0+-g; a b,,kje 6-9 S| byjłkce” = OF (23c) 

j=l j=l 

25 This assumption is indeed realistic because some time must elapse 

between the moment of making an investment decision and its realization. 

26 In this way, equation (23b) contains variables corresponding to different 

moments of time. In other words, there is a time-lag between the quantities 

of total products and investments. 
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After dividing?? by e’‘- #0 we arrive at the following 

system of algebraic equations homogeneous with respect to the 

unknowns k;(j= 1, 2, ..., n) 

—ymikitg, 0 byki V | bykjee=0  (1=1,2,...,n). (24) 
j=l j=l 8 

The characteristic equation of the system of equations (23c) 
in the determinant form can be written as follows: 

bu (g,-+ve')—y1 TC1 biz(g1 ve") 5 „by„(g10e") 

boi (g2-+ve") bu(ga--ve”)—yanz_ ... Don (2-+ ve") =, 
O POGSOŁOGAOWOCEBOGZSA LÓD AAAGOPOŚĆ OPOSMŚC UMA RAGE (25) 

bma(gn Ve”) brz(gn ve") + Dal Sn Ve )— Yala 

The further determination of the general solutions of the 

system of equations (23b) and the analysis of these solutions is 

analogous to the previously discussed solution of the system of 

equations (7b). We shall therefore not concern ourselves with 

a general solution of the system of equations (23b) but we shall 

investigate the most interesting case of an economy divided into 

two specialized divisions: the production of means of production 

and the production of means of consumption. In the case when 

n= 2, the left-hand side of the characteristic equation (25) is 
reduced to the determinant of the second degree: 

bii(gitve’)—y,%, — bi2(gi+-ve”) 

bo1(g2+ve") b22(g2-+-ve")—y2T2 

Since in the case of specialized divisions ba = 0 the character- 
istic equation (26) assumes the form: 

[b11(g1+-ve”)—y1 ra] [22(g2-+- ve”) — yar] = 0. (26a) 
Equation (26a) holds if either the first or the second factor, 

appearing on the left-hand side of the equation, equals zero. 
There are, then, two solutions, v; and v2, of the characteristic 
equation (26a), determined by the conditions: 

(26) 

Y1T1 
01271 = pees (27a) 

27 Let us note that e”! = ev- ev(t-1) 
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and 

vane | U2e%2 = shee 522 (27b) 
22 

If the roots of the characteristic equation (26a) are real then, 

as we know from our previous general considerations, the func- 

tions determining the sizes of the total products, in this particular 

case, functions Xi(¢) and X2(t) contain the components of an 

increasing, decreasing or constant trend. If, however, the roots 

of the characteristic equation are complex, then the function 

Xi(t) and X2(t) contain a cyclical component. 

Whether equations (27a) and (27b) have real or complex roots 

depends upon the values of bi1, b22, 71, 72, 1, ga, yi and y2. 

It is possible to determine real roots v; and v2 from equations 
(27) by a graphical method. Considering v; as an independent 
variable, we draw a graph of the function y = ve”: appearing on 

the left-hand side of equation (27a), and a graph of the constant 

OS 

bu 
equation. If there are points of intersection of the curves represent- 

ing these functions, then the abscissae of these points determine 

the real roots of equation (27a). If, however, there are no points of 
vit 

function y = gi, appearing on the right-hand side of the 

intersection of the curves of functions: y = vie" and y = PSI 
11 

then the roots of equation (27a) are complex. 
In a similar way, we determine the roots of equation (27b). 

Let us draw a graph of functions: y = vie" and y = z 
11 

The graph of the second of these functions which does not 
contain variable v;, is a straight, horizontal line intersecting the 

: : : T i 
y-axis at the point whose ordinate equals —_ —g. (Fig. 10). To 

11 

draw a graph of function y = vie”, let us note that this function 

is continuous, and that for vz; = 0 it assumes the value y = 0, 

and for v; = 1 it assumes the value y = e. Moreover, this function 

reaches its extreme value (minimum) for v; = —1. Indeed, y = e" 

+v1e% = e%(1+v1). Hence the extreme value obtains forv: = —1, 

; 1 
since then y’ = 0 and the extreme value equals: yy = ri 

—0.368. 
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It is easy to check further that when v1 > —oo, y> 028 (the 

axis of abscissae is then an asymptote of the curve y = ve), 

and when 7, > + 0, y—> + ©. 

This discussion indicates the position and the shape of the 

curve representing the function y = v1e%:. This is shown in Fig. 10. 
Moreover, from Fig. 10 we infer directly that: 

(1) if 

then equation (27a) has one real root which is positive when the 

inequality > 0 holds, and equals zero when the equality = O 

obtains. 

(2) if 
Y17T1 

Sr & = 0505, 
bi 

then equation (27a) has two negative real roots, in a special case 
one negative double root when 

Mtg, = —0.368; 
bit 

28 This follows from the fact that the limit of product v:e%: depends upon 

factor ev which sharply tends to zero when vi > —0oo. Factor ev. dominates 

over the linear factor v1. The limit of product v:e% for v1 > —oo can also be 
determined by the de I"Hospital rule because it is an indeterminate expression 
of the type co: 0. 
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(3) if, however 

pe 0:068, 
bu 

then there are no real roots. 

In a similar way, it is possible to determine conditions for the 
existence of real roots for equation (27b). 

Depending upon real and complex roots in equations (27a) 

and (27b), the corresponding functions X1(£) and X2(t), represent- 
ing increments in the total products of Division 1 and Division 2, 

may contain components determining a growing trend when 

v1; > 0, a declining trend when v: < 0 and a constant trend when 

a0, (T=. 152); 

Let us now consider possible lex roots of the equations 

(27a) and (27b). We shall discuss equation (27a); the results will 

be applicable to equation (27b). After substituting v1 = «+i in 

equation (27a) we obtain: 

(a-+ipyer? = TT gy, 
Ha} 

or 

GENRE A -u 3 

Using Euler’s Theorem e-i% = cosf—isinf, we can write it 

in the following form 

G--iBe = (5, 75|os B—isin 6). 

The real part on the left-hand side of the equation must equal 

the real part on the right-hand side and the imaginary part on 

the left-hand side must equal the imaginary part on the right-hand 

side. It follows that 

ue” = (ie 8 cos B, (28a) 

and 

betes A) sin f. (28b) 
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Dividing the second equation by the first and considering that 

e” # 0, we obtain 

or” 

tan 8 = — (29) 

The real part « and coefficient 6 in the imaginary part of 
complex roots must satisfy equation (29). Since both a and # are 

real, equation (29) can be solved graphically. Shown in Figure 11 
> 5 T JR 

is the graph of the function tan in the interval — ie pz 3 

and the straight line y= s The points of intersection of 

this straight line with the graph of function tanf determine the 
roots of equation (29). 

FiG. 11. 

29 We also assume that ae # 0. In the case when aes) =0 we 
11 11 

obtain the result (29) by moving to the limit on the basis of de L’Hospital’s 
Theorem. 
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The straight line intersects the graph of function tanf at the 

origin of the system of coordinates. This intersection produces 
the result 8 = 0, i.e. it corresponds to a real root if it exists. 

Complex roots correspond to the point of intersection for which 

B # 0. The existence of such intersections depends upon the slope 

of the straight line which is e) For the straight line to intersect 

the graph of function tanf at other points than the origin of the 

: ROR, l 
system of coordinates its slope must be positive i.e., —— > 0, or 

a 

a << 0. Moreover, the slope of the straight line must be greater 

than the slope of the graph of the function in the origin of the 
system, where the graph of the function tanf has the slope 1, and 

1 F 4 
therefore30 z > 1, or, in consequence, —1 < a < 0. If this 

condition is satisfied, the straight line intersects the graph of 

function tan 6 at two symmetrical points (points A and B in Figure 

11) and the complex roots constitute a conjugate pair «+78 and 

a—ip. 

As we have seen, the condition of the existence of complex 

roots of a characteristic equation is that the inequality —1 < a 

< 0, is satisfied. This means that the cycle is dampened, and the 

left-hand side of this inequality imposes a certain limit upon the 

degree of dampening the cycle. In consequence, however, in the 

course of time, the cycle fades away. To bring about new fluctua- 

tions of the cycle there must arise external disturbances which 

would impair the equilibrium achieved on the trend line. In 
a capitalist economy such disturbances appear all the time in the 

form of technical and organizational progress, the availability of 

new raw materials, sudden changes in demand (for instance as 

a result of armaments or other public investments). They cause 

the diminishing business cycle to be always stimulated and the 

cyclical pattern to be a permanent feature of development of 

a capitalist economy. 

30 Since = 1+tan2f holds, therefore at the origin of the system 
dtanpB 

dB 
dtanB _ 1. 

ap 
where 8 = 0, we have 
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Figure 11 shows that there is a certain relationship between 

value «, which determines changes in the amplitude of fluctuations 

and value f, which determines the length of their period. Value $, 

determined by the point of intersection A, is contained within the 

interval [o z) and increases as the slope coefficient of the straight 

line y = sąd: 8, increases, i.e. as the absolute value of « decreases. 
a 

: 21 
The period of fluctuations, i.e. the length of the cycle, is*! T = re 

The greater the absolute value «, i.e. the more dampened the 

cycle (the faster it fades away), the smaller value 8 and the longer 

the period 7. It turns out that strongly dampened cycles are 

shorter and less dampened cycles are longer. Since the upper 

limit of the possible values of 8 is = it turns out that the length 

of the cycle cannot be shorter than 4 units of time (we have 
assumed that the unit of time is the period of realization of in- 

vestment 0). 

Function tan/ is periodic and its length is c. Equation (29) 

therefore, has roots also outside the interval por 3} If the 

equation is satisfied by a specific value fo contained in this inter- 

val, then it is also satisfied by the values 80-+-kr, where k = 1, 2, ... 

since tan 8 = tan(8+-kn) for integral values of k. In addition to root 

Bo there are also roots Bor, Bot2zx etc. To these roots there 

correspond additional fluctuations with periods T= 26 : 
Bott 

MA APC PROCE h 27? = P> c., 1.e. luctuations that become shorter 

and shorter. Since fo >0, then the periods of these fluctuations 
are T< 2, T< 1, T<3/4 etc. Except for the first one, all the 
additional fluctuations last for less than one unit of time and, there- 
fore, in practice cannot manifest themselves and may be disre- 

31 Denoting by T period of fluctuations we have BT = 2x and hence 

T == 25, 
2% 
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garded. We should consider only the first of the additional fluctua- 

tions which may manifest itself. Since, as we know, fo < 5 we 

find that the period of this fluctuation is contained within the 

limits 4/3 < T < 2. In addition to the cycle lasting at least 4 

units of time another cycle (of the length 4/3 to 2 units of time) 

is also possible. This cycle also expires in the course of time since 

value « is the same for all fluctuations. 
Finally, we shall investigate under what conditions there may 

appear both real and complex roots of equations (27a) and (27b), 

i.e. under what conditions there may appear both cycles and 

trends. Let us note that complex roots in addition to equation 
(29) must also satisfy the equations (28a) and (28b). Since equation 

(29) is derived from the two latter equations it suffices that they 

satisfy one of them, and then the second will also be satisfied. 

Let us consider equation (28a). The equation (29) is satisfied if 

—]1 <u<0, and therefore the left-hand side of equation (28a) 

must satisfy the condition (see Figure 10 substituting « for v1). 

1 
cats ŁU 2 W. 

or 

—0.368 < ae” < 0. 

The same inequalities must be satisfied by the right hand side of 

equation (28a), i.e. 

—0.368 < on —2} co Bo < 0, (30) 

where fo is determined by equation (29). 

In the interval eo 5) ineawality 0 < cos < 1 holds. There- 
AŻ 

2 
fore inequality (30) can be satisfied for z = PO = only if 

—0.368 < M 20. 

i.e. in the case when there are two negative real roots. In this 

case there exist two declining trends which tend to zero. As a result 

there remain two expiring cyclical fluctuations around a specific 

value of the average. 
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There is a growing trend (the positive real root) if 

Because of (30) this is possible only if cos 6 < 0. This takes place 

if B equals Bom, Bo+-3m, Bo-+5r etc. Except for the first one, 

these intervals, as we have seen, correspond to cycles with a period 

shorter than one unit of time (assumed to equal 6), which do not 

manifest themselves. The first of these intervals corresponds to 
the cycle of length 4/3 < T< 2. It turns out that a growing 

trend may appear only together with a cycle shorter than two 

units of time. 
As a result we can see that declining trends are combined 

with a diminishing cycle of the length of at least four units of 

time and a growing trend can be combined with a diminishing 

cycle of the length of less than two time units. To explain this 

result let us stop and think of the causes of business cycles and 

development trends in a capitalist economy. It follows from the 
conditions determining equations X1(£) and X2(t) that the nature 

of these solutions depends upon the value of the coefficients of 

sensitivity of investments to fixed capital gi and g2, and upon 

the value of the coefficients of sensitivity of investments to profits, 

i.e. yi and 72. The cycle is a result of the sensitivity of investments 

to fixed capital whose increase causes a decline in the rate of 

profit and a decline of investments. An increase in fixed capital 

hampers an increase in investments and stops an increase in 

production. Similarly, in the declining phase of the cycle, a decrease 
in fixed capital stimulates investments and results in an increase 
in production. 

In a socialist economy the hampering influence of fixed capital 

(means of production) on investments is removed and therefore 
the cyclical pattern of the production process is also removed. 
Investments and production grow in a planned way. 

The question arises whether the cycle returns to the starting 
level of fixed capital and production or whether it ends at a level 
higher or lower than the starting point and at what level a new 
cycle starts? This depends upon the sign of the difference 
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or 

Y2T2 

bz. 

As we have seen, if this difference is positive the characteristic 

equation has a positive real root and therefore there is a growing 

trend which is imposed upon the business cycle. In this case, the 
sensitivity of investments to profit exceeds the sensitivity of in- 

vestments to fixed capital and the stimulus to expand is stronger 

than the stimulus to contract. In consequence, the cycle ends at 

a higher level of fixed capital and production than that at which 
it began and there is a growing trend. In other words, the process 

of expanded reproduction takes place through the fluctuations of 
business cycle. But for the very reason that the stimulus to contract 

is weak in relation to the stimulus to expand, after a very short 

period of contraction in investment and of decrease in fixed 

capital, the factors stimulating investments and production become 

dominant again. In consequence the business cycle is short. 

If, however, the difference mentioned above is negative (but 

greater than —0.368) there appear declining trends. This results 

from the fact that the sensitivity of investments to fixed capital 

exceeds the sensitivity of investments to profit and the stocks of 

fixed capital and production contract from one cycle to another 

(the process of contracted reproduction takes place) and they 

finally stabilize at the level of the average value of these quantities 

in the business cycle. Under these circumstances, because of a rel- 

atively high sensitivity of investments to fixed capital which has 

a contracting effect, the declining phase of the cycle is long and 

the stock of fixed capital contracts so much that again the factors 
stimulating growth become dominant and they express themselves 

in the sensitivity of investments to profits. Under these conditions 

the business cycle is long. 

On the basis of the above considerations we cannot determine, 

however, the real periods of the cycles mentioned above since we 

do not know the length of period 6. Only a statistical investi- 

gation could give a satisfactory answer to this question. 

M. Kalecki assumes on the basis of some statistical data that 

6 =1 year.32 It seems, however, that the length of time that 

32 See M. Kalecki: Teoria dynamiki gospodarczej (The Theory of Economic 

Dynamics, in Polish), Warsaw, 1958, p. 181 and ff. 

§2.- 
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elapses between making an investment decision and its realization 

is greater. If it is assumed that 6 = 2 years, then for constant 

cycles we would obtain a period not exceeding 8 years. Assuming 

the average length of 6 between 1 and 2 years, a business cycle 

should last from 4 to over 8 years. This is a typical cycle observed 

in a capitalist economy. With a growing trend the cycle should 

be shorter: less than 2 years for 9 = 1 and less than 4 years for 

0 = 2, on the average somewhere between 2 and 4 years at the 

most. 
In this connection, the following comments are relevant: 

First of all, a model of the development of a capitalist economy 

can be considered as realistic only if the length of the cycle derived 

from it corresponds to the real length of a business cycle, i.e. 

7-9 years. Models in which there appear too long or too short 

business cycles in comparison with the 7-9 years cycle should be 

rejected as unrealistic. 

Secondly, our analysis concerning the length of business cycles 

was only a rough approximation to real economic conditions, 

for we have assumed that the national economy was divided into 

two divisions. A more extensive analysis would entail dividing 

the economy into a larger number of branches and especially 

drawing a clear distinction between investments in fixed capital 
means with a relatively long period of depreciation and invest- 

ments in working capital. 

Then, probably, in addition to a business cycle of 7-9 years 

duration there would appear also a shorter cycle of 3-4 years as 
has been discovered in the United States. A division of the econ- 
omy into a larger number of branches would, perhaps, make 

it possible to discover the existence of some other cycles, typical, 
say, to construction, agriculture, etc. 

Moreover, studies on the cyclical nature of the development of 

the national economy should also take into account the phenom- 
enon known as “echo”, 

It is well known that machinery and other equipment used as 
means of production are not uniformly distributed in time as far 
as the moment of their purchase is concerned. At times of pros- 
perity, as a rule, all entrepreneurs invest and then the time comes 
when there is no substantial demand for means of production. In 
turn, after a period of time corresponding to the average period 
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of depreciation of invested equipment it becomes necessary to 
replace a large portion of it within a short space of time. This 
situation may repeat itself several times at more or less the same 

intervals. Such a periodic repetition of concentrated replacement 
is in itself a cyclical phenomenon. 

While in a socialist economy the phenomenon of business 

cycles does not appear because large-scale investment propensity 

for constant capital has been eliminated, nevertheless a cyclical 
phenomenon of an “echo”, or a cumulative replacement of means 
of production may appear also in a socialist economy. The begin- 

ning of an echo may be stimulated by, say, a process of socialist 

industrialization which is characterized by building numerous 

industrial establishments in a relatively short space of time. These 

establishments, after a certain number of years, may have to be 

more or less simultaneously replaced because of physical wear and 

tear or obsolescence. We shall deal with this problem in the next 

chapter. 



CHAPTER 5 
be 

DEPRECIATION AND REPLACEMENT 

PROBLEMS 

IN our considerations we have not distinguished so far between 

depreciation and replacement. We have tacitly assumed that the 

rate of depreciation equals the value of worn out constant capital 

: l 
(fixed capital means of production) and amounts to T part 

of its value, where 7 denotes the average lifespan of the means 

of production and is called the rate of depreciation. This is so, 

however, only under conditions of simple reproduction. In the 

case of expanded reproduction, we shall see that the situation is 

more complicated. 

Let us assume that an enterprise has 100 machines at its disposal 
and that their lifespan is T= 20 years. Let us also assume, for 

the sake of simplicity, that all the machines have been installed at 
the same time. Over the period of 20 years none of these machines 
will be withdrawn from production, but at the end of that period 

all the machines will have to be replaced simultaneously. 

However, to make such a replacement possible, the entrepreneur 

puts aside each year a portion of the value of production in an 

amount equal to the rate of depreciation which for each machine 
amounts to 1/20 of its value. The aggregate annual amount of 

depreciation for 100 machines corresponds, in this case, to the value 

of 5 machines (100- 1/20 = 5). After 20 years, the enterprise will 

be able to buy exactly 100 new machines, and thus the stock of 

these means of production will not change. 

Let us assume further that. we are faced with a process of 

expanded reproduction and that the number of machines increases 

98 
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by, say, 10 per cent each year. Thus, the original number of 
100 machines increases gradually every year in the following way: 

18* year — 100 

284 . —110 

3%, ——d21 

OR OCCOHOD SLC: 

If the rate of depreciation is, as in the previous example, 

1/20 = 5 per cent, then the amount of depreciation written off 
annually will be: 

in the 18* year — the value of 5 machines 

2” żę ZN W GEY ” ” 9.3 2 

After 20 years the enterprise will have to replace 20 machines 

but, as can easily be seen, it will have put aside more than ample 
funds for the purchase of the same number of machines as before. 
The depreciation reserve (fund) is, then, larger than needed for 

the replacement of the used up means of production. The surplus 

obtained in this way can be used for, e.g. net investment, i.e. for 

increasing the stock of means of production. 
It follows that depreciation and replacement are two different 

notions. Depreciation is a reserve obtained by “writing off” 
a portion of the value of the product for the purpose of replace- 
ment. Replacement is a part of the value of the product that must 

actually be used at a given moment (or period) for replacing the 

used up means of production. Depending upon the method of 

writing off the depreciation reserve may or may not coincide, at 
a given moment (period), with the actual replacement needs. 

There are various formulae and systems in use for arriving at 

the amount of depreciation. The simplest is linear depreciation 

which consists in writing off every year the same portion of the 

value of constant capital means. It follows from the examples 

given above that in the case of simple reproduction, depreciation 

determined in this way corresponds to replacement requirements; 

but in the case of expanded reproduction the depreciation reserve 

is higher than the replacement requirements. 
In connection with these considerations two questions arise: 



100 OSKAR LANGE 

(1) What is the relationship between the depreciation reserve 

and the replacement requirements when the method of linear 

depreciation is used? 

(2) Is it possible to arrive at a formula for calculating depre- 

ciation whereby the depreciation reserve would correspond exactly 

to the replacement requirements? 

It is found that the answer to the second question is affirmative 

and that such a formula can be produced. Nevertheless, in practice 

linear depreciation is almost always used. This is so both in the 

United States and in socialist countries although in the literature 

on this subject the method of linear depreciation is often criticized. 

It is argued that the formula affording a depreciation reserve 

balancing exactly replacement requirements should be used 

instead. 
However, the realization of these recommendations in practice 

is not easy. First of all, such a depreciation formula is complicated 
and, secondly, in all countries there are, in force, taxation or 

accounting regulations which determine the principles and the 
amount of depreciation. 

Moreover, the system of linear depreciation is more advan- 

tageous to capitalist enterprises since for growing enterprises the 

burden of taxation on profits is smaller and they thus have 

available additional funds for investment purposes.1 

The problems of depreciation and replacement have been the 
subject of dicsussion for a long time. Marx, in volume 2 of Ca- 

pital, pointed out that the depreciation reserve may be a source 

of accumulation and investment.2 The American economist, E. D. 

Domar, applied a mathematical method of analysis to this prob- 
lem.3 

We shall now try to determine in great detail replacement 

requirements under conditions of expanded reproduction, and to 

analyse the relationship between the reserve necessary for replace- 

‘In some countries (e.g. in England) tax regulations permit the use of 
accelerated depreciation which reduces even further the tax on profit. 

2 See Capital, vol. 2. 
3 See E. D. Domar, Essays in the Theory of Economic Growth, New York, 

1957, Chapter 7. The results obtained in this field by E.D. Domar and by 
other economists are described in Chapter 5 of the book by W. Lissowski, 
Problem zużycia ekonomicznego środków pracy (The Problem of the Economic 
Wear and Tear of the Means of Labour, in Polish), Warsaw 1958. 
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ment and the depreciation reserve built up by the method of 
linear depreciation. 

To simplify, let us assume that all capital means of production 

have been brought into the process of production simultaneously 

and that they have the same lifespan. We shall denote in our 

further considerations this lifespan by the letter m (in the notation 

used above m= 7') as is accepted in the literature on the subject. 

If the value of the stock of constant capital means of production 
is denoted* by K, then the amount of depreciation written off by 

the linear method is determined by formula: A = = or A=aK 

Lie mk 
where a = w 8 the rate of depreciation. 

Let us denote by R the value of capital objects subject to 

replacement. In economic literature they are known as restitution 

investments. 

The quantities K, A and R change and therefore are functions 

of time £. The value of capital objects at the initial moment (or 

period) will be denoted by symbol Ko and the quantities K, A 
and R at moment (period) t—by symbols K,, A, and R,. For 

the time being, we shall analyse the values of K,, A, and R, in 

finite periods, e.g. in particular years. 

If we assume that the rate of growth of additional gross in- 

vestments (i.e. capital) in the starting period is Ko, then the value 

of the capital object in period £ is:5 

K, = Kot+ Ko(1+r)+Ko(1+r)2+ ... -Ko(l-Fr)""', 
or 

K, = KI1+(1+7)+(1+7)2+ ... +(l+r)'"']. (1) 

The right-hand side of formula (1) is a geometric progression 

whose quotient equals 1--r and therefore 

(EDR 
(1-7)—1 

4 Quantity K is, then fixed “‘capital” in the sense used in an analysis of 

a capitalist economy. A fixed capital means of production is usually called 

<capital object”. 
sIt follows from the assumption that the growth of the value of a ca- 

pital object starts from zero, i.e. the value of the capital obiect in the first 

period corresponds to the amount of investment and is Ko, in the second 

period Ky+-Ko(1+r), in the third Ko-- Ko(1 r) + Ko(1--7)2, etc. 

K, = Ko 
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or 

K, = (la) 

t K, (1-r)—1 . 

r 

Formula (la) expresses the relationship between the initial value 

of capital object Ko, the rate of growthsof additional gross in- 

vestments r and the value of the capital object in period t. 

We shall now determine two relations: (1) the relation between 

depreciation 4, and gross investment B,, and (2), the relation 

between replacement R, and depreciation 4,. 

The amount of gross investment in period £ is B, = Ko(1-r)'*. 

żyć Koss 
and depreciation A, = oe therefore 

) Vibdeedady <6 Kol+n'—1] 
B,  mkKo(i+r*  rmKo(1-++r)t ” 

or 

4 isan 
Ba rm ; (2) 

: ' płaczę chi 
In defining the ratio of replacement to depreciation ve we 

t 

are interested in the magnitude of this ratio only for the values 
of t > m because in periods £ < m there is no need for replacement 

since the lifespan m of capital investment objects has not yet 

been reached. In year £ = m, it is necessary to replace the machines 
installed m years ago, and therefore the replacement requirements 

are Ko. In period t= m-+1, the replacement requirements are 
Ko(1-++r) i.e., they equal the gross investments at the initial period, 
etc. 

Generally, in period £ (t > m), replacement requirements equal 
gross investments in period t—m, i.e. Ko(1--r)*7”. 

Therefore 

oR, bis do (lier) Fo eke en) aan 

A RE ać EA. 
m 
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Finally, after simple transformations, we have 

R, rm 

A, (+ry"—(1-+ryr- ©) 

This formula determines the ratio of the amount of replacement 

requirements to the amount of linear depreciation in period 

t(t > m). In period t = m the ratio of replacement to depreciation 

equals 

R = rm (3a) 

Az (1-+r)"—1 

If the process of growth of gross investments is a continuous 

one (i.e. the periods in which additional investments are added to 

the existing stock of means of production tend to zero and, at 

the same time, the number of such periods tends to infinity), 

then 

(FAT ez 

and formula (3a) assumes the following form: 

AE = RT (4) 

6 Let us assume that each of the m periods has been divided into n parts. 

Then, the total number of periods is mn and the rate of growth of additionai 

investments corresponding to these new periods is r/n. Therefore 

(iR = ( h | = [(- | | 
n n 

ż [ M r r n(n—1) Bie n(n—1) (n—2)_ r3 All 
T I 

n 2! nż 3! n3 

—1 —|] —2 m 
-|i gs zma dż lee | 

2n 6n2 
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U ję depends 
m 

It can be seen from formula (4) that the ratio 

then upon the rate of growth of investment r and the m lifespan 

of capital objects, or, more exactly, upon the product of these 

coefficients, i.e. rm. 

Let us note that a = 1 only when r — 0. It is found that if 
m 

KĘ ney 
we substitute r = 0 in formula (4), then oF aie i.e. the ratio 

becomes an indeterminate expression. However, the indeterminate- 

ness of this expression can be eliminated by applying de I Hos- 

pital’s formula according to which 

This result confirms the fact established by us earlier that, in 

the case of simple reproduction (r = 0), the amount of replace- 
ment requirements equals depreciation. In other cases, though, 
(74 0), A, + R,. 

If the rate of growth in investment r > 0 (i.e. gross investments 
: Rin : 5 
increase), then’ R < 1, which means that replacement require- 

m 

ments are less than depreciation. 
; : R, 

If however, r < 0 (i.e. gross investments decrease), then e cc | 
m 

and, thus, depreciation does not meet replacement requirements. 

In his work on the theory of economic growth, Domar® pro- 
9 

duces a table showing the magnitude of the ratios = a = 

7 We found this to be so from the numerical example considered at the 
beginning of this chapter. 

8 E.D. Domar, Essays in the Theory of Economic Growth, New York, 
Oxford University Press, 1957. 

F : Rn . 
° It is easy to show that the ratio y = == ią decreasing function of 

e*(1—x)—1 
ihnen ZĘ aoa y (ip t can be 

seen that y’ < 0 both for 0 < x < 1 and for x > 1. 

variable x = rm > 0. Indeed, if y = 
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depending upon the product rm; these ratios have been calculated 

on the basis of formulae corresponding to a continuous process. 
The Domar table is shown below: 

| Am ie Rp Am Rn Rn 

| rm Bn Bm Am rm Bm Bn Am 

| in percentages in percentages 

| 6071 95 91 95 15 52 22 43 
0.2 91 82 90 2.0 43 14 31 

1 UE 86 74 86 2.5 37 8 22 
0.4 82 67 81 3.0 52 3 16 

aa 79 61 Th 35 28 3 11 
Pa 21:0 63 37 58 / 
| 

It follows from this table that if, for instance, rm = 0.1 then 

m R 
uc 95 per cent, or R,, = 0.95 A,,. This means that 95 per cent 

of the whole depreciation reserve should be used up for replace- 

ment and 5 per cent remains for net investment. 

These ratios are completely different when, for instance, 

rm = 3.5, for, then, only 11 per cent of the depreciation reserve 

is used up for replacement and 89 per cent remains for net in- 

vestment. 

Domar gives some figures obtained from statistical records 

concerning the actual situation in the United States. He surmises 

that in the United States the rate of growth of additional gross 

investment r is about 3 per cent and the average lifespan m of 

capital investment objects is about 30 years. Therefore, according 
to Domar, for the USA the product rm is 0.03 x 30=0.9, or, 

roughly, rm = 1. For this value of the product rm only 58 per cent 

of the depreciation reserve is used for replacement and 42 per cent 

constitutes a reserve which can be allocated to net investment. 

On the basis of data for the national economy of the Soviet 

Union, Domar assumes that in that country in the period 

1930-1950, the average lifespan of capital investment objects 

was, as in the United States, about 30 years,10 and the 

10 It can be surmised, on this basis, that the levels of production technique 

in the Soviet Union and in the United States were fairly close. It could also 

be assumed that even if the level of technique in the Soviet Union was, at 
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rate of growth of investment was much higher than in the 

United States since it amounted to 0.12 or 12 per cent. 

Thus, it may be assumed that the product rm for the Soviet 

Union in the years 1930-1950 was 0.12:30 = 3.6, or after rounding 

off, 3.5. This would mean that only 11 per cent of the depreciation 

reserve was allocated to replacement and the remainder, i.e. 89 
per cent was used for investment. It follows that in the Soviet 

Union depreciation reserves were an important source for the 

financing of investments and the development of the national 

economy.!! 

It may be that Domar’s estimate of the product rm, and partic- 
ularly of the rate of growth of investment is for the Soviet Union 

too high. If a more realistic assumption is accepted, namely, that 
r = 0.08 and, thus, rm = 2.5, then, in any case, only 22 per cent 

of the depreciation reserve is used up for replacement and the 
remaining 78 per cent is earmarked for investment. 

Let us now try to derive a formula for determining the amount 

of depreciation equalling exactly replacement requirements. Then, 
; eds : 

even in the case of expanded reproduction a =, i.e. the amount 
m 

written off equals the replacement requirements. 

It is found that the rate of depreciation a that satisfies this 

condition is defined by the following formula: 

a = Power (5) 

Indeed, the rate of depreciation a equals the ratio of depre- 

ciation A,, to the value of the capital object K,,, ie. a = Amy Tf, 
m 

we postulate that the equality 4,, == R,, must hold and considering 
that: 

that time, lower than in the United States, nevertheless technical equipment 

in the Soviet Union is newer and its lifespan in botb countries is approxi- 
mately the same. . 

u This source of investment is somehow concealed since it is not shown 
in economic statistics. As a rule, only a surplus of gross accumulation 
over depreciation is taken as net accumulation. Strumilin pointed out that 
depreciation reserves in industry are also a source for the financing of 
the economic development of the’ Soviet Union. See S. S. Strumilin, La 
Planification en USSR, Paris, 1947, p. 31. 
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(1) the size of the replacement fund at moment m must equal 

investments Bo = Ko at the initial period, and, therefore, R,, = Ko, 

(2) Ke, = Ę sia : Ki 54 

we obtain 

ie Am Re Ko ! (8 

"Pr K. a Ke rm__ rms m A, = e - 1 e l 

BK r 
It is found that for the rate of depreciation a = —— 

e"—l 

preciation equals replacement requirements. The rate of depre- 

ciation defined by formula (5) is called the actuarial rate of de- 

preciation. Let us note that the reciprocal of the actuarial rate of 
rm 

, de- 

depreciation, i.e. the expression , constitutes the end value 

of a guaranteed unit annuity after m years at the compound rate 

of interest r.13 
If, then, the annual payment from a guaranteed annuity is 

———.,, its end value after m years at the compound rate of 
em—] 

interest r is exactly 1. 
Let us now consider the economic meaning of the actuarial 

rate of depreciation. We know that in the case of expanded repro- 

duction, the value of a capital object increases, and if the rate of 

12 The value of the capital investment object in period m in a step process 

is defined by formula (1) or (1a). Switching to a continuous process, as was 
Lith | 

done to determine the ratio an we obtain: Kin = Ko. 
r m 

13 4 guaranteed unit annuity is a sequence of monetary units payable every 

year. The end value of such an annuity after m years at the compound rate of 

interest r is: 

(1--r)m—1 
r 

Sm =1+1+7)+(1+70)2+ ... +0 +r)"-1 = 

This formula for a continuous process (i.e. when the length of the unit time 

tends to zero) assumes the form: 

(gue 
Sm = . 

r 
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growth of additional investments is r, the increase in the value of 

the capital object!4 corresponds to the end value of a unit annuity 

at the rate of interest r (see formula (1)). If the depreciation 

reserve is formed on the basis of the actuarial rate, this reserve 

increases in the same way as the value of the capital object. 

The problem of determining the amount of depreciation to be 

written off may become even more complicated. So far, we have 

assumed that each capital object remains for instance in produc- 

tive use exactly m years, and after this period its use value drops 

to zero at once. This assumption can be changed by assuming 

that the value of the capital object and its productive efficiency 
gradually decline, or, what amounts to the same thing, that each 

year certain outlays must be made in order to maintain it in an 

unchanged state. 

If we assume that part k(0 Sk <1) of the value of a given 

capital object lasts to the end, and each year part of its 

value “disappears”, then the ratio of replacement requirements to 

depreciation can be determined by the following formula: 

TR rm 

Ak vem 
k—(1—k). (6) 

The expression ——— a k has been obtained by using the pre- 
= 

vious method of calculation (formula (4)) for the k-th part of 

the value of the object, i.e. the part which by assumption lasts to 
the very end—over the period of m years. 

The expression 1—k denotes an annual decrease in the value 
of the capital object calculated on the assumption of a uniform 

wear and tear in time. Indeed, if within one year part STR. of 

the value of a capital object is worn out, then within m years, 

the worn out part of the value of the capital object is 

=l=k, 

m 

14 And also the end value of the capital object because, by assumption, 
in the starting period there is no capital and the starting point is the investment 
Bo = Ko, Bi = Ko(1-+r), Bo = Ko(i+r)2.. 
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Another and more serious complication involved in determin- 

ing the amount of depreciation to be written off arises when we 
reject the unrealistic assumption that all capital objects of a given 
enterprise, or of the whole economy, have the same lifespan. 

It is obvious that buildings for instance can be used longer than 
machines or some equipment which, in turn, have different life- 
spans. 

The question arises in what way differences in the durability 

of various types of capital objects affect the problem of replace- 
ment and depreciation. This problem is dealt with by a special 

branch of mathematics called the theory of replacement. The 

historical starting point for these considerations is the mathe- 
matical theory of changes in population, or mathematical demo- 

graphy. The theory of mathematical demography can be general- 

ized and applied to other populations to which (as in a human 
population) certain elements are added and in which other 

elements disappear, thus causing changes in its size and 

structure. 

It has been established that the generalized theory of changes 

in human population can easily and usefully be applied to animal 
populations. By making certain assumptions concerning, for 

instance, the vegetation conditions and fertility of fishes in a pond, 

it is possible to determine changes in the fish population of the 

pond depending upon the time and extent of fishing. On this 
basis, optimal fishing norms can be determined and this, of 

course, is of great practical importance to fish breeding. 

The generalized theory of mathematical demography can, of 
course, be successfully applied not only to a population of live 
animals but also to a collection of objects which in the course 

of time become worn out and must be replaced. A set of means of 

production may be treated as a population in which there is a 

“death rate” and a “birth rate” of its elements. “Dying” elements 
are the ones that are worn out during the process of production 

and must be removed from it; “born” elements are the ones that 

are newly brought into the process of production. 

On the basis of these premises, the principles of mathematical 

demography are now used extensively in the theory of replacement. 

In discussing this theory we shall use the language of demography. 
It should be remembered, however, that the principles outlined 
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here are applicable to all populations whose elements “die out” 

or are “replaced”. 

Let us consider a population whose size is constant and equals 

N and whose structure is also constant. This will be the case of 

the simple reproduction of population. 

Let us denote by B(t) the birth rate in.year t. It is the ratio of 

the number of persons born in that year to the total population. 

Thus, the number of persons born in year ź is NB(t). 

Let us assume that we have a table representing the distri- 

bution of the population according to age.15 We can determine 

from this table the probability of survival to a specific age t which 

we shall denote by symbol p(t). We calculate it as a ratio of the 

number of persons at age r, which we denote by N(z), to the 

number of persons at age 0:16 

N(@) 
NO)’ p(t) = 

Thus, the number of persons born in year, £, who will survive 

to the age t, is NB(t)p(z). 

We shall treat the probability of survival to age z, i.e. p(t), 

as a continuous function of z, since the age of persons r changes 

in a continuous way. Function p(t) is a decreasing one, the prob- 

ability of survival to a later age being smaller than the probability 

of survival to an earlier age. A schematic graph of function p(t) 
is presented in Fig. 12. 

The derivative of this function, p’(t), determines the velocity 

with which the probability of survival to age r decreases and, since 
the function p(t) is a decreasing one, p’(t) < O. 

Let us now denote by m(z) the probability that a person who 

survived to age 7 will not survive to age r+-1. This is the intensity 

of the death rate at age t. We calculate it as the ratio of the number 
of persons who die at age t to the number of persons who have 
survived to age 7. 

is Tabies of this kind can also be compiled for animal populations, machine 
populations, building populations, etc. 

16 The probability of survival to a certain age, p(t), can also be determined 
for a population whose size increasés or decreases. A description of this kind 
of statistical methods can be found in any textbook on demographic statistics. 
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It is easy to establish that 

_PO) nay AGR 

PG) 

2 age © 

Fic; 12. 

Indeed, if the number of persons in the population is N, then 

the number of persons who survived to age t equals Np(r). On 

the other hand, the decline in the number of persons at age 7 in 

period dt is: —Np’(t)dt.17 Thus, the decrease in the number of 

persons within one year (dt = 1) is —Np’(t). In consequence 

Np) sp) 
Np (1) p(t) 

Since the number of persons born in year £ is NB(t), the number 

of persons born in year £ and deceased at age t is —NBf(t)p' (1) 

= NB(t)p(x)m(z). 
The ratio of this number to the total number of persons born 

in year £ is 

m(t) = 

NB(t)p (G)m (2) 
NB() = p(t)m(t) = —p' (1). 

: N(t 
17 Since p(t) = Le we have N’(t) = Np’(t) and therefore the decrease 

in the number of persons in period dt (i.e. the differential of function 
N(t), is —Np (z)dt. We put the minus sign in order to obtain a positive 

value of the number determining the decrease in the number of persons 

(since p (1) < (0)). 
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This ratio. does not depend upon £. It is called the coefficient 

of elimination or the probability of death at age t and is denoted 

by SO. | | RE 
The values of the coefficient /(r) for various 7 are given in 

elimination tables and they can be determined statistically directly 

from observations relating to the distribution of population by 

age and number of death at different ages. A schematic graph 

of function f(z) is shown in Figure 13. 

re 

SS 

0 age t 

Fic. 13. 

We shall now try to determine the number of persons deceased 

in any year £. 

In year ¢, included in the population are persons born in the 

given year ¢ and in previous years £—1, t—2, ...; if we denote 

by w the upper human age limit (e.g. we assume that w = 100 

years which in practice, with very few exceptions, is true), then 

the oldest persons in the population were born in year t—o. 

The number of persons born in the years ź, t—1, t—2, ..., 

t—o, is respectively: NB(t), NB(t—1),...., NB(t—w). Thus, the 

total number of persons deceased in period t, or the elimination 
function V(t), will constitute the aggregate fall-off in the number 

of persons at different age groups:18 

V(t) = NB(1)/(0)-NB(t—1)/Q)-- ... +NB(t—o) f(v), 
Or 

V(t)= WAY B(t—1) f(z). (7) 
t=0 p 

is If ¢ denotes, for instance, the current year, then NB(t—3) /(3) denotes 
the number of persons who were born 3 years ago and died in the current 
year. 
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If, instead of a discrete process, we consider, continuous process 

of elimination of population and use the limit for defining V(t) in 
place of a finite sum, we obtain the corresponding definite integral: 

v(t) = Ni B(t—1) f(x) dt (Ta) 
0 

It follows from the formulae (7) and (7a) that the elimination 

function V(t) shows how the amount of elimination in a given 

year (or at a given moment) ¢ depends upon the year (or moment) 

in which the persons included in the population were born and 

upon the elimination coefficient in the period from ¢ to t—w. 
To offset the elimination in the population in year (moment) f, 

the number of persons born in this year should be the same as 

the number of persons deceased. Thus, NB(t) must equal V(t) 
and only then will the size of the population remain the same. 

Therefore, the condition of simple reproduction, in which some 

elements leave the population and others join it, can be presented 
as follows: 

NB(t) = N\ B(t—t) f(x) dr, 

0 
or after reducing by N: 

BO) = \ B(t—t) f(x) dt.” (8) 

0 

19 Instead of o (the maximum lifespan of the element of the population) 

we often use co. Then, the integral appearing on the right-hand side of equation 

(8) has the following form 
co 

j B(t—1) f (0) dr. 
0 

This is a mathematical generalization of the above considerations and of 

equation (8), but it does not affect significantly the final conclusions. For, 

if there exists an upper limit for the length of life w, we have 

| BO) f@ dr = | B—0/G)dr+ | BE-Df@ae 
0 0 w 

oO 

= j B(t—t)f@)dz, 

0 

because the second integral in this sum equals zero. 
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This is the replacement equation; it is an equation of the 

integral type because the unknown function B(t) determining the 

birth rate appears under the sign of integral. The integral equa- 

tion (8) is solved by finding such a function B(t) that, after being 

substituted in equation (8), it satisfies this equation (on the assump- 

tion that the elimination function f(z) is known). 

The method of solving integral equation (8) is similar to that 

used for solving differential equations. We assume that the so- 

lution of integral equation (8) has the form B(t) = Qe*, where Q 

and g are coefficients, and Q # 0. 

Substituting B(t) = Qe? in equation (8) we obtain 

Det! —| Oe) ar, 
0 

or 

Oct = Qe*' | e-f(a)dt.0 
0 

After dividing both sides by Qe*', we have the condition 

\ ef (adv= l. (9) 
0 

We can see that the function B(t) = Qe** may be a solution 

of equation (8) if equation (9) holds; the latter, as in solving 

differential equations, is called the characteristic equation of the 
integral equation (8). 

We know from the theory of integral equations that there 
exists an infinite but denumerable number of values of o which 

satisfy equation (9). Moreover, it can easily be established that if 

01, 02, 03 ... Satisfy the characteristic equation (9) and, thus, 

functions Q;e%', Q2e”", Q3e%" ... are solutions of integral equa- 

tion (8), then any linear combination of these functions is also 

a solution of this integral equation. Therefore, the general solu- 

tion of integral equation (8) takes the form?! 

B() ) 0, ent, (10) 

20 Let us note that it is possible to remove factor e? before the integral 
because the integrated variable is 7 and not £. 

21 This can be checked by substituting in equation (8) the general solution 
defined by formula (10). 
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We shall now solve the characteristic equation (9). The simplest 

method of solving it is the graphical one. 

A real solution of equation (9) can easily be obtained, and—as 

can easily be ascertained—there is only one such solution. 

To solve this equation we treat the integral appearing on the 

left-hand side of equation (9) as a function of parameter o: 

w 

R(0)= \ ef (x) de. (11) 

0 

The integrated function is a product of two positive functions 
of which one, f(t) > 0, is independent of e and the other, e" > 0 

is a monotonically decreasing function of parameter g. It follows 

that function (11) is a decreasing one. 
It can easily be established, too, that when o > + 0, e-* > 0 

and, therefore, also R(e) > 0, and when o > — 00, e” > «, and, 
therefore, also R(e) > + w. 

These conclusions enable us to draw a graph of function R(o), 

(see Figure 14). 

Fic. 14. 

If we now draw the line R(e) = 1, then according to equation 
(8), the abscissa of the point of intersection of the curve R(0) 

w 

= j e~*f(r)dt with the line R(e) = 1 will be a solution of equa- 

0 . 

tion (9). Because of the monotonic nature of function R(o), 

there is only one point of intersection and, therefore, only one 

real solution. 
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It can be shown that the point of intersection of the graph 

of function (11) and function R(e) = 1 is situated on the axis 

of ordinates and, therefore, the real solution of equation (9) is 

ove 0) 

Indeed, we know that j fQ)dz = 1. This follows from the 
0 = 

nature of the coefficient of elimination /(r). For, it is a fraction 

of the number of persons belonging to the population studied 
and deceased at age 7. It is evident that if “addition” or “integra- 

tion” covers all possible age groups that can be reached by the 

persons included in the population, the sum or integral obtained 

will equal 1.22 ; 
Let us assume that go = 0. Then e~* = 1 and 

R(e) = ( e-F (zr) dt = (/O)dr z], 

0 0 
w 

Thus, the curve R(o) = | e-*f(t)dt intersects the axis of 
0 

ordinates at point (0,1). 

We have proved that the characteristic equation (9) can have 

only one real solution: o = 0. Hence, the solution of equation 

(8) is a constant function. Indeed, for g1 = 0, we have B(t) 
= (6% = 0; = const. 

This means that in the case of simple reproduction in a po- 
pulation the birth rate B(t) must be constant. This solution is 

intuitively obvious because, if the size of the population is to be 

unchanged, the number of births per year must correspond to 
the number of deaths per year. 

We shall now deal with a case in which solutions of the char- 
acteristic equation (9) are complex. In this case, we write: o 

= a-+i8 and the formula for the solution (10) of the replacement 
equation (8) will assume the following form 

B(t) = Qe@*** = Qerte'bt — Qe* (cos Bt+ isin Bt). 

22 This can be shown in yet another way. The coefficient f(z) denotes the 
probability that a person in a given population will die at age z. Therefore, 
the probability that a person will die between the ages of 0 and o equals 
unity. 
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It follows from this form of solutions of integral equations 
that in the process of replacement there appear cycles called 
autonomous cycles of the replacement process. 

Autonomous cycles of the replacement process are a result of 

a phenomenon known in demography as an echo phenomenon. If, 

for example, during war years the number of births declines, then 

after some time, when the war generation reaches the reproductive 
age, the number of births will continue to decline. The echo phe- 
nomenon may repeat itself many times at even successive inter- 

vals. The echo phenomenon is often regarded as an effect of 

heredity because the replacement equation can also be used in 
studies on heredity. 

The replacement equation was fotmulated for the first time in 

1910 by the Italian mathematician, Vito Volterra23, and was called 

“the integral equation of hereditary effects”; it appears in bio- 
logical populations in the form of certain characteristics of the 

population that manifest themselves from time to time. They are 
phenomena whose rate of growth B(t) depends upon previous 

states at a certain period w, corresponding to the heredity period 

of given characteristics. 

Volterra s equation was introduced in 1913 into demography 

by the American statistician and demographer, A. J. Lotka, and 
in 1933 into studies on the problem of the replacement of means of 

production.24 At that time began the process of generalization of 

the methods of mathematical demography and of their intro- 

duction into the theory of replacement. 

Let us now take a closer look at complex roots of the char- 

23 See Vito Volterra, Legons sur les équations intégrales et les équations 
intégro-différentielles, Paris, 1913, p. 151 and ff. These lectures were given 

in 1910. 

24 See the paper by A.J. Lotka, Industrial Replacement, Skandinavisk 

Aktuarietidskrift, 1933. See also the study by the same author, Contribution 

to the Theory of Self-renewing Aggregates with Special Reference to Industrial 

Replacement, Annals of Mathematical Statistics, 1939, and On an Integral 

Equation in Population Analysis, ibid, 1939. M. Fréchet, Les ensembles sta- 

tistiques renouvellés et remplacement industriel, Paris, 1949. A systematic 

exposition of the theory of replacement and of mathematical problems related 

to the replacement equation is given in the work by W. Saxer, Versicherungs- 

mathematik, Part 2, Berlin, 1958, Chapter 4. See also J. A. Ville, Legons sur 

Ja démographie mathématique, Paris (n.d.). 
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acteristic equation (9). Let us substitute in this equation the 

complex root o = «+i. We obtain the following equation: 

[oP adr = 1, 
0 

\ 

or 

( e~*"(cos Br—isin fr) f(t) dt = 1. (9a) 

0 

This last equation will be satisfied if the real component on 

the left-hand side of the equation equals one and the imaginary 

component equals zero: 

| | e-*cos Bej (odr Z> 

+) (12) 
| e-arsin Brf(r)dr = 0. 
0 

It follows from the first of the above equations that « < 0. 
0 

Indeed, let us compare the integral | e~*"cos brf(z)dt with the 
0 

integral ( e-*f(t)dt = 1 studied before (in which, as we have 
0 

seen, 0 =0 and e-*=1). For one of the integrated factors 

appearing in the first integral, the inequality cosft < 1 holds 

for r # 0.25 It can be seen, by comparison, that for « > 0, this 

integral is less than unity. It can equal unity only when its other 

integrated factor e~** > 1, from which it follows that « < 0. 

This is a very important conclusion indicating that cyclical 

fluctuations in the birth rate B(t) = Qe* (cosft+isin ft) have 
a decreasing amplitude, i.e. that they are damped cycles. 

Experience confirms this conclusion. Statistical studies of 
demographic phenomena show that the phenomenon of echo grad- 
ually fades away. 

25 B # 0 because otherwise the solution would not be complex. 
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On the basis of equation (12) we shall establish that the period 

T of the birth rate cycle is shorter than the longest lifespan of 
the persons included in the population, i.e. T < w. 

Indeed, let us note that the integrated function of the integral 

w 

| e~*'sin Brf(t) dr, 
0 

is a periodic function with the period26 T = 2x/8 and with an 

increasing amplitude because (since « < 0) e~*' increases as £ 

increases. This function is presented graphically in Figure 15. 

[2) 

The value of the integral \ e *sinfrf(z)dt repiesents “the 
0 

shaded area under the curve”, in Fig. 15. It can easily be seen that 

in the interval [0, 7] the shaded area below the axis of abscissae 

(i.e. the area to which a negative value is ascribed) is greater than 

the area above the axis of abscissae. This is so because the inte- 

grated function has an increasing amplitude. If, then, the length of 
@ 

the integration interval were w = 7, the value of \ e~*sin brf(t) dt 
0 

would be less than zero. It follows from condition (12) that this 

integral equals zero only when the length of the integration interval 

w > T, since only then can the area above the axis of abscissae 

(i.e. the positive area) be equal to the area below the axis of 

abscissae (i.e. the negative area). 

26 The period of a sinusoidal function is 2x and, therefore, in this case 

25 
TB = 2m, hence T="- 
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We have thus shown that the fluctuations in the birth rate, 

corresponding to a complex solution of the characteristic equa- 

tion (9), are of a decreasing nature with the fluctuation period 

tf Oy 

In conclusion, some comments of a general nature can be de- 

rived. Cycles of simple reproduction within a branch, as discussed 

above, i.e. reinvestment cycles,27 may appear also in a socialist 

economy, in contrast to business cycles, caused by changes in 

profitability in various branches of production, unknown in a so- 
cialist economy. 

A re-investment cycle may appear in our economy as a pheno- 

menon of echo. During the period of the 6-year plan many new 

production establishments had been built. If we want to replace 

these establishments we may encounter a cumulation of reinvest- 

ments. Thus the heredity of the 6-year plan would extend into 

the future. 
A similar situation prevails also in a capitalist economy with 

this difference that in the latter reinvestment cycles are superim- 

posed on business cycles. Business cycles result in a cumulation 

of investments in certain years, and this, in turn, enhances business 

cycle fluctuations. This was duly noted by Marx.28 

The most important conclusion to be drawn from our theore- 

tical considerations is that replacement cycles, if they are not 

superimposed on business cycles, are of a decreasing nature. If 

there appears in a socialist economy a phenomenon of echo, which 

arises in consequence of an initial cumulation of investments, it 

gradually fades away and is eliminated from the development 
process of the national economy. 

27 On the subject of re-investment cycles see J. Einarsen, Reinvestment 
Cycles, Oslo, 1938, and Tadeusz Czechowski, Cykliczność procesu reprodukcji 
prostej (Cycles in the Process of Simple Reproduction), Scientific Series, 
SGPiS, Warsaw, 1957. i 

28 See K. Marx, Capital, vol. 2. 
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DESCRIPTION OF SPECIAL MODELS 

DESIGNED TO SOLVE SOME PROBLEMS 

OF INTER-BRANCH FLOWS 

IT is possible to construct models for solving automatically certain 

problems of inter-branch flows; their solution by ordinary com- 

putational methods could be quite cumbersome, especially when 

the number of branches of the national economy is large. Outlined 

below is a description of hydraulic and electrical models which 

can be used for solving the simplest problems of this type. It is 

possible, however, to construct similar models for solving more 

complex problems consisting, for instance, in obtaining optimal 

solutions in planning the allocation of accumulation, investments, 
etc. 

Model | is used for determining the amounts of final products 

in particular branches, x1, x2, ..., x„, when the aggregate amounts 

of products, X1, X2, ..., X, are given, or vice versa, for calculating 

X1,X2, ..., X, when x1, X2,..., X, are given. A diagram of a hyd- 

raulic variety of such a model assuming that the national economy 

is divided into two divisions (n = 2), is shown in Figure 16. 

The model has two upper starting containers; the amount of 

liquid in these containers is a measure of X, and X2, i.e. of the 

aggregate products of Divisions 1 and 2, respectively. There are 

also four lower containers, denoted in the diagram by A, B, C 

and D. The upper and lower containers are interconnected by 

a system of pipes whose fiow capacity (the bore of the pipe) may 

be regulated at will by an appropriate calibration of faucets. 
The model has no piston pumps for forcing the liquid into the 

pipes. The liquid flows from the upper to the lower containers 

only by gravity. The containers and the pipes may be made of 

glass to facilitate observation and the liquid may be coloured. 

121 
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The functioning of the model is based on the following ini- 

tial assumptions. 

Fic. 16. 

An ordinary table of inter-branch flows for two divisions 

(expressed in money-value units), as shown in Table I, can be 

transformed into Table 2 by introducing inputs coefficients. 

Table 1 Table 2 

X11 X12 X1 x, AX, ApX, X1 x, 

X21 X22 X | X AX, A2X2 X2 | M 

Wi W W1 W2 

Xi A X, M 

In these tables w; and w2 denote the values added in Division | 
and Division 2, respectively. From Table 2 we derive the follow- 
ing initial equations for our further considerations: 

ie = 41X1+a2X2+1, (1) 

M = 4X1 +02X2+%2, 

a = 4a1X1+a1X1+m1, (2) 

XM = 12X2+42X2+W2. 



Models of Inter-branch Flows 123 

The first two of these equations, called balance-sheets of pro- 
duction equations, have been obtained by adding up the elements 

in the rows of Table 2, and the last two equations, called cost 

outlay equations, by adding up the elements in the columns of 
Table 2. 

If the inner diameters of the pipes of the model (or their flow 

capacity regulated by faucets) are proportional to the numbers 

that are written down beside the pipes in Fig. 15, then the liquid 

flowing out of containers 1 and 2 will be distributed, at each 

branch-off point, in proportion to the bore of the pipes into 

which the feeding pipe branches off. Thus, for example, the 

liquid from container 1 will be distributed at the first branch-off 
point into two flows at the ratio corresponding to the bores of 

the pipes, i.e. in the ratio: (1—an—axn):(a1--a1). 

It follows that the amount of liquid which will accumulate in 

the bottom container A will correspond to wi, i.e. the value added 

in Division 1.1 

The liquid flowing out of container 2 will be distributed in 

a similar way. At each consecutive branch-off point the liquid 
will be distributed according to the same principle, i.e. always in 

proportion to the bore of the pipes. 
It is easy to ascertain that, as a result, the amount of liquid 

collected in the bottom container will correspond to auiX1 

Ld12 X2 = X;—x1, as follows from the first equation of the system 

of initial equations (1). Similarly, the amount of liquid collected 

in the bottom container C will correspond to d21X1+422.X2 

= X2—X2. 

It can be seen from the above considerations that if the amount 
of liquid poured into the upper containers is given, then, after 

completing the experiment and determining the amount of liquid 
in the bottom containers B and C, we can determine the amounts 

of the final products x: and x» by determining the differences in 
the amounts of liquid in the corresponding upper and lower 

containers X1—(X1—x1) = x1 and X2.—(X2—x2) = x2. Thus, the 

first problem has been solved. 

1 Indeed, after multiplying X by 1—a —ax, i.e. by the fraction determining 

the amount of liquid that flows out of container 1 and accumulates in container 

A we obtain X1(1 —an—ax) = Xi—auX1—anX1 = wi, which agrees with the 

first equation of the system of initial equations (2). 
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The essence of the construction of an electrical model is iden- 

tical with the hydraulic one described above. The role of the 

liquid in the electrical variety is played by an electric current of 

intensity proportional to X; or X2, respectively. The pipes will 

thus be replaced by conductors with resistance R, so chosen that 

they are inversely proportional to the quantities determined in 

the hydraulic model by the bore of the pipes. This means that the 

conductivity = of the corresponding connections should be pro- 

portional to the quantities determining the distribution of current 
intensity in the branches. Since the voltage of the electric network 

with which the model is connected is constant, we can measure 

the power of the flow of current, instead of its intensity, i.e. we 

can measure in watts instead of amperes. 

On the basis of the measurement of intensity or power of the 

electric current, obtained by installing meters at the points of 

“inlet” or “outlet” of the model, we can, as with the use of 

a hydraulic model, determine the values of x: and x» when X; 

and X> are given. 

More interesting is the application of the model, described 

above, for solving the opposite problem consisting in determining 

the total products X; and X2 when the final products x; and x2 
are given. When a hydraulic model is used, before we open the 

upper containers, we pour into the lower containers B and C 

(Fig. 16) the amounts of liquid corresponding to the given quanti- 

ties x; and x2, and into the upper containers any amounts of 

liquid. Then, we open simultaneously the outlet pipes of the 

upper containers and allow the liquid to flow out until the amount 

of water in the container B (or C) equals the amount of water 

which has flowed out of the corresponding upper container. In 
order to time properly the moment at which the flow of the liquid 

must be stopped, the scale determining the level of the liquid in 

the upper container should be read off “from the top”, i.e. from 

the initial level of the liquid, and the scale of the bottom container 

should be read off in the usual way, i.e. from the bottom of the 
container. 

It is obvious that at the moment of turning off the flow from 
the upper containers the amount of liquid in the bottom containers 
Band C will equal X; and X2, respectively. Indeed, “at the moment 
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of equilibrium” the amount of liquid that has flowed out of the 
upper container X; equals the amount of liquid in container B, 
which means that the first equation of system (1) 

Xi = an X1-anX2--x1 

is satisfied. Similarly, the second equation of system (1) is sat- 

isfied. 

As a by-product of this experiment we obtain a certain amount 

of liquid in the containers A and D which allows us to determine 

the value added w; and w» in Divisions 1 and 2. 
In conducting the experiment designed to determine X; and 

X, when x: and x2 are given by means of a hydraulic model, certain 

practical difficulties of a technical nature arise. For example, 
for the experiment to be successful it is necessary that the speed 
of flow of the liquid through pipes of different diameter should 

be the same. 
In an electrical model this difficulty does not arise because 

the time of flow of the current is negligible. In this kind of model 

it is also easier to solve the problem of catching *the moment 
of equilibrium” because the current can be cut-off at that moment 
automatically. It would be necessary, however, to install at the 

“exit” points of the model additional sources of current that 

would supply the exit points B and C with the current of an 
intensity (or power) corresponding to x; and x», respectively. The 

moment of equilibrium is reached when the intensity (or power) 

of current on the exit meter at point B (or C) equals the drop in 
the intensity (or power) of current on the entry meter at point X1 

(or X2). 
It is not difficult to imagine how these models can be developed 

to enable us to determine final products when total products are 

given (or vice versa) when the national economy is divided into 

more than two branches. A hydraulic model has rather technically 

limited possibilities of development because it would require an 

intricate system of many pipes of various sizes and numerous 

ramifications arranged in such a manner that the velocity of flow 

of the liquid is more or less the same; this would be very difficult 

to accomplish. 
With an electrical model these difficulties do not arise and it 

is a relatively simple task to construct a model for solving the 
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problem given above when the economy is divided into branches. 

Let us note that model 1 can be further developed so as to 

enable us to divide the value added w; and w» into wages and the 

the surplus according to the equations: 

is = 01 X1- Ams X15 (3) 

W2 == ao2X2-- dm X2; 

where a01 and ag2 are wage coefficients and a,,1 and a„2 are profit 

coefficients of Division 1 and Division 2, respectively. To achieve 

this, two pipes with inner diameters proportional to do: and am 

(or do2 and d,,2) should be installed to connect container A (or D) 

with additional containers 4: and A» (or Di and D2) (Fig. 16). 

By admitting the liquid into these additional containers, we obtain 

the sum of wages and profits in both divisions of the national 

economy. 
To conclude the description of model 1, let us note that it can 

be built only on the assumption that all the coefficients appearing 

in initial equations (1) and (2) or in the additional ones (3), are 

positive or equal zero. In the latter case, the bore of the correspond- 

ing pipe in a hydraulic model or the conductivity of the correspond- 

ing conductor in an electric model would have to equal zero. 

Without some additional equipment, this model cannot be used 

in cases for which some coefficients in the initial equations are 

negative. One can jokingly say that the model is not suitable 

“for planning deficits” (the case of a,,< 0) in any branch of the 
national economy. 

Model 2 is designed to solve certain problems connected with 

the process of economic growth which we have presented in the 
form of differential equations (Chapter 4). 

Let us compile a table of reproduction and investment flows 
and write the initial equations for the studied growth process, 
on the assumption that the national economy consists of two 
branches of production. 

xin X12 | fre Tis se Xi 

X21 X22) la Ino | x§ || Xe 

Wr M2 

X, X2 
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After introducing technical coefficients a, investment coeffi- 

cients b and the rate of consumption k, this table will assume 
the following form: 

dX, dX, 
aX, aX, Bie. jej) x(0) xX, 

€ 
dX dX. 

aX, aX b — po x) X 

2X, Q2X2 

In this table k,,1 and k,,2 denote the parts of the value of the 

total products X; and X2 that constitute profit earmarked for 

consumption. 

The first pair of the initial equations of the growth process 

under consideration can be written in the form of differential 
equations :2 

Lx, = auXit anXet but eu yer) 

| (4) 
dX dX: 

+ bap " x509. X = 1X1 + 422X2+ bai- 
dt 

i = dx, dX> złe 
2 Let us note that instead of the derivatives 76 and #6 appearing in 

tables of investment flows and in equations (4), we can introduce finite differ- 

ences AX: and 4X2 corresponding to the increments of the total products 

in a given period and we can treat such a process as a discrete one. This does 

not affect further reasoning. 
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Denoting, in turn, the rates of growth of the total product 

in Divisions 1 and 2 by 7; and 72, respectively, 

dX, dX2 

= dt d r dB HE an PZJ 588% 

we can transform the differential equations (4) into ordinary 

equations: 

XM—x0) = (au burn) X1+ (12 -bi2r2) X2, 

as: = (a1 +bair1) X1+ (072-+ba2r2) X2, 

which indicate that the part of the total product which is not 

consumed in a given division, i.e. gross investment, is partly 

used up for reproduction and partly for investments in Division 1 

and Division 2. 
In a similar way, adding up the first two columns of the table 

of reproduction and investment flows, we obtain the second pair 

of initial equations: 

ka = (a1-+d21) X1 + (bu +b) 1 X1--001X1-+k,; X1, 

XM = (A12 +22) X2+ (bra +b22) r2X2+ 02 X2-+- ka X2. 

(5) 

(6) 

The equations (5) and (6) are the starting point for constructing 

model 2 and for explaining its functioning. The diagram of the 

model is presented in Fig. 17. This model can be used for solving 

various problems; two such problems are described below. 
In the first problem we assume that the following elements 

are given: the total products of Division 1 and Division 2, i.e. 

X and X2, the technical coefficient a, the investment coefficient b, 
the rate of consumption k and the rates of growth of total products 

in both divisions r1 and ra; we have to calculate the remaining 

elements and primarily the final products xf? and x” which 
remain for consumption and for exports. 

The functioning of model 2 is identical with the functioning 

of model 1, described above. In Fig. 17 in which the diagram of 

Model 2 is presented, the inner diameters (bores) of the pipes 

are shown. The liquid poured into the upper containers in amounts 
X1 and X, respectively, flows through the system of pipes into 
the two bottom containers and accumulates in them in amounts 
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X,—x, and X,—x, as follows from the equations (5). The 

difference between the initial amount of liquid in the corresponding 

top and bottom containers will enable us to determine the quan- 

tities x(? and x$° sought. 

The second problem is the reverse of the first one. We assume 

that, besides the given technical coefficient a, investment coeffi- 

cient b, the rate of consumption k and the rate of growth r, we 

have determined in advance the planned level of consumption, 

i.e. the quantities of the products of Divisions 1 and 2 earmarked 

for consumption: x() and x$). We must determine the total 
products of both divisions, X; and X2, necessary for achieving 

the planned targets. This problem can be solved with the help 

of Model 2 in the same manner as when Model 1 was used. Before 

starting the experiment, we pour the liquid into the bottom con- 

tainers in amounts corresponding to x‘ and x‘, respectively, 
and into the top containers any amount of liquid. Then, we turn 

on the taps of the top containers and let the liquid flow until its 
amount in one of the bottom containers (say, the one on the left- 

hand side in Fig. 17) is the same as the amount of liquid that has 

flowed out of the corresponding top container (also the one on 

the left-hand side). At this moment, we turn off the taps of the 

top containers. It can easily be seen that at this moment the 

equations (5) are satisfied and therefore the amounts of liquid 

which have flowed out of the top containers determine X; and 4. 

‘All the comments pertaining to the technical design of Model 1, 

its adaptation to make it suitable for solving problems arising 

in connection with a larger number of branches of the eco- 

nomy, as well as the comments on the construction of an elec- 

trical model 1 apply also to Model 2. 

As we have already mentioned, Models 1 and 2 can be further 

developed so as to make them suitable for solving other problems 

relating to economic planning. It would be interesting, for example, 

to determine with the help of Model 2 the rates of growth of the 

national product, r; and r, when the total products X; and X2 

as well as x{ and x are given. 
The problem can be solved with the help of Model 2 by the 

method of trial and error, by changing the bores of the pipes 
(or the resistance in the electric model) whose diameters are 
determined by the coefficients rr or m. The problem is solved 
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when X, and X2 of liquid, poured into the top containers, collect 

in the bottom containers (Fig. 17) in quantities of exactly ¥;—x 

and X,—x$), changing the diameters of the pipes until this 

condition is satisfied. If the magnitudes of other coefficients are 

known, then the diameters of the corresponding pipes thus 

adjusted will enable us to determine 7; and r». 

We can install in the containers, placed between the top and 

bottom containers (Fig. 17) special meters for measuring the 

quantity of liquid flowing through them. We can read off from 

them the amounts of reproduction and investment outlays needed 

for attaining the targets of total production X; and X2, or of con- 
sumption xf and x. For instance, a11X; are the reproduction 
outlays in Division 1 in the form of the products of this division; 

d12 X are the reproduction outlays in Division 1 in the form of 

the products of Division 2. Similarly, b174X1 are the investment 

outlays in Division 1 in the form of the products of this division, 

and bi2r2X2 are the investment outlays in Division 1 in the form 

of the products of Division 2. As a result, we can read off from 

the Model both the divisional and material structure of reproduc- 

tion and investments. When the electric model is used, meters 

must be installed for measuring the intensity (or power) of the 

current instead of containers used in the hydraulic model. 

The containers shown in Fig. 17 on both sides represent the 

wage funds in both divisions of the national economy, a01X1 and 

do2 X», and the parts of the value of the product of each division 

KmiX, and k,,X, constituting profit earmarked for consumption. 

Models for solving certain economic problems were designed 

in the past, for instance, by Lerner and Phillips—to present 

the mechanism of the functioning of the Keynesian model.3 The 

aim was, for instance, to determine the amount of investment 

i for an a priori given level of national income and a given pro- 
pensity to consume. Lerner’s model is much more complex in 

comparison with the models described above since it consists not 

only of pipes through which the liquid flows by gravity, but 

also of a system of pumps for circulating the liquid. Phillips’ 

model is electrical. 

3 See A. W. Phillips, Mechanical Models in Economic Dynamics, Eco- 
nomica, 1950. Another model designed in Switzerland is described in Jahr- 

biicher fiir Nationalókonomie und Statistik, 1958. 
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The following comments can be made in relation to the pos- 
sibilities of constructing mechanical models for solving certain 
economic problems. 

At present, especially now that electronic computers are applied 

to numerical calculations, the possibilities of solving numerically 
complex economic problems are infinitely greater. This fact is 

strictly related to the problem of centralization and decentralization 

of management. In recent years, in our economic practice, there is 

a trend toward decentralization in management. One of the 

arguments, but not the only one, for decentralization in manage- 

ment were the difficulties of solving a huge complex problem by 

one central authority. It was necessary to allocate the tasks of 

economic planning to local centres and individual enterprises. 

It is likely, however, that the mechanization of computations 

and appropriate electronic computers will make possible greater 
centralization of management of the economy. Even today, elec- 
tronic computers are used for solving systems of linear equations 
with a practically unlimited number of unknowns; with their 
help matrices of a system of linear equations are inverted.4 

We can thus see that the technical revolution in electronic 
computers creates new conditions for the management of the 
economy and makes centralized management quite feasible. This 
does not mean, however, that the development of the methods of 
management must go in the direction of centralization, because 
there are other considerations, and particularly participation of 
workers in the management of a socialist economy, the problem of 
workers’ councils and of the democratization of production rela- 
tions, which make desirable a certain degree of decentralization 
in the management of a socialist economy. 

* It is worth mentioning that even Hayek and Robbins (see Collectivist 
Economic Planning, ed. F. A. Hayek, London, 1935, pp. 212 and ff) doubted 
if it would be possible to manage centrally the national economy because it 
would necessitate solving a tremendous number of equations which, at that 
time, was practically impossible. 



APPENDIX 2 

SOME NOTES ON DIFFERENTIAL AND 

DIFFERENCE EQUATIONS! 

by 

A. BANASINSKI 

1. Definition and classification of differential equations 

We define as ordinary differential equations those equations 

which express the relation between an independent variable x, 
an unknown function (a dependent variable) y and its derivatives 

of various orders y’, y”, ..., y™. 
According to this definition we can write an ordinary differ- 

ential equation of the nth order in the form 

BO, Pd ie) 10 (1) 

or, using Leibnitz’s notation instead of Lagrange’s: 

d 2 my F(s ly dy d 

5d dół owieea: 

There are various types of differential equations. In the first 

place, we distinguish between equations of the first, second ... nth 

order, depending on the highest order of the derivative of the 

function y = f(x) appearing in equation (1). An ordinary differ- 

ential equation is thus of the nth order if the highest order of 

the derivative of function y = f(x) is n. 

1 This appendix is intended to make it easier for readers to understand the 

mathematical passages contained in this book without further reference to 

any special textbooks on higher mathematics. The inclusion of this appendix 

is all the more desirable since a course of higher mathematics as taught at 

higher schools of economics does not include the theory of differential and 

difference equations. 
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We may thus write an ordinary differential equation of the 

first order in the form 

F(x, y, Y) = 0, (1a) 

a differential equation of the second order in the form 

F(x, yy, y') = 0 ete. (1b) 

There are certain differential equations which are called “in- 

complete”; these are the equations in which e.g., an independent 

variable x, or a function y or some derivatives of orders lower 

than that of a given differential equation do not appear explicit. 

Below are examples of “incomplete” differential equations of the 

first order: , 

Fix y =O, Fy) =O ty) 

It should be noted that in the second and third equations, although 

the independent variable does not appear distinctly, it is, none 

the less, implicit in the function y and its derivative y’. 

Below are further examples of “incomplete” differential equa- 

tions of the second order: 

FGY)=0, “FQ.y)=0, FY. 7) =90, 

FO,7.97)=9, FY, 7) =: 

From among the various kinds of differential equations, linear 

differential equations of the nth order, frequently used in practice, 

should be especially noted. They can be presented in the form2. 

A(x) y+ ar(x)YOYV+ ... Han 1(%Y tary = bx), (2) 

where a(x), a1(X), ..., @,(x) and b(x) are functions of the variable x 
or constants. 

In particular the differential equation 

ao(x)y'+ai(x)y = b(x) 

is a linear differential equation of the first order. 

2 It should be noted that in a linear differential equation of the nth order 
the function y and its derivatives y/, y”, ... y™ appear in the first degree. 
Hence the description “linear”. If the function y or its derivatives appear 
in a differential equation in a power higher than the first power and the highest 
power, in which there appears y or any one of its derivatives, is equal to r, 
then we say that the differential equation is of the degree r. It follows that the 
order of a differential equation is to be carefully distinguished from its degree. 
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Dividing the differential equation ao(x)y’+-ai(x)y = b(x) by 

ao(x) # O and denoting a;(x) ee : by p(x) and oe 2 by g(x) we 

arrive at an equation of the form 

y +p (x)y = q(x). (2a) 

It is in this form that differential equations of the first order are 
most frequently written. 

If, in a linear differential equation a “free term” (i.e., an 

expression which does not contain a function y or its derivatives) 

equals zero, i.e. b(x) = 0, then this equation is called a homogeneous 

equation. Hence the general form of a differential homogeneous 

linear equation of the nth order is as follows: 

a(x)y+ai(x) y+ ... +410) y’ +ay(x)y = 0. (3) 

Therefore, homogeneous linear differential equations of the first 

order take the form: 

yi+p(x)y = 0. (3a) 

If in equation (2) or (3) the functions ao(x), ai(x), ..., a,(x) are 

constant numbers, then the equations (2) and (3) are called /inear 

differential equations (homogeneous or nonhomogeneous) with 

constant coefficients.3 

We shall be mainly concerned with simple types of ordinary 

differential equations, more frequently met with in practice, and 

with methods of solving them in later sections of this appendix. 

In the theory of differential equations and in its practical appli- 

cations we have to deal with sets of differential equations containing 

two or more unknown functions (dependent variables). 

Let us assume that y and z are different functions of the same 

dependent variable x, i.e., y = f(x) and z = g(x). There can then 

be differential equations containing two unknown functions. The 

following is an example of a differential equation of the first order 

of this type: 

FX, ARAWCZA RZE (4) 

3 We deal with this type of equations and sets of equations in Chapter IV. 
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As a rule, in order to find the functions y =/(x) and z = g(x) two 

equations of this type, i.e. a set of differential equations must 

be given: 

Fi Qs V2, y ey == 0, (5) 

F(x, y, Z, y’, z) = 90. 

Similarly, we can arrive at systems of ordinary differential 

equations of any order containing any number of unknown 

functions. 
A separate class of differential equations is formed by differ- 

ential equations with partial derivatives. In these equations there 

are two or more independent variables x1, x2, ..., x„, and one (or 

more) dependent variables y:, ya, ..., y„, Which are functions of 

the independent variables x1, x2, ..., x, as well as partial deriv- 

atives of these functions of several variables. We shall not deal 

here with the theory of differential equations with partial deriv- 

atives. We shall just give an example of differential equations 

with partial derivatives of the first order, containing two inde- 
pendent variables x: and x2 and one function y =/(x1, x2). 

This equation can be written as follows: 

F(xu, X2, Vs Vy» Vx,) = 0. 

And here is an example of a differential equation with partial 
derivatives of the second order: 

F(x; X25); ves 2 Vews e Vera = 0.4 

2. Solving a differential equation 

The solution of an ordinary differential equation (1) consists 

in finding a function y = f(x) which satisfies this equation. 

For instance, the solution of the differential equation y” 

+y = 0 (which, as can easily be seen, is an incomplete differential 

equation of the second order since it contains neither x nor y’, 

i.e., it does not contain the independent variable x or the first 

derivative function y explicit) is the function y = sinx (or, as 

* The symbols for partial derivatives used here may be replaced by other 
commonly used symbols, viz., 



Differential and Difference Equations 137 

we frequently say, the curve of the equation y = sinx). If we 

substitute in y’’+y = 0, sinx for y and — sinx for y”’ (if y= sinx, 

then y = cosx and y’’ = —sinx), we obtain sinx—sinx = 0 and 
thus the differential equation is satisfied. 

It is easy to show that the equation y’’+y = 0 is also solved 

by the function (curve) y = cosx, and also by the function of the 

type (or the curve representing the equation) y= C;sinx 

+C2cosx, where C; and C2 are any numbers. We have thus 

established that differential equations may have an infinite number 

of solutions. We shall come back to this matter since it is a rule 

which basically applies to all differential equations. 

Similarly, we can show that e.g. the solution of the differential 

equation xy’+3x—2y = 0 is formed by the functions (parabolae) 

of the equation y = cx*+3x where c is any number. 

Let us examine the simplest differential equation of the first 

order of the type y’ = f(x) which we know well from integral 

calculus. As we know, the equation y’ = f(x) can be presented 

in the equivalent form | = f(x) or dy = f(x)dx. 

The latter form, being the most convenient, is most frequently 

used. 

The solution of the differential equation y’ = f(x) consists in 

normal integration, i.e., in finding the original function of the 

given function f(x). Hence, if y = f(x) then y= \ J/(x)dx or what 
B 

is the same thing, y = j f/(t)dt--C; a and C are any constants. 

Let us take some specific examples. 

(1) if y = 2x, then y = \ 2xdx = x2+-C, where 

x 

C is any constant ors y = j 2tdt = x2—a2+-0, = x2+C. 

a 

(25 = cos x athens = \ cosxdx = sinx-+C. 

(3) JY As » then y= dx zz In | xs52 |->C: 
a (ag x2 

s The algebraic sum of the arbitrary constants —a?+Ci may, obviously, 

always be replaced by the one arbitrary constant C. 
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It follows from these examples and from the theory of integral 

calculus that the solution (integral) of a differential equation of 

the first order y’ = f(x) is not a single function but a one-parameter 

family (group) of functions y = $(x, C). It is a general solution 

(or general integral) of a differential equation of the first order. 

However, if the required function must satisfy some initial 

condition, e.g., it is known that for the value xo of the independent 

variable the required function has the value yo, then this initial 

condition makes it possible to determine the value of the constant 

C and in this way to obtain the one definite function satisfying 

the given differential equation. This is the particular solution 

(particular integral) of the differential equation. 

Let us take as an example the differential equation y’ = 3x2 

and let us find the function satisfying this equation together with 

the initial condition according to which when x = 2 then y = 9. 

We can formulate this initial condition so that the graph of the 

required function passes through the point having as coordinates 

%9. 
The general solution of an equation obtained by integration 

has the form 

= | 3x2dx, ie, “y= 4 G, 

where C is any constant. Since when x = 2 y = 9, by substituting 

these values in the general solution of the equation we obtain 

9 = 8+C, hence the constant C = 1. The particular solution of 

the equation is thus the function y = x3+1. 

In the general theory of differential equations much importance 

is attached to the so-called assertions of the existence and uni- 

queness of the solutions of differential equations. Without going 

into more detail we can say that a differential equation of the nth 

order may have a general solution (general integral) which is 
an n-parameter family of functions (curves) y = (x, Ci, Co, ..., 
..., C,), where o is a differentiable continuous function in a certain 
region and we can state that when certain fairly general assumptions 
are satisfied, then through every point of this region passes one 
of these curves. It should be added that constants of integration 
appearing in these equations are mutually independent, i.e., 
their number cannot be reduced by the introduction of other 
constants. | 
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For example, let us assume that for a differential equation of 
the first order which can be expressed in the form y’ = f(x, y), 

a sufficient condition for the existence and uniqueness of an 
integral in a given region D is that the function f(x, y) should 

be continuous in region D and that the partial derivative /; should 
be continuous. 

FiG. 18. 

The graph of the general integral y = o (x, C) of a differential 

equation of the first order is a one-parameter family of curves 

which we obtain by drawing graphs of the function y = g(x, C) 

for different values of any constant C. So, for example, if we 
have a differential equation y’ = 2x, the general solution of which 

has the form y = x2+C, then on the graph the general solution 

will be a family of parabolae of the type y = x2+-C. The partic- 

ular solution, e.g., satisfying the initial condition x= 1, y= 1 

(and hence C = 0), will be a parabola y = x? passing through the 

origin of the system of coordinates since only one of the whole 

family of parabolae y = x2+-C passes through point 1, 1. 
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3. Methods of solving differential equations 

We shall now describe some methods of solving simple types 
of ordinary differential equations and sets of these equations.‘ 
We shall deal mainly with differential equations of the first order. 

(1) Differential equations of the first order with separated 

variables. N 

Let us suppose that it is generally possible to solve the differ- 

ential equation of the first order F(x, y, y) = 0 with respect to 

the derivative function y’, i.e., to give to this equation the form 

_"PGGY) 1 
26.7) m 

x 

where P(x, y) and O(x, y) are functions of the variables x and y. 

We can write equation (1) in the following equivalent forms: 

dx Q(x, y) 

AA: d : : 
or, treating the derivative y = = , as the ratio of the differentials 

of the variables y and x: 

P(x, y)dx+Q (x, y)dy = 0. (1b) 

There may be special cases in which P is only a function of 

variable x and Q is a function only of variable y; we can then 

write the equations (la) and (1b) in the forms 

dy f(x) 
06 © (2a) 

f(x)dx+g(y)dy = 0. (2b) 

Differential equations of the first order which can be set out 

in the forms (2a) or (2b) are called differential equations with 
separable variables. 

s A more detailed discussion of methods of solving differential equations 
may be found in practically any more comprehensive mathematical textbook 
on higher mathematics (mathematical. analysis) and in special textbooks on 
the theory of differential equations. 



Differential and Difference Equations 141 

The solution of these equations is very simple. Integrating both 
sides of the equation (2b) we obtain:7 

(/©)dx+ |g0)dy=C, 

and assuming that 4 f(x)dx = F(x) and f g(y)dy = G(y),8 we can 

write the differential equation (2a) or (2b) in the involved 

form 

FQ)+G() = C 

and hence determine the unknown function y = g(x). 

Example 

Solve the differential equation 

xy’—y = 0. 

From this equation we determine y’ = >, or directly separate 

the variables: 

dy, ak ay) 
Be PUMOTIA NETA 

Note that in this case 

f(x) =— and 8) = +. 

Integrating the equation we arrive at 

7 We know from integral calculus that if the differentials of two functions 

F(x) and G(y) equal each other, i.e., f(x)dx = g(y)dy, where f(x) = F’(x) 
and g(y) = G’y then the functions differ by a constant. It follows from the 

equation /(x)dx = g(y)dy that F(x) = G(y)+C. 
8 We see that in order to solve a differential equation it is necessary to 

determine indeterminate integrals which is not always easy and may even 

be impossible. In cases of this kind approximate solutions are found for 

differential equations. 
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hence In|x|—1n|y| = In|C| 

or In >| = ini, 
» 

It follows that > = C, and-hence y ==. This is the general 

integral of the differential equation xy’—y = 0. It is easy to see 
that the general integral is in this case a pencil of straight lines 

passing through the origin of the system of coordinates. 

The solution may be checked by substituting yas in the 

1 ; 
differential equation. We then have 305 > = 0, and the equation 

is thus satisfied. 

The method of separating the variables can also be used to 

solve differential equations of the type 

P(x, y)dx+Q (x, y)dy = 0, (1b) 

if P(x, y) and Q(x, y) can be expressed as products of functions 

of which each is a function only of x or only of y; 

filx)gi y)dx+fa(x)82(y) dy = 0. (3) 

Dividing both sides of the equation (3) by f2(x) g1(y) ¥ 0° we obtain 

PNM) 7829) ae oe 
KIRAWCTWA M 

which is an equation in the form (2b) with separated variables 

which can be solved by the method given above. 

Example 

Solve the differential equation 

(1+ x)ydx+(1—y)xdy = 0. 

Dividing both sides of the equation by xy we obtain 

1 1 
| =: ( | | dei (5 || = 0. 

* The case f2(x)gi(y) = 0, which occurs when f(x) =0 or gi(y) = 0, 
requires additional and separate consideration. 
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Integrating this equation we arrive at a general integral in the 
involved form 

1n|x|-+x+1n|y—y = C 
or 

In|xy|+x—y = C. 

(2) Let us consider a differential equation of the first order 
of the type 

(4) 

We arrive at this type of equation if y’, as a function of the ratio 

of the independent variable y and of the dependent variable x, 

can be derived from the differential equation F(x, y, y’) = 0. 

The method employed to solve equation (4) is the one fre- 

quently used in the theory of differential equations, i.e., by intro- 

ducing a new variable, in this case the variable 

u= 2, 
x 

lib = 24; then y = ux, and hence the derivative of function y 
» 

(treated as the product of the two functions u and x) with respect 

to variable x equals 

dy du 
z. = xa tu. 

Thus, equation (4) may be written as follows: 

rE tu = fla). (4a) 

This is a differential equation of the type (2b) with separable 

variables x and u. The equation (4a) may be written 

2 = f(u)—u 

or 
du dx 

J(u)—u 
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Integrating both sides we finally obtain the equation 

du dx 
= Ć MORE 

and hence, (after integrating), we determine the variable auxiliary 

u and then the variable y = ux as thę function of x and any 
constant C. 

Example 

Solve the differential equation 

dy. xy. 

dx x2—y2 

Dividing the numerator and the denominator on the right-hand 
side of this equation by x? we obtain 

ed 
dy x 

of x 

hence the right-hand side of equation is a function of the =. When 

a new variable u — is introduced, the equation can be written as 
x 

du u 

da 1-412 - 

In order to solve this equation we separate the variables as 
shown below: 

u+x 

„A we 
dx 12 iż 

X u3 1 

dx 1 du 

d A 
3 => du, 
ŚŚ u3 

d. 
<= = (u3—u-) du. 
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Integrating both sides we finally arrive at the equation!0 

Inpd-+tn|C|= — 2 — ine. 

Substituting for u its value=, we obtain, after some simple 

transformations: 
x2 

= Dy == Iba ICy| . 

The solution of this differential has a less simple form. To 

present it in the distinct form: y = f(x) would not be easy. 

(3) A linear differential equation of the first order. 

As we know, a linear differential equation of the first order 

can be written in the form 

© +-P0) = 900. (5) 
Let us first consider the case when the equation is homogen- 

eous, i.e., when g(x) = 0. 

In order to solve the equation 

dy 
dx 7 My = 0 (5a) 

we separate the variables: 

dy 
— = —p(x)dx. > P(x) 

Integrating the equation we obtain 

In|y|—1n|C| = — \p (dx 

sA pak and hence In (ee Pads. 

„= SOW 

10 Jt should be noted that the arbitrary constant may be put in a form 

more convenient for later transformation; ln|C| (or —ln|C|) since for any 

number C; we can choose C such that Ci = ln/C|. 
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Non-homogeneous linear differential equations (5) are solved 

by variation constant, a method often used in the solution of 

differential equations.11 To this end we assume that the solution 

of a non-homogeneous linear differential equation has the same 

form as the solution of a homogeneous equation with the difference 

that C is not a constant but is a function of the variable x: C(x). 

We then try to choose a function C(x) so that the solution 
| p(x)dx 

in the form y = C(x)e will satisfy the equation. We obtain: 

dC (x) ae 

dx 

—{p(x)dx —loedx = 
+C(x)e [—p (09]--p() C(X)e q(x); 

and after reducing 

dC (x) —\pedx _ 
dx e = q(x) 

or 

AC) \r(x)dx 
dx W q (x) € > 

and hence 

CG) = ja) ACK dx+A where A is any constant. 

By calculating C(x) in this way and substituting it in the 
: ć = d. ; 

solution of the homogeneous equation y = Ce poż we arrive 

at the general solution of the non-homogeneous equation. 

Example 

Solve the differential equation 

u There are also other ways of solving a linear differential equation of 
the first order. For example, it can be assumed that the solution of this type 
of equation has the form of the product of two functions y = u(x)v(x) and 
assuming that one of these functions, e.g., u(x) is arbitrary, we determine the 
functionv(x) in such a way that the solution y = u(x)v(x) satisfies the equation. 
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Note that this is a non-homogeneous linear differential equation 
and that in this case 

1 
ZEE =: aud" Fe) 23% 

hence 

i} 
| pax = — |e = —ln|x), 

and because 

hence 

1 
CO) = 3 kz dx = 3x+-4 where A is any constant. 

The solution of this differential equation thus takes the form 

— |p(o)dx | in|x 

y= C(%e = (3x+4)e 

or 

y = (3x+-4)x = 3x2+ Ax. 

(4) An incomplete differential equation of the second order. 

We shall consider methods of solving the more simple types of 

differential equations of the second order which—as we already 

know—can be written in the general form F(x, y, y’, y”) = 0. 

(a) Let us suppose that we have a differential equation of the 

second order of the type 

y = f(x). (6) 

This can be simply solved by integrating twice. If y’’ = f(x), 

then 7 = \f@)dx+Cr, and hence y = \ [\f@)dx+Cildx+Co. 

The solution of a differential equation of the second order is 

a two-parameter family of functions. 
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Example 

If 
, 

y= sinx, .then  y =—cosx--Ci, and 

y= \ (—cosx+C;)dx = —sinx+Cix+C2. 

(b) A differential equation of the second order can be solved 
equally simply when it is of the type 

y = f(y). (7) 

Let y =p. Treating p as a function of y, which is, in turn, 

a function of x, we obtain 

„_dy dp dy dp 

Substituting y”, calculated in this way, in the equation y” = f(y) 

we obtain 

p. gy 40). 
This latter equation can be solved by the separation of vari- 

ables. We have, pdp = f(y)dy, hence, after integrating 

Pp? Ci 3 =\foo+z 

or 

py ae 2 |O)dy+Gi, 

and hence 

)=+ V2 (FO) dy+Cidx+C. 

Example 
In order to solve the equation y” = y=, let 

Gp lor pr _ _ dp dy is Bei 
j di wd ad wae, 



Differential and Difference Equations 149 

The equation y’’ = y~3 can, then, be transformed as follows: 

dp 
SS =3 d — es) s ED or pdp=y"dy 

After integrating the latter equation we obtain 

p> y2 Ci 

epee oe 
hence 

d NAKŁ 
p dz uj ZE VG Mż 

This latter differential equation is of the first order and may 
be easily solved by separation of variables. It can be shown that 
the solution of the equation y” = y-3 will have the form 

C1y2—1 = (Cix+ C2). 

(c) Let us now consider the third special case of a differential 
equation of the second order 

Y = f(y’). (8) 

In order to solve this equation we again denote y’ by p; then 
d ; A : : 

y = “and the differential equation y’’ = f(y) is transformed 

> into the equation 
q dx 

/(p), which we solve (with respect to p) 

, : d z 
by the separation of variables. Knowing p = oo we determine y 

by integrating again. 

Example 

In order to solve the equation Żyy' = 1, let y =p. Then the 

differential equation takes the form 

or 
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Integrating this equation we obtain 

[PP = XC, 

hence p=+yx+Qi 

dy My ab 
= Cr. or dx af yx I 1 

Separating the variables in this last equation and integrating 

both sides of the equation we obtain 

y= + |Y/sFG dx+C, = +4 6+G)2+G,. 

\ 

(5) A linear differential equation of the second order with 

constant coefficients. 
We shall now discuss the principles of solving homogeneous 

differential equations of the second order with constant coefficients 

which can be written in the form 

y’ +py'+ay = 0, (9) 
where p and q are constants. 

The solution of this type of equation depends on the following 

theorem which we give without proof: 

If y; and y2 are linearly independent!2 particular solutions of 

the equation, (9) then the general solution of this equation takes 

the form13 7 

y = CiyitCry2, where C; and C; are any constants. 

It follows from this theorem that the solution of a linear 
differential equation of the second order with constant coefficients 

consists in finding two particular solutions of it which are linearly 

independent. Let us suppose that these particular solutions of the 

12 Tt should be remembered that the two variables y: and y» are termed 
linearly independent if the identity CiyitC2y2 = 0 (where C; and C2 are 
any constants) is satisfied only for C: = 0 and C2 = 0. If the identity is also 

G 
satisfied for instance for C2 # 0, then y» = = yi, and hence it follows that 

2 

y2 is proportional to y; and hence y: and y2 are linearly dependent. 
13 That is to say that the general solution y is the weighted sum of the 

particular solutions y: and y where the weights are any constants. 
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equation (9) have the form y = e** wherein the constant k must 
be determined.!4 

Substituting y = e** in equation (9) we havets 

k2e** + pke**+ ge* = 0 

or, dividing both sides by e** ¥ 0: 

ke+pk+q =0. (10) 
This is the characteristic equation of the differential equation. 

The characteristic equation (10) is a quadratic equation with 

respect to k and hence may have two real roots (if the discriminant 

2 , 

of this equation 4 7-4 => o , one real double root (if A = 0) 

or two conjugate complex roots (if A < 0). 

Let us consider these three cases in turn: 

(1) If the discriminant of the characteristic equation 4 > 0, 

then the equation has two roots k; and k» and two particular solu- 

tions of the differential equation under consideration y’’+py’ 

+qy = 0 are as follows, 

Yya=e™ and “2.—=e 

and hence—in accordance with the theorem cited above—the 

general solution of a linear differential equation of the second 

order with constant coefficients has the form 

y —x Ce" Ge (11) 

2 

(2) If the discriminant of the characteristic equation 4 == 

—g = 0, then the equation has one (double) root ki =ka = =" 

p 
. . . . ZW 

and in this case we have only one particular solution yi=e *. 

14 Jt should be noted that the two functions yi =ek1* and y2 = e*2* are 
linearly independent. If these functions were linearly dependent, then Cie/1* 

+ C2rek2* = 0, where at least one of the coefficients, e.g.. C2 # 0. 
‘6; BRE: 

But then e(42-ki)* = ee which is impossible since the right-hand side is 
> 

constant (independent of x) and the left-hand side is variable. 

15 If y = ek*, then y = kek* and y” = kżek*, 
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In order to find yz, i.e., the second particular solution of the 

differential equation v'++py +qy = 0, let us assume that the 

solution has the form y = J1z, where z = z(x) is a function of 

x not identically equal to a constant. 

In order to find the function z for which the equation y2 = J1z 

satisfies equation (9), we calculate: 

a p 
and “yz; =e 2 [2p 2), 

and then substitute y2, y;, yz” in equation (9). 
By : 

After dividing e 2 and after reducing we obtain the equation 

2 

ZH KR Js=o 

2 

and since in this case —7q= 0, therefore; also z "= 0. 

From the condition z’’=0O it follows that z = (C» and 

Z = C2x+Cs3, where C2 and C; are any constants. Because we want 

to find the particular solution of equation (9), we may assume 

that 

_Px 
C=1 and C;=—0,and:thene = Cox, and ps = Gxe ee: 

Thus, in accordance with the theorem mentioned above, the general 

solution of equation (9), in the case where the discriminant of 

the characteristic equation is equal to zero, has the form 

ese 
y=e 2*(Cit+Cx). (12) 

(3) Let us consider the last case where the discriminant of the 

. . . 2 . . 

characteristic equation 4 =q-4 < 0; in this case the character- 

istic equation (10) has two conjugate complex roots which we can 
write in the form 

ki=a+fi and ką = a—Bi where iż = —l. 
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In this case the particular solutions of equation (9) have the 
form 

yi = CRED: Je = g(e-Bi)x 

Using Euler's formulae,i6 we can transform these equations as 
follows: 

Ją = e(37808 = et%eh'* — e*(cos Bx-Lisin Bx), 

Jo eC POM = ee TA™ == oe (cos Px—isin Bx). 

These are complex!” solutions of the differential equation (9), 
which make it possible to find easily two other real solutions 
of this differential equation. 

Indeed, it can be shown that if yi and y2 are linearly independent 

particular solutions of the differential equation (9), then the sum 

of these solutions divided by 2 

n= a Se COS OX 

and their difference divided by 2i 

Va = BAZAR = e*cosfx, 
aL 

are linearly independent particular solutions of a given differential 

equation. 

If, on the other hand, Y; and Y2 are two linearly independent 

solutions of the differential equation (9), then their weighted sum 

y = C1%14+C2¥2 = e*(Cicos Bx+ Crsin Bx) (13) 

will be the required general solution of equation (9); C; and C2 

are any constants (real or complex). 

16 Euler’s formulae: 

eX = cosx--isinx, e-'* = cosx—isinx, 

hence it follows that 

e'x-— x 2 J ei X —e-ix 

Se ais an Sl ts a oe 2 pie 

17 The solutions yi and y2 are complex functions (of the real variable x) 

since they contain elements with the imaginary factor i= y —1. 
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The appearance of trigonometric functions, i.e. of periodic 

functions in the general solution of a differential equation in the 

case of complex roots of the characteristic equation (10) shows 

that the differential equation under consideration is related to 

phenomena of a periodic pattern. 

In order to solve a non-homogeneous differential equation of 

the second order with constant coefficients, i.e., an equation in 

the form 

y'+py'+qay = v(x), (14) 

we frequently make use of the following theorem which we give 

without proof. ę 

The solution of the non-homogeneous equation (14) is the sum 

of the general solution of the corresponding homogeneous equation 

(i.e., the equation y”’+py’+qy = 0) and of a particular solution 

of the given non-homogeneous equation. 

Because we know the method by which a homogeneous equation 

is solved, the finding of the general solution of a non-homogeneous 

equation consists in finding its particular solution. 

The determination of the particular solution of the equation 

(14) depends on the nature of the function v(x). Usually the 

particular solution sought has the same structure as the function 

v(x). Often, however, it may be possible to find the particular 

solution of equation (14) by the method of trial and error. 

In order to explain this method we shall confine ourselves to 

one simple example where the right-hand side of the equation (14) 

is an exponential function, i.e., v(x) = ae™*, where a # 0. 

In this case we assume that the particular solution of the 

equation (14) may also be written as the exponential function 

z = Ae”, where A is an indeterminate coefficient. 

From this assumption it follows that z’ = Ame"* and z” 
= Amze™*, 

If the function z = Ae”* is the solution of equation (14), then, 
if it is substituted in this equation for y (and correspondingly z” 
and z” for y’ and y”’), it satisfies the equation. Hence (after dividing 
both sides of the equation by e™*) we obtain 

A(m2-+-pm-+q) = a. 
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Two cases are possible: 

(a) m is not a root of the characteristic equation (10) (corre- 
sponding to the homogeneous equation y’’+-py’+qy = 0); 

(b) m is a root of the characteristic equation (10). 

In the first case m?+-pm+q # 0, and hence A = east Se 
m+ pm-+-q 

and the particular solution of the equation (14) can be written 

ua ae 

m2+pm+q- 

In the second case m?+-pm-+q = 0, hence the equation 

A (m?+pm-+q) = a is contradictory and equation (3) has no 

solution in the form z = Ae”. 

Because of this we try—as above—to see whether the solution 

of equation (14) could be expressed in a more complex form, e.g., 

Pi AX wea AXE, etc. 

Example 

Solve the equation y”’—Sy’+ 6y = e*. 

First of all we look for the general solution of the homogeneous 

equation 

y’—S5y’+6y = 0. 

Because in this case p= —5, q=6 hence the characteristic 

equation is 

k2—5k+6 = 0. 

This characteristic equation has real roots (4 = 1 > 0), ki = 2 and 

ką = 3, and therefore the function 

y = Cre**-- Cre 

is the general solution of the equation y’’—5y’+6y = 0. 
We now proceed to look for the particular solution assuming 

that the solution has the form z= Ae* (in this case we have 

taken m = 1, which is possible since 1 is not a root of the charac- 

teristic equation k2—5k-++6 = 0). Substituting 

7 = Ae 7e= Aes 7 a= Ae 
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for y, y’, and y” respectively in the equation which we have to 

solve, we obtain 
Ae*—5Ae*+6Ae* = e*, 

and after reducing and simplifying we arrive at 2A = 1, hence 

A = 1/2. The general solution of this non-homogeneous equation 

will be the function \ 

1 
y= Cye*+ Cre* +> e* 

4. A system of linear differential equations of the first order 

In order to familiarize ourselves with one typical method of 
solving a set of differential equations, let us consider the partic- 

ular case of a set of n linear differential equations of the first 

order with constant coefficients in the form 

d 
bese = Ay Ji HA2V2 + --- PdynYn» 

dyą 

ae =a a == ¢ + dop no | de 21V1 HA>2)2 anv (1) 

dx = Ant Vy Fdn2V2 ... an Vas 

where 1, Va, ..., ¥, are unknown functions and the coefficients 

ay. (i, k = 1, 2, ..., n) are constants. 

It follows from the theorems on the existence of solutions 

for differential equations that if we know n particular solutions 
of the set (1) in the form of n sequences of functions 

Vii> V12> ::*> Vins 

Va V22> +++» V2n> 
mosz. (2) 

Mn Vn2> .... Vnn> 

then the set of n linear combinations of functions 

iy = CyutCoyit ... +Cryin> 

ane CEE «Cy Vans 3) 

nia GHAWGWSA se = CaVans 
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where C;, C2, ..., C, are any constants, is also a solution of the 
set of differential equations (1). 

If, moreover, the determinant 

Vnu)V12 +++ Vin 

AGAT (4) 
Yui Vn2 «++ Van 

then from the linear equations (3) it is possible to determine the 

values of the constants C;, C2,...,C,, such that the functions 

V1, Va» -.+5 Vx have given values at any point x = Xo. In this case, 

the set of m linear combinations (3) will be the general solution 

of the set of differential equations (1). 

In order to solve the set of differential equations (1) let us 
assume that the particular solutions of this set form the sequence 
of n exponential functions: 

JPEG VP Oe, Wes Ve = ee (5) 

In order to determine the constants «1, «2, ..., «„ and the constant 

r, we substitute these functions in the set (1). We obtain (after 

dividing both sides of the set of equations by e’* and arranging) 
the following set of n homogeneous numerical linear equations 

(Ay; —1) © +A12%2- ... + Aine, = 0, 

Az, 04 (672—rT)a2+- ... 20 = 0, 
Peete meee ee eee Heese esse esse ee eeeesssessesessses 

Ani 01 + An2 La OE zh (Gan) = 0. 

This set has a solution other than zero with respect to a1, %2, ..., 

..., %, When and only when the determinant of the coefficients of 

this set equals zero: 

Wir) = gć, =0. (7) 
eee ee ee seć 
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It is easy to see (after expanding the determinant W(r)) that 

condition (7) is an equation of the mth degree with respect to 

the unknown r. For each root r; of this equation there are corre- 

sponding non-zero solutions 1, %j2, --:> Gin of the set of linear 

equations (6). If the equation has n single roots r;,rą, ..., 7, then 

there are n sequences of functions = 

) > JE: 
Var = 010”, Viz = 042€ " -..> Vin = Hine 

x e. rox 

Ja = 021677, V22 = Xą2€' * 205 Van = Aone? 
ee were er eee ere essere eeeeereeeessesesesessess 

(8) 

Arik Ot Cos in = Cer, 222 Vann = Snne™, 

each of which is a solution of the set of differential equations (1). 

It is possible to prove that the determinant (4) for the functions 

(8) is not equal to zero and hence the set of linear combinations 

in the form (3) of solutions (8) provides the general solution of 

the set of equations (1). 

5. Difference equations 

Differential equations are found in practice (e.g., in the study 

of physical phenomena, in solving certain economic problems, 

etc.) when we are dealing with quantities and functions which are 

continuous. If, on the other hand, it appears from the nature of 

a particular phenomenon that function y changes in steps, then 

the study of phenomena of this type by mathematical methods leads 
in practice to difference equations. 

It often happens that the same phenomenon may be considered 

both as a continuous process and as a step process. For example, 

the growth of the national income, a change in the investment 

fund etc., may be considered as continuous processes in the sense 

that they are continuously increasing at every moment in the 
period studied. It is also possible—and this is sometimes more 
convenient—to assume that the size of the national income, the 
investment fund and other similar quantities change by steps, e.g., 
at the end of every year, quarter, month, etc. 

As a specific example let us consider the case where y changes 
in relation to time x “according to the principle of the compound 
rate of interest”. In treating this process as a discrete one let us 
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assume that the original value of the dependent variable is yo, 

the compound unit rate of interest is r,18 and the period after 

which the quantity considered increases at the given rate is one 

year. We shall take this period as the unit of time measurement, 

i.e. of the quantity x. 

We then have the following relation 

Vx = (GR (1) 

which is a simple difference equation determining the quantity 

yx—corresponding to the determined level of the dependent vari- 

_ able x—depending on the quantity y,_, corresponding to the level 

of the dependent variable one period earlier.’ 
Since the relation (1) holds for x = I, 2, 3, ..., it is easy to 

check (by the repeated application of formula (1)), that the 

solution of the difference equation (1) may be written 

yy =yol+r)® (x= 1,2, 3,...). (2) 

Let us now consider a process of growth at a compound rate of 

interest, as a continuous process. For this purpose let us initially 

assume that interest is added to the value of variable y not at 

the end of each unit of time (e.g., each year), but at periods equal 
l : : 3 : 

to — of this unit. The new unit rate of interest, moreover, for 
I 

l ; : M 
each period ol. of the unit of time will equal —. i.e., — of the 

rate r for the unit of time. 

The relation (1) can then be written 

+ | Q) 

18 The growth per unit in a given period of time is called the unit rate of 

interest. If the rate of interest is, e.g., 5 per cent, then the unit rate of interest 

is 5/100. In economic textbooks the unit rate of interest is frequently denoted 
by the letter r, while in textbooks on political arithmetic the unit rate of 

interest is denoted by the letter i. Letter r is the interest factor, r = 1--i. 

19 The symbol yx (or yx—1)is a simplified way of writing the value of function 

y corresponding to the independent variable equal to x (or x—1). The symbol 

yx is thus interchangeable with the symbols y(x) or f(x). 
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and will hold for 

Viren maa 
Wi u 

ZE 6 x I Z 

n 

or 

Jxth x 18 } ma 3a ya ee where h = (3a) 

The assumption that y changes continuously is the same as 

: A; 
assuming that the interest rate period — becomes shorter and 

: l 
shorter, i.e., n > 00 and h = „GR 0. 

Note, too, that when h > 0, then the left side of the equation 

(3a) is equal to the derivative of the function y with respect to 

the variable x and the equation (3a) is transformed into the 

differential equation 

dy 
—— = ryx. 4 POR (4) 

By separating the variables and taking into account the condi- 

tion that when x = 0 then y = yo, it is easy to find that the solu- 

tion of equation (4) is the exponential function 

Vx = Joe”. (5) 

This is the well-known formula for continuous compound 

interest, i.e., a formula which makes it possible to determine the 
value of y, in relation to the time x, assuming that y, changes 

continuously at the compound rate of interest. 

The basic concepts in the theory of difference equations are 
differences of functions. Let us assume that the independent vari- 
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able x of a given function y = f(x) assumes the value x = Xo, 

X1, X2, ..., X,, and the intervals between these consecutive values 

of the independent variable x (difference intervals) are equal, i.e., 

X1 X90 = X2—4%1 = ... = XT 4,11 = h. 

Without making this assumption less general, we may assume 

that the difference interval h = 1. If, for example, in a given dy- 

namic process the independent variable x is time, and the difference 

between consecutive values of the variable x is one month, then 

there is nothing to prevent the adoption of this period as the 

unit of time measurement. In view of this, the sequence of consecu- 

tive values of the independent variable x is 

X, x+1, x+2, ..., xn, 

and the sequence of the values of the function y = f(x) correspond- 

ing to the values of x given above can be written 

Vx» Vx+1> JVx+2> obec) Jx+n* 

The new function defined by the formula? 

AYx = Jxq1—Vx (6) 

is called the first difference of the function y = f(x). 

From this definition it follows that the first difference of the 

function y = f(x) for consecutive values of the variable x assumes 

the following values 

Ay, = Vxt tae) x9 AY x41 WAZA APN Veta Veto <= 

Similarly we define the second, third and further differences 

of the function, i.e., we form the second difference Ay, as the 

first difference of the function which is itself the first difference 

of the function y,. Hence, we obtain 

A2y, = A(Ayx) = Ay 24 da (6a) 

similarly 

Ay, =< A2y,.1—42y, (6b) 

20 The symbol 4 is here the symbol for the difference operator which 

transforms the given function yx into the new function called its first difference, 

just as the symbol D introduced by Cauchy is the operator transforming the 

given function y = f(x) into its derivative function Dy = y’. 
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and in general 

Any, = A "e414" Vx (6c) 
The way in which consecutive differences of a function are 

determined can be explained by giving examples. . 

(1) The first difference of the linear function y = ax-+b is 

constant and equal to a. Indeed, by definition (6) for each value 

of x we have 

Ay; = Vusi—Yx = [a(x+1)+b]— (ax+-b) = a. 

It follows that on the basis of formula (6a) A2y, = 0. 

(2) Let us calculate the consecutive differences of the function 

j0 = 2978 

AJ; = Yugi Ja = A 1p x3 = 3x1, 

Ary, = Ay,,1—4y; = B@+1P+304+)D41) 
— [3x2-+3x+]] = 6x6. 

A3y, = A2y,,,—A2y, = [6(*%+1)+6]— [6x--6] = 6. 

Since the function A3y, is constant, the fourth and higher differ- 

ences of the function y = x3 are equal to zero. 

As an illustration of this example, we give below a table of 

the values of the function y = x3 and of its differences Ay, A2y, 

A3y and A‘y for x = 0, 1, 2, 3.2! 

| © 6 |. 466 | 233 PAS ZAŚ 

| | 
| 0 OMA ak 6 | 6 | 0 
tel {oom Co le soe 0 
ae gh al. Wout WI remi wee | ont’ 
pie 21 | 37 24 | BP Th) van Oral 

It should be noted that (when 4x = 1), there is a similarity 

between the concept of differences of functions and the concept of 

derivatives of functions with which we deal in differential calculus. 

*1 In the symbols for the differences of functions Ayx, 42y, and so on, 
there is no need to denote the independent variable x provided that this does 
not lead to misunderstandings. Similarly, the symbol of the dependent variable 
y may be replaced by a formula for the function, by writing e.g. 4x3, Asinx 
Gie: 
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However, the use of derivatives in mathematics is limited since 

the necessary condition for the existence of a derivative is the 

continuity of the function. On the other hand, differences of 

functions also exist for non-continuous functions, e.g., those de- 

fined by a set of integers. 

Just as methods for calculating derivatives of functions of 

various types are given in differential calculus so there is a differ- 

ence calculus which establishes the rules and formulae for cal- 

culating differences of functions. We give some of these formulae22 

without proof (which are, in any case, quite straightforward and 

are based on the definition of differences). 

(1) d(cy) = cAy (the constant may be placed in front of the 

symbol for the operator 4). 

(2) 4011-52) = Ayit-Ayz. 
This is the formula for the difference of the sum of two functions 

y1 and y2 which can easily be generalized to apply to the sum of 

a finite number of functions. We then arrive at 

A CoV, = CAVE» 

(3) A[u(x)v (x)] = u(x+1) Av (x)+0 (x) du(x), 

, u(x) — v(x) Au(x)—u(x) do (x) 

(4) "a im: v(x): v(x+1) 
(if v(x)v(x+1) ź 0). 

The last two formulae are used for calculating the differences 

of the product and of the ratio of the two functions. 

Example 

Ax4 = A(x: x3) = (x+1 )4x3+-x34x 

= (x+1) (3x2+3x+1)-+23 = 4x34 6x2+4x+1.23 © 

We shall now give a definition for, and some simple examples of, 

difference equations. 

22 The reader’s attention is drawn to the similarity between some formulae 

for calculating differences of functions and derivatives of functions. 

23 We have made use here of the formula given above 

Ax3 = 3x2--3x+1. 



164 ANTONI BANASINSKI 

The name difference equation is given to an equation expressing 

the relation between an independent variable x, and an unknown 

function (dependent variable) y, and its differences Ay, Aży, ..., 

pA 
According to this definition, we can write a difference equation 

symbolically in the form 

(x, y, Ay, A2y, ..., Ary) = 0. (7) 

A difference equation may be defined for all real values of x 

and for any difference interval h. Most frequently, however, differ- 

ence equations are defined for a special set of values of x, i.e., 

for a finite or infinite set of consecutive integers: 

X0, X0 ie X0 2 X0 i 3, ... 

(xo = 0 is frequently taken as the initial level). 

In order to indicate that a given function y appearing in a dif- 

ference equation is defined by a set of consecutive integers k 

= 1,2,3..., it is usual practice to add to the symbol for the 

function y the letter k writing y, (instead of y,, used in the general 

case). 

It can be shown that every difference equation in form (7) 

may be transformed into form 

REG Vi Vien) 20 (7a) 

expressing the relation between the independent variable x and the 

values of the function y at various points in the set by which 

the difference equation is defined. 

There are formulae which help in the transformation of a differ- 
ence equation from (7) into form (7a). In simple cases, however, 

this transformation does not present any great difficulty as the 
following examples show. 

(1) Ay, +3), = 0 is a difference equation of form CT: 
Considering that, according to the definition of the first difference 
of the function o = Vk+1— 4, this equation may be written 
Jks1 HZY = 0. 

(2) Ay, +24); ph = 0 is a difference equation. 
Since Aye Ven yp and 

A2y, = Aya —AJK == (Vere Vie1) (kai JA) = Vk+2 —ŻVką1 PY*» 
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it may be written 

Vn 2— 2 err FMA ZVixi— au ve =U: 

hence 

Vira = 0. 

A difference equation is /inear if 1t can be written in the form 

AK) Vin tk) Vepnit --- tank), = b(k), (8) 

where do(k), ai(k), ..., a,(k) and b(k) are functions of k determined 

for all the values of k of a particular set Z by which the difference 
equation is defined. 

If at the same time ao(k) and a,(k) are not equal to zero at 

every point of the set Z then the equation (8) is of the nth order. 

If the functions ao(k), ai(k), ..., a,(k) are constant numbers 

(i.e., not dependent on k) then the equation (8) is called a difference 

equation with constant coefficients. 

For example, the difference equation y,,.+5),,;—7), = 2k 

is of the second order and the equation },%45+5),,1 = 2k is of 

the first order, while both are linear equations with constant 

coefficients. On the other hand in the linear equation ky). 

+2),41—6), = 0 not all the coefficients are constant and the 

equation is of the second order only when the set of values by 

which the equation is defined does not include k = 0. 

The function y is the solution of the difference equation, defined 

by the set of values Z if the values of this function defined by set 

Z satisfy the equation. 

We shall not concern ourselves at this point with a discussion 

of the methods of solving difference equations24 (which are often 

similar to those employed in solving differential equations), but 

shall confine ourselves to giving some simple examples of solutions 

of equations of this kind. 

Given the difference equation y,,,—2yh = 0, determined 

for k = 0, 1, 2, 3, ..., it is easy to show that the function ), 

= 2*(k = 0, I, 2, ...) is the solution of this equation. Substituting 

24 A more extensive discussion of methods of solving difference equations 
can be found in Introduction to Difference Equations, by Samuel Goldberg, 

J. Wiley and Sons, New York-London, 1958, from which some of the exam- 

ples given here have been taken. 



166 ANTONI BANASINSKI 

this function in the left-hand side of the equation y,,,—2y, = 0 

we obtain the expression 2**!—2-2*, which is identically (and 

hence for every k = 0, 1, 2, ...) equal to zero. 

It is found, however, that the function y, = 2* is the particular 

solution of the equation in question. For—as is easy to show— 

there is a family of functions y, = C2* (where C is any constant), 

which satisfies this equation. Indeed, thé expression C2*+!—2C2* 

is also identically equal to zero. 

The solution y, = C2*(k = 0, 1, 2, ...) is called the general 
solution of the difference equation. 

Similarly, it can be shown that the function y, = 2*(Ci+C2k), 

k = 0, 1, 2,..., where C, and C2 are any constants, is the general 

solution of a linear difference equation of the second order with 

constant coefficients: 

Ver2—Wrerit 4 = 0. 

Substituting the function y, = 2*(Ci+C2k) in this equation we 
obtain the equation 

221 C+ Cx(k-£2)|—4 - 2 CA Cok+1)] 

+4 : 2*(C1+C2k) = 0, 

which—as can easily be seen (after dividing by 2/72 = 2:2/*! 
= 4.2 and reducing)—is satisfied identically. 

Given the initial conditions which the solution of the above 

equation must satisfy, e.g., yo = l and y; = 6, then the values 

of the constants C; and C2 can be determined with the help of 

the general solution. 

Substituting in the general solution y, = 2*(Ci+C2k), the value 

k = 0 and then k= 1, we obtain yo = C; and yi = 2(C,+C>). 

According to the initial conditions 

Vo Crt, 
and 

y= 2(Ci C2) =: i, 

Hence it is easy to determine: C; = 1 and ©, = 2. 
Thus, the particular solution of a difference equation which 

satisfies the initial conditions yo = 1 and y; = 6 can be written 
as follows: 

Ye = 2*(1+2k). 
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In conclusion of our general comments on the theory of differ- 

ence equations we give a method of solving difference equations, 

using a simple linear difference equation of the first order with 
constant coefficients as an example: 

Pa = Ayr ee oi =0, 1253, -.1 4 6.0). (9) 

In order to solve this equation let us assume that the value 

of the function y for x = 0, i.e., the initial value of the function 

Jo is given. 

Assuming k = 0, we obtain on the basis of equation (9), 

J1 = Ayot B, 

while for k = 1 

Assuming that k = 3, we determine 

y3 = Ayot B= A[A20+B(1+4)]++B = A3yo+BU+A+A?2). 

By the method of induction it can be shown that generally 

Vee ype BU PALA AF) for” k= "172, 3) 2, 

Since the sum of the geometric progression 

1—A* 

1+4A+42+ ... +A'"''=| 1—A for Aźl, 

k KOR - l = Jl, 

the particular solution of equation (9) can be written as 

A ZA for A ź I 2 feed GG=01B2 210) 
yo+ Bk Tora = 1 

It can also be shown that the general solution of equation (9) 

will be: 

Gana 2 for A ź | 
ves 1—A (= 01,2. ...) 40a) 

C+ Bk fot A=1 

where C is any constant. 
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E.g., the solution of the equation y,,; = 24,+1(k = 90, 1, 2, ...) 

with the initial condition yo = 5, can, on the basis of (10) and 

because A = 2 and B = 1, be written as follows: 

AE | 

or 
SPSS hal eae: 

It is easy to calculate that consecutive values of the function 

which is a solution of the equation ),,, = 2y,+1 form the follow- 

ing numerical sequence: 5, 11, 23, 47, 95, ... 
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